首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
High energy ball milling, vertical-axis attritor milling and co-sputtering were used to prepare Sn30Co30C40 or Sn36Co41C23 electrode materials. By varying the milling conditions, it was possible to obtain nanostructured materials by mechanical methods whose X-ray diffraction patterns mimicked the diffraction pattern of the co-sputtered material. Electrochemical testing showed that composite electrodes made from each of the prepared materials showed stable charge–discharge capacity for at least 100 charge–discharge cycles and stable differential capacity versus potential profiles. Although the materials appear to be similarly nanostructured, the sputtered material showed a reversible capacity near 610 mA h/g, close to the theoretical capacity of 661 mA h/g, while the best material prepared by mechanical methods attained a specific capacity near 470 mA h/g. Further experiments are required to understand the differences in the nanostructure of these materials that leads to the differences in attained specific capacity.  相似文献   

2.
Porous Sn–Co–P alloy with reticular structure were prepared by electroplating using copper foam as current collector. The structure and electrochemical performance of the electroplated porous Sn–Co–P alloy electrodes were investigated in detail. Experimental results illustrated that the porous Sn–Co–P alloy consists of mainly SnP0.94 phase with a minor quantity of Sn and Co3Sn2. Galvanostatic charge–discharge tests of porous Sn–Co–P alloy electrodes confirmed its excellent performances: at 50th charge–discharge cycle, the discharge specific capacity is 503 mAh g?1 and the columbic efficiency is as high as 99%. It has revealed that the porous and multi-phase composite structure of the alloy can restrain the pulverization of electrode in charge/discharge cycles, and accommodate partly the volume expansion and phase transition, resulting in good cycleability of the electrode.  相似文献   

3.
Using various methods different tin phosphate samples were prepared. One of them was amorphous, while the others were crystalline with monoclinic structure, having unit cell parameters as follows: a=4.586 Å, b=13.618 Å, c=5.818 Å, β=99.61° [Sn (H2PO4)2] and a=8.612 Å, b=4.964 Å, c=15.860 Å, β=98.87° [Sn(HPO4)2], respectively. The crystal water content and the method of thermal decomposition of the samples were determined. The chemical composition of the end products of preparations was determined by promt-gamma activation analysis and was found to be Sn:P=1:2 for all samples independent of their preparation method. The oxidation state of tin atoms in samples as determined by Mossbauer spectroscopy was mainly +2 in sample no. 2, while in some other samples it was +4.  相似文献   

4.
(LiCo3/5Fe1/5Mn1/5)VO4 ceramic was synthesized via solution-based chemical method. X-ray diffraction analysis was carried out on the synthesized powder sample at room temperature, which confirms the orthorhombic structure with the lattice parameters of a = 10.3646 (20) Å, b = 3.7926 (20) Å, c = 9.2131 (20) Å. Field emission scanning electron microscopic analysis was carried out on the sintered pellet sample that indicates grains of unequal sizes (~0.1 to 2 μm) presents average grains size with polydisperse distribution on the surface of the ceramic. Complex impedance spectroscopy (CIS) technique is used for the study of electrical properties. CIS analysis identifies: (i) grain interior, grain boundary and electrode–material interface contributions to electrical response (ii) the presence of temperature dependent electrical relaxation phenomena in the ceramics. Detailed conductivity study indicates that electrical conduction in the material is a thermally activated process. The variation of A.C. conductivity with frequency at different temperatures obeys Jonscher's universal law.  相似文献   

5.
Nanoparticles of Sn–Co alloy were deposited on the surface of multi-walled carbon nanotubes (CNTs) by reductive precipitation of solution of chelating metal salts within a CNTs suspension. The Sn–Co/CNTs nano-composite revealed a high reversible capacity of 424 mA h g?1 and stable cyclic retention at 30th cycle. The improvement of reversible capacity and cyclic performance of the Sn–Co/CNTs composite is attributed to the nanoscale dimension of the Sn–Co alloy particles and the network of CNTs. Inactive Co as glue matrix of Sn prevents the possible pulverization of nanosized alloy particles. The CNTs could be pinning the Sn–Co alloy particles on their surfaces so as to hinder the agglomeration of Sn–Co alloy particles, while maintaining electronic conduction as well as accommodating drastic volume change during Li insertion and extraction reactions.  相似文献   

6.
Submicro/micro-scaled spherical Sn–Ni–C alloy powders synthesized from oxides of Sn and Ni via carbothermal reduction at 900 °C were examined for use as anode materials in Li-ion battery. The synthesized spherical Sn–Ni–C particles show a loose micro-sized structure and a multi-phase composition. The reaction product carbon oxide gases yielded in the carbothermal reduction process should be responsible to the loose structure characteristics of Sn–Ni–C particles. The prepared Sn–Ni–C alloy composite electrode exhibits a stable reversible capacity of 310 mA h g−1 at constant current density of 100 mA g−1, and can be retained at 290 mA h g−1 after 25 cycles. The space existing in loose particle can accommodate the large volume changes during charge/discharge cycling. The ductile component Ni plays as a buffer to relieve the mechanical stress induced by the large volume changes upon cycling. The remained carbon can prevent the aggregation between small alloy particles. All these factors contribute greatly to the excellent cycling stability of Sn–Ni–C alloy electrode. This carbothermal reduction method is simple, cheap and mass-productive, thus suitable to large scale production of alloy anode powders used for lithium ion batteries.  相似文献   

7.
A new ternary Sn–Ni–P alloy rods array electrode for lithium-ion batteries is synthesized by electrodeposition with a Cu nanorods array structured foil as current collector. The Cu nanorods array foil is fabricated by heat treatment and electrochemical reduction of Cu(OH)2 nanorods film, which is grown directly on Cu substrate through an oxidation method. The Sn–Ni–P alloy rods array electrode is mainly composed of pure Sn, Ni3Sn4 and Ni–P phases. The electrochemical experimental results illustrate that the Sn–Ni–P alloy rods array electrode has high reversible capacity and excellent coulombic efficiency, with an initial discharge capacity and charge capacity of 785.0 mAh g?1 and 567.8 mAh g?1, respectively. After the 100th discharge–charge cycling, capacity retention is 94.2% with a value of 534.8 mAh g?1. The electrode also performs with an excellent rate capacity.  相似文献   

8.
The Al–Sn, which is immiscible alloy, film was prepared by e-beam deposition to explore the possibility as anode material for lithium ion batteries for the first time. The film has a complex structure with tiny Sn particles dispersed homogeneously in the Al active matrix. The diffusion coefficients of Li+ in these Al–Sn alloy films were determined to be 2.1–3.2 × 10−8 cm2/s by linear sweep voltammetry. The film electrode with high Al content (Al–33wt%Sn) delivered a high initial discharge capacity of 972.8 mA h g−1, while the film electrode with high Sn content (Al–64wt%Sn) with an initial discharge capacity of 552 mA h g−1 showed good cycle performance indicated by retaining a capacity of about 381 mA h g−1 after 60 cycles. Our preliminary results demonstrate that Al–Sn immiscible alloy is a potential candidate for anodic material of lithium ion batteries.  相似文献   

9.
Highly flexible, paper-like, free-standing polypyrrole and polypyrrole–LiFePO4 composite films were prepared using the electropolymerization method. The films are soft, lightweight, mechanically robust and highly electrically conductivity. The electrochemical behavior of the free-standing films was examined against lithium counter electrode. The electrochemical performance of the free-standing pure PPy electrode was improved by incorporating the most promising cathode material, LiFePO4, into the PPy films. The cell with PPy–LiFePO4 composite film had a higher discharge capacity beyond 50 cycles (80 mA h/g) than that of the cell with pure PPy (60 mA h/g). The free-standing films can be used as electrode materials to satisfy the new market demand for flexible and bendable batteries that are suitable for the various types of design and power needs of soft portable electronic equipment.  相似文献   

10.
《Solid State Sciences》2007,9(11):1012-1019
Two novel inorganic–organic hybrid compounds composed of Keggin tungstocobaltate framework and cobalt(II)–N coordination complexes, K[Co(phen)2(H2O)]2[HCoW12O40]·2H2O (1) (phen = 1,10-phenanthroline) and [Co(2,2′-bipy)3]1.5{[Co(2,2′-bipy)2(H2O)][HCoW12O40]·0.5H2O (2) (bipy = bipyridine), have been synthesized under hydrothermal conditions by directly using Keggin POMs as starting materials, which were characterized by elemental analyses, IR, TG analyses and X-ray single crystal diffraction. Crystal data for compound 1: C48H41Co3KN8O44W12, triclinic, space group P-1, a = 10.918(5) Å, b = 13.401(5) Å, c = 13.693(5) Å, α = 69.291(5)°, β = 71.568(5)°, γ = 78.421(5)°, V = 1768.9(12) Å3, Z = 1; for compound 2: C130H104Co7N26O83W24, orthorhombic, space group, C2/c, a = 46.839(9) Å, b = 14.347(3) Å, c = 26.147(5) Å, α = β = γ = 90°, V = 17,570(6) Å3, Z = 4. Compound 1 exhibits a pseudo-1D chainlike structure, in which potassium ions act as linkages of Keggin unit doubly grafted by [Co(phen)2(H2O)] complex. Compound 2 represents a [Co(2,2′-bipy)2(H2O)]2+ mono-grafted Keggin tungstocobaltate derivative with 1.5[Co(2,2′-bipy)3]2+ countercations. The cyclic voltammetric behavior of 1-CPE is similar to the parent 3-CPE, but the cyclic voltammetric behavior of CoII shows a little difference. Variable-temperature magnetic susceptibility measurement of compound 1 demonstrates the presence of antiferromagnetic interactions.  相似文献   

11.
The structures of tin(II)-oxalate, tin(IV)Na–EDTA and tin(IV)Na8-inositol hexaphosphate were investigated using XRD analysis. Samples were identified using the Mössbauer study, thermal analysis and FTIR spectrometry. The Mössbauer study determined two different oxidation states of tin atoms, and consequently two different tin surroundings in the end products. The tin oxalate was found to be orthorhombic with space group Pnma, a=9.2066(3) Å, b=9.7590(1) Å, c=13.1848(5) Å, V=1184.62 Å3 and Z=8. SnNa–EDTA was found to be monoclinic with space group P21/c1, a=10.7544(3) Å, b=10.1455(3) Å, c=16.5130(6) Å, β=98.59(2)°, V=1781.50(4) Å3 and Z=4. Sn(C6H6Na8O24P6) was found to be amorphous.  相似文献   

12.
Perovskite structured compounds have shown multifunctional properties and therefore attracted attention recently because of their potential applications. To explore such materials we have prepared simple double salts, distorted perovskite structured compounds, Cn2FeCl4, Cn = n-propyl or n-butyl ammonium ions. (C3)2FeCl4 crystallize in orthorhombic space group, Cmc21, having lattice constants a = 7.223(9) Å, b = 7.439(9) Å, c = 25.303(8) Å with unit cell volume of 1359.95 cm3, at room temperature. The overall structure consists of two-dimensional Fe(II)–chloride network, parallel to the ac-plane, interlayered by the ammonium ions. Magnetic measurements using SQUID magnetometer show that these compounds are antiferromagnets with TN  90 K. Preliminary studies using DSC and AC-conductivity have shown promising transitions above room temperature.  相似文献   

13.
The alloys Co2B were prepared by two ways of high temperature solid phase process and arc melting, the structure of the alloys was characterized by XRD and SEM. It showed that it was structure of tetragonal Co2B.The electrochemical experimental results demonstrated that the Co2B prepared by two means both showed excellent cycling stability. The initial discharge capacity of Co2B prepared by the high temperature solid phase process was 480.3 mA h g−1, there was no distinct declination after 70 charge–discharge cycles and the capacity kept about 195 mA h g−1. Co2B prepared by the high temperature solid phase process showed very good electrochemical reversibility in CV curves. The hydrogen storage mechanism was also discussed, it confirmed that the high initial capacity of Co2B prepared by the high temperature solid phase process was due to the oxidation of Co and B2O3, and it was irreversible.  相似文献   

14.
All-solid-state thin film batteries based on sputtered pyrite electrodes, a lithium phosphorus oxynitride electrolyte and a lithium anode were prepared and characterized. The successive reduction of both S22  and Fe2 + species led to an impressive volumetric discharge capacity, five times higher than the one for LiCoO2. Excellent reversibility and capacity retention were obtained during the first and the subsequent 800 charge–discharge cycles. A continuous cycling in the low voltage domain was found to be detrimental to the reversibility of the conversion reaction, suggesting a progressive evolution of the phase distribution inside the electrode. The initial capacity was easily recovered after few full oxidation cycles.  相似文献   

15.
(Mn, Co)-codoped ZnO nanorod arrays were successfully prepared on Cu substrates by electrochemical self-assembly in solution of 0.5 mol/l ZnCl2–0.01 mol/l MnCl2–0.01 mol/l CoCl2–0.1 mol/l KCl–0.05 mol/l tartaric acid at a temperature of 90 °C, and these nanorods were found to be oriented in the c-axis direction with wurtzite structure. Energy dispersive X-ray spectroscopy and x-ray diffraction show that the dopants Mn and Co are incorporated into the wurtzite-structure of ZnO. The concentrations of the dopants, and the orientations and densities of nanorods can easily be well controlled by the current densities of deposition or salt concentrations. Magnetization measurement indicates that the prepared (Mn, Co)-codoped ZnO nanorods with a coercivity of about 91 Oe and a saturation magnetization (Ms) of about 0.23 emu/g. The anisotropic magnetism for the (Mn, Co)-codoped ZnO nanorod arrays prepared in solution of 0.5 mol/l ZnCl2–0.01 mol/l MnCl2–0.01 mol/l CoCl2–0.1 mol/l KCl–0.05 mol/l tartaric acid with current density of 0.5 mA/cm2 was also investigated, and the crossover where the magnetic easy axis switches from parallel to perpendicular occurs at a calculated time of about 112 min. The anisotropic magnetism, depending on the rod geometry and density, can be explained in terms of a competition between self-demagnetization and magnetostatic coupling among the nanorods.  相似文献   

16.
Hollow microspheres composed of phase-pure ZnFe2O4 nanoparticles (hierarchically structured) have been prepared by hydrothermal reaction. The unique hollow spherical structure significantly increases the specific capacity and improves capacity retention of this material. The product of each phase transition during initial discharge (ZnFe2O4 ? Li0.5ZnFe2O4 ? Li2ZnFe2O4  Li2O + Li–Zn + Fe) and their structural reversibility are recognized by X-ray diffraction and electrochemical characterization. The products of the deeply discharged (Li–Zn alloy and Fe) and recharged materials (Fe2O3) were clarified based on high resolution transmission electron microscopic technique and first-principle calculations.  相似文献   

17.
We report self-supported porous Co/NiO core/shell nanowire arrays via the combination of hydrogen reduction and chemical bath deposition methods. The Co nanowire acts as the backbone for the growth of NiO nanoflake shell forming hierarchically porous Co/NiO core/shell nanowire arrays. As electrode materials for pseudo-capacitors, the Co/NiO core/shell nanowire arrays exhibit a specific capacitance of 956 F g 1 at 2 Å g 1 and 737 F g 1 at 40 Å g 1, and good cycling stability, which is mainly due to the metal nanowire based core/shell nanowire architecture which provides good conductive network as well as fast ion/electron transfer and sufficient contact between active materials and electrolyte.  相似文献   

18.
《Solid State Sciences》2007,9(2):137-143
Four new magnesium containing metal–organic hybrid compounds have been synthesized in an effort to prepare low-density materials for hydrogen storage. The compounds were prepared hydrothermally and characterized using single crystal X-ray diffraction. Three of these compounds are analogs of known transition metal structures with squarate (I, Pn-3n, a = 16.276(5) Å), diglycolate (II, P212121, a = 6.860(1) Å, b = 9.993(1) Å, c = 10.884(1) Å, R1 = 0.0341), and glutarate (III, R-3, a = 10.744(2) Å, c = 28.677(5) Å, R1 = 0.0554) ligands; the fourth is a novel structure using cyclobutanetetracarboxylate (IV, Pccn, a = 9.382(1) Å, b = 14.410(2) Å, c = 8.725(1) Å, R1 = 0.0465) which contains potassium as well as magnesium cations.  相似文献   

19.
We have extended our research interest on titanium oxyphosphates (MII(TiO)2(PO4)2, with MII = Mg, Fe, Co, Ni, Cu, Zn) to vanadium oxyphosphates MII(VIVO)2(PO4)2 (MII = Co, Ni). For each compound two phases, named α and β according to synthesis conditions, have been stabilized at room temperature, then characterized. The four crystal structures M(VO)2(PO4)2 (α and β for M = Co, Ni) have been determined in monoclinic P21/c space group using X-ray single crystals diffraction data. Structure of the α phase is derived from the Li(TiO)(PO4) (orthorhombic Pnma) and LiNi0.50(TiO)2(PO4)2 (monoclinic P21/c) types, with cell parameters: a = 6.310(1) Å, b = 7.273(1) Å, c = 7.432(1) Å, β = 90.43(1)° for M = Co, and a = 6.297(2) Å, b = 7.230(2) Å, c = 7.421(2) Å, β = 90.36(2)° for M = Ni. Structure of the β phase is derived from the Ni(TiO)2(PO4)2-type (monoclinic P21/c) with cell parameters: a = 7.2742(2) Å, b = 7.2802(2) Å, c = 7.4550(2) Å, β = 120.171(2)° for M = Co, and a = 7.2691(2) Å, b = 7.2366(2) Å, c = 7.4453(2) Å, β = 120.231(2)° for M = Ni. All these structures consist of a three dimensional (3D) framework built up of infinite chains of tilted corner-sharing [VO6] octahedra, cross-linked by corner-sharing [PO4] tetrahedra. The M2+ ion (M = Co, Ni) is located in a triangular based antiprism which shares faces with two [VO6] octahedra. Structural filiation is discussed based on a common structural unit, a sheet where divalent cations M2+ (M = Co, Ni) are inserted. A thermal study of the α ? β transition is also presented.  相似文献   

20.
Strontium phosphate apatites with compositions Sr5(PO4)3Zn0.15O0.3(OH)0.7, Sr5(PO4)3Ni0.2O0.4(OH)0.6, and Sr5(PO4)3Co0.2O0.5(OH)0.4 were synthesized by solid state reaction at 1400 °C in air. The samples were characterized by powder X-ray diffraction, EDX analysis, magnetic measurements and IR spectroscopy. The crystal structures were refined by the Rietveld method in the space group P63/m with lattice constants a = 9.7499(1), 9.7722(1), 9.7507(1) Å and c = 7.3066(1), 7.2962(1), 7.2988(1) Å, respectively. The 3d-metal atoms were found randomly distributed in the hexagonal channels formally substituting hydrogen in the initial hydroxyapatite. Zn and Ni atoms were twofold coordinated by oxygen atoms such that the linear O–M–O groups formed in the channel separated by the OH groups. Co atom was shifted from the channel center giving the O–Co–O fragment distorted from a linear geometry probably due to the additional coordination by the oxygen atoms of the phosphate groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号