首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
We report the studies on a flexible quasi-solid-state configuration of the redox supercapacitors (pseudocapacitors) assembled with an ionic liquid-based proton conducting non-aqueous gel polymer electrolyte (ILGPE) and composite electrodes of conducting polymer [poly-3-methyl thiophene (pMeT)] and hydrous ruthenium dioxide (RuO2.xH2O). The presence of RuO2.xH2O in the composite electrodes has been confirmed by X-ray diffraction and thermogravimetric analysis. The ILGPE films, prepared with the solution of an ionic liquid (1-ethyl 3-methyl imidazolium trifluoromethanesulfonate) and a salt ammonium trifluoromethanesulfonate entrapped in a host polymer poly(vinylidene fluoride-co-hexafluoropropylene), have been characterized. The symmetrical pseudocapacitors have been assembled and characterized using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge tests. The composite electrodes with the ~13 wt.% hydrous RuO2 loading in pMeT film has shown a maximum specific capacitance value of ~118 F g?1 (of the composite electrode material). The corresponding maximum specific energy and power density have been found to be ~12.8 W kg?1 and ~513 W kg?1, respectively. With further increase in the content of RuO2.xH2O, a slight decrease in specific capacitance value has been observed, which indicates the reduction in utilization rate of RuO2.xH2O. The composite electrodes show stable capacitance values up to 5,000 charge–discharge cycles.  相似文献   

2.
We report an experimental study on the effect of solvents on the model SNAr reaction between 1‐chloro‐2,4‐dinitrobenzene and morpholine in a series of pure ionic liquids (IL). A significant catalytic effect is observed with reference to the same reaction run in water, acetonitrile, and other conventional solvents. The series of IL considered include the anions, NTf2?, DCN?, SCN?, CF3SO3?, PF6?, and FAP? with the series of cations 1‐butyl‐3‐methyl‐imidazolium ([BMIM]+), 1‐ethyl‐3‐methyl‐imidazolium ([EMIM]+), 1‐butyl‐2,3‐dimethyl‐imidazolium ([BM2IM]+), and 1‐butyl‐1‐methyl‐pyrrolidinium ([BMPyr]+). The observed solvent effects can be attributed to an “anion effect”. The anion effect appears related to the anion size (polarizability) and their hydrogen‐bonding (HB) abilities to the substrate. These results have been confirmed by performing a comparison of the rate constants with Gutmann's donicity numbers (DNs). The good correlation between rate constants and DN emphasizes the major role of charge transfer from the anion to the substrate.  相似文献   

3.
J.P. Zheng  P.C. Goonetilleke  D. Roy 《Talanta》2009,78(3):1056-7537
Carbon nanotube (CNT) electrodes in combination with ionic liquid (IL) electrolytes are potentially important for energy storage systems. We report electrochemical investigation of such a system involving a paper-electrode of multi-wall CNT (MWCNT) in the IL of 1-ethyl-3-methyl imidazolium ethylsulfate (EMIM-EtSO4). Our study concentrates on the analytical aspects of cyclic voltammetry (CV) to probe the double layer capacitance of these relatively unconventional systems (that involve rather large charge-discharge time constants). Both theoretical and experimental aspects of CV for such systems are discussed, focusing in particular, on the effects of Faradaic side-reactions, electrolyte resistance and voltage scan speeds. The results are analyzed using an electrode equivalent circuit (EEC) model, demonstrating a method to account for the typical artifacts expected in CV of CNT-IL interfaces.  相似文献   

4.
Three‐dimensional hierarchical porous graphene/carbon composite was successfully synthesized from a solution of graphene oxide and a phenolic resin by using a facile and efficient method. The morphology, structure, and surface property of the composite were investigated intensively by a variety of means such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). It is found that graphene serves as a scaffold to form a hierarchical pore texture in the composite, resulting in its superhigh surface area of 2034 m2g?1, thin macropore wall, and high conductivity (152 S m?1). As evidenced by electrochemical measurements in both EMImBF4 ionic liquid and KOH electrolyte, the composite exhibits ideal capacitive behavior, high capacitance, and excellent rate performance due to its unique structure. In EMImBF4, the composite has a high energy density of up to 50.1 Wh kg?1 and also possesses quite stable cycling stability at 100 °C, suggesting its promising application in high‐temperature supercapacitors. In KOH electrolyte, the specific capacitance of this composite can reach up to an unprecedented value of 186.5 F g?1, even at a very high current density of 50 A g?1, suggesting its prosperous application in high‐power applications.  相似文献   

5.
Quaternary polymer electrolyte (PE) based on poly(acrylonitrile) (PAN), 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid (EMImBF4), sulfolane (TMS) and lithium hexafluorophosphate salt (LiPF6) (PAN-EMImBF4-sulfolane-LIPF6) was prepared by the casting technique. Obtained PE films of ca. 0.2–0.3 mm in thickness showed good mechanical properties. They were examined using scanning electron microscopy (SEM), thermogravimetry (TGA, DSC), the flammability test, electrochemical impedance spectroscopy (EIS) and galvanostatic charging/discharging. SEM images revealed a structure consisting of a polymer network (PAN) and space probably occupied by the liquid phase (LiPF6 + EMImBF4 + sulfolane). The polymer electrolyte in contact with an outer flame source did not ignite; it rather underwent decomposition without the formation of flammable products. Room temperature specific conductivity was ca. 2.5 mS cm?1. The activation energy of the conding process was ca. 9.0 kJ mol?1. Compatibility of the polymer electrolyte with metallic lithium and graphite anodes was tested applying the galvanostatic method. Charge transfer resistance for the C6Li → Li+ + e? anode processes, estimated from EIS curve, was ca. 48 Ω. The graphite anode capacity stabilizes at ca. 350 mAh g?1 after the 30th cycle (20 mA g?1).  相似文献   

6.
The adsorption of I? anions on the Bi(111) single-crystal plane from solutions in ethylene carbonate has been investigated by impedance measurement method. The ionic charge due to the specific adsorption has been obtained by integration of differential capacitance curves, and the Gibbs excess has been calculated using the mixed-electrolyte method applied for both electrode charge and electrode potential as the independent electrical variables. The Gibbs energy of I? anion adsorption has been calculated using the virial adsorption isotherm. It was found that under comparable conditions, the results obtained at constant electrode potential and at constant electrode charge were coincident. The Gibbs energy of I? anion adsorption and the calculated electrosorption valency value were found to be very close to these values obtained in propylene carbonate.  相似文献   

7.
The adsorption of added 2,2′-bipyridine (2,2′-BP) from 1-ethyl-2,3-dimethyl imidazolium bis(trifluoromethanesulfonyl)imide (EMMImNTf2) at an Au(111) electrode has been investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Addition of 2,2′-BP to the ionic liquid clearly modifies the interfacial region as a result of the competition between 2,2′-BP and EMMImNTf2 to occupy the electrode surface. Within the region of ideal polarizability, the 2,2′-BP adlayer undergoes structural changes, shown by the presence of peaks in the CV curves. Between −0.2 V and + 0.9 V, the capacitance–potential curves obtained from EIS data present a capacity maximum depending strongly on the ac frequency, which is typical pseudo-capacitive behavior indicative of a reorganization of the interfacial layer. At more positive potentials a true capacity value close to 10 μF.cm 2 and invariant with the potential suggests that the 2,2′-BP molecules adopt a perpendicular orientation with the nitrogen atoms facing the electrode surface, similar to their adsorption on gold from aqueous solutions.  相似文献   

8.
The large internal surface areas and outstanding electrical and mechanical properties of graphene have prompted to blend graphene with NiCo2O4 to fabricate nanostructured NiCo2O4/graphene composites for supercapacitor applications. The use of graphene as blending with NiCo2O4 enhances the specific capacitance and rate capability and improves the cyclic performance when compared to the pristine NiCo2O4 material. Here, we synthesized two different nanostructured morphologies of NiCo2O4 on graphene sheets by solvothermal method. It has been suggested that the morphologies of oxides are greatly influenced by dielectric constant, thermal conductivity, and viscosity of solvents employed during the synthesis. In order to test this concept, we have synthesized nanostructured NiCo2O4 on graphene sheets by facile solvothermal method using N-methyl pyrrolidone and N,N-dimethylformamide solvents with water. We find that mixture of N-methyl pyrrolidone and water solvent favored the formation of nanonet-like NiCo2O4/graphene (NiCoO-net) whereas mixture of N,N-dimethylformamide and water solvent produced microsphere-like NiCo2O4/graphene (NiCoO-sphere). Electrochemical pseudocapacitance behavior of the two NiCo2O4/graphene electrode materials was studied by cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy techniques. The supercapacitance measurements on NiCoO-net and NiCoO-sphere electrodes showed specific capacitance values of 1060 and 855 F g?1, respectively, at the current density of 1.5 A g?1. The capacitance retention of NiCoO-net electrode is 93 % while that of NiCoO-sphere electrode is 77 % after long-term 5000 charge-discharge cycles at high current density of 10 A g?1.  相似文献   

9.
We report the simultaneous electroanalytical determination of Pb2+ and Cd2+ by square‐wave anodic stripping voltammetry (SWASV) using a bismuth nanoparticle modified boron doped diamond (Bi‐BDD) electrode. Bi deposition was performed in situ with the analytes, from a solution of 0.1 mM Bi(NO3)3 in 0.1 M HClO4 (pH 1.2), and gave detection limits of 1.9 μg L?1 and 2.3 μg L?1 for Pb(II) and Cd(II) respectively. Pb2+ and Cd2+ could not be detected simultaneously at a bare BDD electrode, whilst on a bulk Bi macro electrode (BiBE) the limits of detection for the simultaneous determination of Pb2+ and Cd2+ were ca. ten times higher.  相似文献   

10.
Graphene nanosheets, polyaniline (PANI), and nanocrystallites of transition metal ferrite {Fe3O4 (Mag), NiFe2O4 (NiF), and CoFe2O4 (CoF)} have been prepared and characterized via XRD, FTIR, SEM, TEM, UV–vis spectroscopy, cyclic voltammetry, galvanostatic charge discharges, and impedance spectroscopy. Electrochemical measurements showed that supercapacitances of hybrid electrodes made of the ternary materials are higher than that of hybrid electrode made of binary or single material. The ternary hybrid CoF/graphene (G)/PANI electrode exhibits a highest specific capacitance reaching 1123 Fg?1, an energy density of 240 Wh kg?1 at 1 A g?1, and a power density of 2680 Wkg?1 at 1 A g?1 and outstanding cycling performance, with 98.2% capacitance retained over 2000 cycles. The extraordinary electrochemical performance of the ternary CoF/G/PANI hybrid can be attributed to the synergistic effects of the individual components. The PANI conducting polymer enhances an electron transport. The Ferrite nanoparticles prevent the restocking of the carbon sheets and provide Faradaic processes to increase the total capacitance.  相似文献   

11.
A series of activated carbons with high mesoporous ratio were prepared by KOH reactivation based on activated carbon as the precursor. As the KOH/AC mass ratio was increased to 4:1, the mesoporous ratio increases from 60% to 76%, and the average pore size from 2.23 to 3.14?nm. Moreover, the specific capacitance for the activated carbon in ionic liquid 1-ethyl-3-methylmidazolium tetrafluoroborate ([EMIm]BF4) can reach the maximum value of 189?F?g?1 (8.0???F?cm?2). In addition, the decrease of specific capacitance for activated carbons by KOH reactivation with current density increase shows two regimes, suggesting that activated carbons with high mesoporous ratio are much fit for charge?Cdischarge at larger current density.  相似文献   

12.
Herein, we report a nanoarchitectured nickel molybdate/carbon fibers@pre‐treated Ni foam (NiMoO4/CF@PNF) electrode for supercapacitors. The synthesis of NiMoO4/CF@PNF mainly consists of a direct chemical vapor deposition (CVD) growth of dense carbon fibers (CFs) onto pre‐treated Ni foam (PNF) as the substrate, followed by in situ growth of NiMoO4 nanosheets (NSs) on the CF@PNF substrate by means of a hydrothermal process. The NiMoO4/CF@PNF electrode exhibits a high areal capacitance (5.14 F cm?2 at 4 mA cm?2) and excellent cycling stability (97 % capacitance retention after 2000 cycles at 10 mA cm?2). Furthermore, we have successfully assembled NiMoO4 NSs//activated carbon (AC) asymmetric supercapacitors, which can achieve an energy density of 45.6 Wh kg?1 at 674 W kg?1, and excellent stability with 93 % capacitance retention after 2000 cycles at 5 mA cm?2. These superior properties hold great promise for energy‐storage applications.  相似文献   

13.
Liquid + liquid equilibrium data for (1-ethyl-3-methyl imidazolium ethyl sulfate + thiophene + 2,2,4-trimethylpentane) and (1-ethyl-3-methyl imidazolium ethyl sulfate + thiophene + toluene) have been determined at 298.15 K and atmospheric pressure. The ionic liquid has a great capacity to dissolve not only thiophene but also the toluene, being practically immiscible with 2,2,4-trimethylpentane. Equilibrium data of systems with toluene have been fairly well correlated with the NRTL and UNIQUAC equations but for the system with 2,2,4-trimethylpentane high deviations have been found with both equations.  相似文献   

14.
A room temperature ionic liquid (RTIL), 1-ethyl-3-methyl imidazolium tetrafluoroborate ([EMIm][BF4]), was successfully immobilized on the surface of a basal plane graphite (BPG) electrode through silica sol and Nafion film to form a sol/RTIL/Nafion modified electrode. Direct electrochemistry of hemoglobin (Hb), which was adsorbed on the surface of sol/RTIL/Nafion modified electrode, was investigated. The results from cyclic voltammetry (CV) suggested that Hb could be tightly adsorbed on the surface of the electrode. A couple of well-defined and quasi-reversible CV peaks of Hb can be observed in a phosphate buffer solution (pH 7.0). RTIL shows an obvious promotion for the direct electro-transfer between Hb and electrode. Hb adsorbed on electrode surface exhibits an obvious electrocatalytic activity for the reduction of oxygen O2. The reduction peak currents were proportional linearly to the concentration of oxygen in the range 0.14–1.82 μM. A third generation biosensor based on RTIL can be constructed for the determination of O2.  相似文献   

15.
A series of fluorescent imidazolium‐based salts containing the cation [AnCH2MeIm]+ (in which An=anthracene and Im=the imidazolium cation) with Cl?, BF4?, PF6?, SO3CF3?, [N(CN)2]?, [N(SO2CF3)2]?, or PhBF3? anions have been prepared and characterized. X‐ray diffraction analysis of four of the salts reveals a number of C? H???X‐type (X=O, N, F) hydrogen bonds between the hydrogen atoms from the imidazolium ring and in some cases from the anthracene ring with the electronegative atoms of the anions. Additionally, C? H???π interactions can be found in all the salts analyzed by X‐ray diffraction, whereas π–π stacking is observed only in the salt containing the phenyltrifluoroborate anion. Fluorescence emission analysis in acetonitrile shows that the fluorescence of these salts varies significantly according to the nature of the anion, and correlates to the extent of ion pairing present in solution. Photodimerization of these salts was observed, and in one case a dimer has been isolated and characterized by X‐ray crystallography.  相似文献   

16.
The interactions of ionic liquids (IL) with solvents usually used in liquid-state nuclear magnetic resonance (NMR) spectroscopy are studied. The 1H- and 13C-NMR chemical shift values of 1-n-butyl-3-methyl (BM)- and 1-ethyl-3-methyl (EM)-substituted imidazolium (IM) -chlorides (Cl) and -acetates (Ac) are determined before and after diluting with deuterated solvents (DMSO-d6, D2O, CD3OD, and CDCl3). The dilution offers structural modifications of the IL due to the solvents capacity to ionization. For further investigation of highly viscous cellulose dopes made of imidazolium-based IL, solid-state NMR spectroscopy enables the reproducibility of liquid-state NMR data of pure IL. The correlation of liquid- and solid-state NMR is shown on EMIM-Ac and cellulose/EMIM-Ac dope (10 wt %).  相似文献   

17.
Meso-macroporous Co3O4 electrode is synthesized by drop coating with a mixed solution containing Co(OH)2 colloid, polystyrene spheres, and carbowax (namely polyethylene glycol), followed by calcining at 400?°C to remove polystyrene spheres and carbowax. For comparison, nonporous Co3O4 and mesoporous Co3O4 electrodes are prepared by drop coating with Co(OH)2 colloid and with a mixed solution containing Co(OH)2 colloid and carbowax under the same condition, respectively. Capacitive property of these electrodes is measured by cyclic voltammetry, potentiometry and electrochemical impedance spectroscopy. The results show that meso-macroporous Co3O4 electrode exhibits larger specific capacitance than those of nonporous Co3O4 electrode and mesoporous Co3O4 electrode at various current densities. The specific capacitance of meso-macroporous Co3O4 electrode at the current density of 0.2?A?g?1 is 453?F?g?1. Meanwhile, meso-macroporous Co3O4 electrode possesses the highest specific capacitance retention ratio at the current density ranging from 0.2 to 1.0?A?g?1, indicating that meso-macroporous Co3O4 electrode suits to high-rate charge?Cdischarge.  相似文献   

18.
Xin Li  Xin Lan  Shuang Ma  Lu Bai  Mei Tian 《Liquid crystals》2013,40(12):1843-1853
A series of cholesteryl-containing imidazolium chlorides and imidazolium tetrachloroaluminates were synthesised, and the chemical structure, liquid crystalline behaviour and ionic conductivity were characterised by several technical methods. Whereas the imidazolium chlorides show chiral smectic A (SmA*) phase on heating and cooling cycles, the imidazolium tetrachloroaluminates display chiral nematic (N*) phase, which is uncommon for ionic liquid crystals (ILCs). The imidazolium chlorides display similar phase transition temperature and entropy, indicating the cholesteryl component influence predominately on the phase transition rather than the different alkyl substituent groups. The imidazolium tetrachloroaluminates show lower melting point temperatures and lower clear point temperature than the imidazolium chlorides. The mesophases exist at rather moderate temperatures. Non-mesomorphic imidazolium tetrachloroaluminate(III) salts with short alkyl substituents have been known for a long time, and the synthesised imidazolium tetrachloroaluminates are the first examples of tetrahalogenoaluminate(III)-containing ILCs. For the imidazolium tetrachloroaluminates, imidazolium cations combine loosely with AlCl4? ions because AlCl4? ions are large and occupy more space in spite of the hydrogen bond and electrostatic attraction interaction, indicating that the layer structure can be destroyed easily to form N* phase on heating.  相似文献   

19.
The Iteraltive Extended Hückel Molecular Orbital method has been adapted to calculation of the properties of an electrode and compact layer. Predictions of the stablest orientations, on the Pt(111) surface of species such as H2O, Pt, OH?, H, and the halides, F?, Cl?, Br? and I?, based upon calculation of the total energy corresponding to various internuclear distances, are reported. The calculations correctly predict self-adsorption of Pt on the Pt(111) surface at the face-centered cubic closest-packing position. The H2O molecule is predicted to locate itself above three adjoining Pt atoms, with the O atom closest to the surface and the H atoms opposite the O. Similar results were obtained for OH? and the halides. Atomic H, however, is predicted to drop into the plane of centers of the Pt surface atoms, where it would lie between, three adjacent Pt atoms. Application of the method to electrode studies requires only modest amounts of computer time but produces surprisingly reliable qualitative predictions. Compulation of electrochemical quantities such as charge, differential capacitance, surface tension and potential energy as a function of electrode potential will be described in future work.  相似文献   

20.
In the present work, boron-doped multicomponent gel polymer electrolytes composed of host polymer, sulfonated polysulfone (SPSU) and the additives; ionic liquid, 1-ethyl-3-methyl-imidazolium tetrafluoroborate (IL), H3BO3, polyphosphoric acid (PPA) were prepared. Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) techniques were used to characterize the sulfonated polysulfone-based electrolytes. Ion conductivity of these gel electrolytes were studied by dielectric impedance analyzer within the temperature from ?20 to 100°C. The ionic conductivity of the SPSU-5IL-1PPA and SPSU-5IL-1H3BO3-1PPA were measured as 4.8 × 10?3 and 9 × 10?4 S cm?1, respectively. Supercapacitor having activated carbon-based composite electrode and electrolyte was constructed with the configuration: Al/C/electrolyte/C/Al. The electrochemical properties and ion transfer characteristics of the supercapacitor were investigated by the cyclic voltammetry (CV). Galvanostatic charge—discharge experiments exhibited good electrochemical reversibility and produced a specific capacitance value of 120 F g?1 at 1 A g?1. The symmetric supercapacitor system was retained almost 85% of its initial activity after 1000 cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号