首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three Ag(I) coordination polymers [Ag(L1)]·(H3bptc)·H2O (1), [Ag2(L2)(oba)]·H2O (2), and [Ag2(L2)2]·(H2bptc) (3) [L1 = 1,4-bis(3,5-dimethylpyrazole)butane, L2 = 1,4-bis(2-methylbenzimidazole)butane, H4bptc = 3,3′,4,4′-biphenyltetracarboxylic acid, H2oba = 4,4′-oxybis(benzoic acid)] constructed from N-containing ligands with different flexibilities and organic carboxylates as co-ligands have been hydrothermally synthesized and characterized by single-crystal X-ray diffraction analysis. All three complexes display 1D chain structures, which are further extended into 2D supramolecular networks via non-classical C–H···O hydrogen bonding interactions. The fluorescence and catalytic properties of the complexes 13 have been investigated in detail. Complexes 2 and 3 reveal promising catalytic activities for the degradation of methyl orange in a Fenton-like process.  相似文献   

2.
Four novel coordination polymers, [Zn(HL1)2(phen)2]·2CH3OH·2H2O (1), [ZnCl(HL1)(4,4′-bipy)0.5] n (2), [Cd(HL1)(L2)0.5(2,2′-bipy)2]·3H2O (3), [Zn(L3)0.5(N3)1.5(phen)] n (4) (H2L1 = 9-(1H-tetrazole-5-yl)-10-carboxyl anthracene, H2L2 = 9,10-di-(1H-tetrazole-5-yl) anthracene, HL3 = 9-(1H-tetrazole-5-yl)-10-cyan anthracene, 1,10-phen = 1,10-phenanthroline, 4,4′-bipy = 4,4′-bipyridine, 2,2′-bipy = 2,2′-bipyridine), have been constructed by in situ ligands synthesis system. The formation of tetrazole-based ligands H2L1, H2L2 and H2L3 involves the in situ Sharpless [2 + 3] cycloaddition reaction between 9,10-dicyanoanthracene (DCA) and NaN3 in the presence of Zn2+/Cd2+ ions as Lewis-acid catalysts under hydro/solvothermal conditions. At the same time, there is also another in situ carboxyl ligand synthesis reaction by hydrolysis from nitrile in compounds 1 and 2. The four compounds have been characterized by elemental analysis, IR and single-crystal X-ray diffraction analysis. Compound 1 exhibits a butterfly-shaped mononuclear structure. Compound 2 represents a 2D framework constructed by six-membered {Zn6} rings as secondary building units (SBUs). Compound 3 presents a dinuclear {Cd2} structure with two butterflies “flying side by side” fashion. While compound 4 displays a 1D chain structure based on a dinuclear {Zn2} SBUs. Moreover, the luminescence properties of 1–4 have been also investigated.  相似文献   

3.
A new open-cubane MnIII, [{(H2O)MnIIIL}{MnIIIL}]2·2(CH3OH).2(CH3CH2OH)·2Cl, 1 where H 2 L=[N-(2-hydroxyethyl)-3-methoxysalicylaldimine] has been synthesized and characterized by element analysis, FT-IR, solid UV–Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows an open-cubane tetranuclear complex. The Mn1 (Mn1i) ions is hexacoordinate by NO5 donor sets while the Mn2 (Mn2i) is pentacoordinate by NO4 donor sets. The solid state photoluminescence properties of complex 1 and its ligand H 2 L have been investigated under UV light at 349 nm in the visible region. H 2 L exhibits blue emission while complex 1 shows orange-red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex 1 in the range 2–300 K indicate an antiferromagnetic interaction.  相似文献   

4.
The reactions of aromatic dicarboxylic acids and methyl-functionalized 4,4′-bipyridine ligands with metal salts under hydrothermal conditions generated four structurally diverse cobalt(II), zinc(II) and cadmium(II) coordination polymers, [Co(CH3-BDC)(dmbpy)0.5] n (1), [Cd(OH-HBDC)2(dmbpy)] n (2), [Zn(NDC)(dmbpy)] n , (3) and {[Cd(DBA)(dmbpy)0.5]·2H2O} n (4) (CH3–H2BDC = 5-methylisophthalic acid, OH–H2BDC = 5-hydroxyisophthalic acid, H2NDC = 1,4-naphthalenedicarboxylic acid, H2DBA = 4,4′-methylenedibenzoic acid, dmbpy = 2,2′-dimethyl-4,4′-bipyridine). All four complexes have been structurally characterized by X-ray crystallography. Complex 1 shows a 3D jsm topology structure with two 1D channels parallel to the a and b axes. Complex 2 has a zigzag chain in which the OH-HBDC ligands point alternately up and down. Complexes 3 and 4 show 2D (4,4) networks when the dinuclear metal centers and their ligands are regarded as nodes and linkers, respectively. Complex 3 also shows twofold interpenetration with 1D channels along the b axis. Two nets of complex 4 interlock in parallel, giving rise to a polycatenated layer (2D → 2D). Thermogravimetric and chemical stabilities, magnetic and luminescent properties of these complexes were investigated.  相似文献   

5.
The NiCl2 and CoCl2 complexes with 4,5-(2-pyridylethylene)-dithio-1,3-dithiol-2-thione (L1) and 4,5-(4-pyridylethylene)-dithio-1,3-dithiol-2-thione (L2) were described. The L1 ligand shows bidentate coordination through the pyridyl N atoms and the thiol S atoms in a tetrahedral [CoCl2(L1)] complex (I) and in an octahedral [NiCl2(L1)2](MeCN)2 complex (II). The L2 ligand exhibits monodentate coordination through the pyridyl N atom in tetrahedral complexes [CoCl2(L2)2 (III) and [NiCl2(L2)2] (IV). Complexes I, III, IV in crystal state are octahedral due to extra coordination of the thione S atoms or the chloride bridges responsible for the polymeric structure. The structure of the complex II · CH2Cl2 was determined by X-ray diffraction analysis. The crystals are monoclinic, space group P21/c, a = 11.895(2) Å, b = 13.374(3) Å, c = 21.873(4) Å, β = 95.30(3)°, Z = 2. The Ni atom has quasi-tetrahedral surrounding due to two chloride ions and two L1 ligands coordinated through the pyridyl N atoms and the thiol S atoms.  相似文献   

6.
Three Ag(I) coordination complexes, namely [Ag3(2-stp)(2-apy)2·3H2O]n (1), [Ag3(2-stp)(2-apy)2]n (2) and [Ag3(2-stp)(3-apy)(H2O)]n (3) (2-NaH2stp = 2-sulfoterephthalic acid monosodium salt, 2-apy = 2-aminopyridine and 3-apy = 3-aminopyridine), have been synthesized and structurally characterized. They all show two-dimensional network structures. In complex 1, the Ag3 units are linked by stp ligands to form a 1D chain. Consequently, the 2-apy ligands link the adjacent 1D chain into 2D polymeric sheets. In 2, Ag1 and Ag2 atoms are bridged by stp ligands to form a 2D infinite sheet. In 3, the stp anion adopts a μ7-(η12):(η110):(η11) coordination mode to Ag3 units to 2D layer sheet and the network is consolidated by 3-apy ligands. The thermogravimetric analyses and photoluminescence of the complexes were also investigated.  相似文献   

7.
Three Co(II) coordination polymers, namely, {Co(btbb)0.5(ndc)(H2O)}n (1), {[Co(btbb)(bpdc)]·1.5H2O}n (2), and {[Co(btbp)2(3-npa)]·2H2O}n (3) (btbb = 1,4-bis(thiabendazole)butane, btbp = 1,3-bis(thiabendazole)propane, H2ndc = 2,6-naphthalenedicarboxylic acid, H2bpdc = 4,4′-biphenyldicarboxylic acid and 3-H2npa = 3-nitro phthalic acid) were synthesized under hydrothermal conditions. Their X-ray crystal structures show that complexes 1 and 2 both have 2D uninodal 3-connected hcb (honeycomb) structures. Complex 1 is further extended into a threefold interpenetrating 3D 4,4-connected mog (moganite) supramolecular architecture with the point symbol of {4.64.8}2{42.62.82} by O–H···O hydrogen bonding interactions. Complex 2 shows a 3D supramolecular framework involving π···π stacking interactions. Complex 3 features a uninuclear structure, which is further assembled into an ordered 2D hydrogen-bonded-driven pattern with O–H···O and O–H···N hydrogen bonding interactions. The fluorescence spectra and photocatalytic properties of complexes 13 for degradation of methyl orange were investigated.  相似文献   

8.
Two transition metal coordination polymers {[Cu(tba)2(H2O)]·2H2O} n (1) and {[Mn(Htta)2(H2O)2]·2H2O} n (2) {Htba = 3-[1,2,4]triazol-1-yl-benzoic acid, H2tta = 2-[1,2,4]triazol-1-yl-terephthalic acid} have been synthesized under solvothermal conditions. Both complexes have been characterized by single-crystal X-ray diffraction, X-ray powder diffraction, elemental analysis and FTIR spectroscopy. Complex 1 has a 1-D chain structure in which Cu(II) atoms are doubly bridged by tba? ligands, which is further stabilized by hydrogen bonding and ππ stacking interactions to give a 3-D supramolecular framework. In complex 2, Mn(II) atoms are doubly bridged by Htta? ligands to form 1-D chains, which are further connected by intermolecular hydrogen bonds to form a 3-D supramolecular framework. The electronic spectra and thermal behaviors of complexes 1 and 2 are also reported.  相似文献   

9.
Two Co(II) coordination polymers, namely Co(HBTC)(4-bpdb)·H2O (1) and Co(HBTC)(3-bpdb)·H2O (2) (H3BTC = 1,3,5-benzenetricarboxylic acid, 4-bpdb = 1,4-bis-(4-pyridyl)-2,3-diaza-1,3-butadiene, 3-bpdb = 1,4-bis(3-pyridyl)-2,3-diaza-1,3- butadiene), have been hydrothermally synthesized and characterized both structurally and magnetically. Compound 1 exhibits a (2D → 3D) polythreaded architecture. It is assembled from HBTC2? ligands to form a 2D puckered (4,4) layer plus 4-bpdb ligands which are orientated above and below each layer. The structure of compound 2 consists of a 2D (3,5) wavelike sheet constructed from HBTC2? anions and 3-bpdb spacers. The uncoordinated carboxyl groups of the HBTC2? ligands protrude from both sides of the wavelike sheet to form a 2D → 3D interdigitated motif. The magnetic properties of both compounds are also investigated, indicating antiferromagnetic interactions between the adjacent metal centers.  相似文献   

10.
Tetrazole–carboxylates with both rigid tetrazole rings and flexible carboxylate groups provide excellent building blocks for the construction of diverse coordination architectures. We have selected a bistetrazole–carboxylate, H2btzphda [H2btzphda = 1,3-bis(tetrazol-5-yl)benzene-N2,N2′-biacetic acid] and a tristetrazole–carboxylate, H3ttzphta [H3ttzphta = 1,3,5-tris(tetrazol-5-yl)benzene-N2,N2′,N2′′-trisacetic acid] to construct new coordination compounds with CoCl2·6H2O, [Co(btzphda)(CH3OH)(H2O)2]·H2O (1), [Co3(ttzphta)2(H2O)12]·H2O (2). These coordination compounds were structurally characterized by IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. Complex 1 has a two-dimensional layer structure with (4,4) grid topology, while complex 2 has a one-dimensional beaded chain structure. The luminescence spectra of complexes 1 and 2 at room temperature in the solid state show weaker emissions than those of the corresponding free ligands. The thermogravimetric properties of complexes 1 and 2 are presented and discussed.  相似文献   

11.
Four Ag(I) coordination polymers, formulated as [Ag(L1)(tpa)0.5] n (1), {[Ag(L2)(ndc)0.5]·0.5H2ndc} n (2), [Ag(L3)0.5(ndc)0.5] n (3) and {[Ag(L3)]·H3bptc} n (4) (L1 = 4,4′-bis(pyrazole-1-ylmethyl)-biphenyl, L2 = 4,4′-bis(3,5-dimethylpyrazol-1-ylmethyl)-biphenyl, L3 = 1,4-bis(3,5-dimethylpyrazol-1-ylmethyl)benzene, H2tpa = terephthalic acid, H2ndc = 2,6-naphthalenedicarboxylic acid, H4bptc = 3,3′,4,4′-biphenyltetracarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 features the rare binodal (4,4)-connected 2D 4,4L10 topological network with a point symbol of {32·4.62·7}2{32·62·72}. Complex 2 has a folded ladder-like chain structure, which is further extended into a 3D supramolecular network via O–H···O hydrogen bonding and π···π stacking interactions. Complexes 3 and 4 both possess 1D zigzag chain structures. Complex 3 is further extended into a binodal (3,4)-connected network with the point symbol of {4.84·10}{62·82}2 by Ag···O weak interactions, while complex 4 is further connected through O–H···O hydrogen bonding and π···π interactions to afford a 2D supramolecular structure. The photoluminescence spectra and photocatalytic properties of these complexes for degradation of methylene blue and methyl orange are reported.  相似文献   

12.
Three dendritic nickel complexes C1C3 were synthesized from three poly(amido amine) dendrimers, salicylic aldehyde and nickel chloride hexahydrate via Schiff base condensation reaction and coordination reaction. The structures of the dendritic ligands and nickel complexes were characterized by FT-IR, UV, 1H NMR, ESI–MS, and elemental analysis. When activated with aluminum co-catalysts, three complexes C1C3 were able to catalyze ethylene oligomerization. The catalytic activities and the product distribution of complexes C1C3 were depended on the reaction parameter, co-catalyst, solvent, and the structure of the pre-catalyst. When using ethyl aluminum sesquichloride (EASC) as co-catalyst in toluene, the catalytic activity of complex C3 containing the longest bridging methylene groups reached the highest value of 1.63 × 106 g·(mol Ni·h)?1 with 69.15% C11 in the product at 30 min, 25 °C, 0.5 MPa, and Al/Ni ratio of 900.  相似文献   

13.
Two novel dinuclear clusters, [Ni(pmmat)·ClO4]2 (1) and [Co(pmmat)·ClO4]2 (2) (Hpmmat = 3,5-bis[(2-pyridyl-2-methoxyl-methyl)-amino]-1,2,4-triazole), have been constructed from a rare multidentate chelating ligand. The formation of Hpmmat ligand involves the in situ addition reaction of C=N groups and CH3OH solvents in the presence of Ni2+/Co2+ ions as Lewis-acid catalysts and coordination agents. Compounds 1 and 2 are similar structures that have a dinuclear cluster (M2) (M = Ni and Co) aggregation. Moreover, the magnetic properties of them have been also investigated.  相似文献   

14.
Two novel coordination polymers, namely {[Co(Ttac)0.5(1,4-Bib)(H2O)] · H2O}n (I) and {[La(HTtac)2(2H2O)] · H2O}n (II) (H4Ttac = 4,5-di(3'-carboxylphenyl)-phthalic acid, 1,4-Bib = 1,4-bis(1-imidazoly) benzene), have been designed and successfully prepared via hydrothermal process, and characterized by elemental analyses, IR spectroscopy, and single crystal X-ray diffraction (CIF files CCDC nos. 1039298 (I), 1039300 (II)). Structural analysis reveals that the H4Ttac ligands adopt different coordination modes in the as-synthesized I and II, and thus give rise to the targeted coordination polymers with different configurations. It is worth mentioning that, coordination polymer I is assembled from low-dimensional structures into three-dimensional (3D) via π···π stacking interactions, while three-dimensional coordination polymer II is formed by covalent bonds. Luminescent properties of coordination polymer II have been studied at ambient temperature. Significantly, luminescent measurement indicates that coordination polymer II may be acted as potential luminescent recognition sensors towards Cu2+ and Mn2+ ions.  相似文献   

15.
Two new coordination polymers [Co(H2O)2(bpy)2]·2(Adi) (1) and [Co4(OH)2(Adi)6(bpe)2] (2) (HAdi = 4-amino-3,5-diiodobenzoic acid, bpy = 4,4′-bipyridine, bpe = 1,2-bis(4-pyridyl)ethylene) have been synthesized by methods of hydrothermal reactions and their crystal structures determined. In 1, the mononuclear Co atoms are linked by bpy ligands forming cationic two-dimensional square grids, which are connected by the intercalated Adi guest molecules through significant hydrogen-bonding interactions to give a three-dimensional supramolecular porous network with one-dimensional channels. 2 has a one-dimensional chain structure based on rhombic tetranuclear CoII clusters, connected by bpe ligands. Through special I···I interactions, adjacent chains are extended into a three-dimensional supramolecular structure. The structure versatility indicates that the amino and iodo groups of Adi ligands play a crucial role in modulating the coordination polymers. A discussion of the crystal structures, thermal stabilities, as well as the noncovalent interactions of Adi molecules is provided. IR, elemental analysis and XRPD confirmed the phase purity of the bulk materials. Magnetic properties of 2 in the 300–2 K have been discussed, which reveal the occurrence of antiferromagnetic interactions between CoII ions.  相似文献   

16.
Five octahedral ruthenium(II) complexes with azoimine–quinoline (Azo) and α-diimine (L) ligands having the general formula [RuII(L)(Azo)Cl](PF6) (15) {Azo: PhN=NC(COMe)=NC9H6N, L = 4,4′-dimethoxy-2,2′-bipyridine (dmeb) (1), 4,4′-di-tertbutyl-2,2′-bipyridine (dtb) (2), 1,10-phenanthroline (phen) (3), 5-chlorophenanthroline (Clphen) (4), or 3,4,7,8-tetramethyl-1,10-phenanthroline (tmphen) (5)} were prepared by stepwise addition of the tridentate azoimine (H2Azo) and α-diimine (L) pro-ligands to RuCl3 in refluxing EtOH. The tridentate azoimine–quinoline ligands coordinate to ruthenium via the Azo-N′, N′-imine and N″-quinolone nitrogen atoms. The spectroscopic properties (IR, UV/Vis, 1H, 13C and 19F NMR) and electrochemical behavior of complexes 15 and the X-ray crystal structures of complexes 2 and 3 are presented. The coordination of Ru(II) to these strong π-acceptor ligands (Azo and L) results in a large anodic shift for the Ru(III/II) couples of 1.63–1.72 V versus NHE. The electronic spectra in MeCN and IR spectra in CH2Cl2 for complex 3 in its oxidized 3 + and reduced 3 ? forms were investigated. The calculated absorption spectrum of 3 in MeCN was used to assign the UV–Vis absorption bands.  相似文献   

17.
Three cobalt(II) coordination polymers {[Co(L1)(nda)(H2O)2]·2H2O} n (1), [Co(L2)(tbi)(H2O)] n (2) and [Co(L2)(bpdc)(H2O)] n (3) (L1 = 1,3-bis(5,6-dimethylbenzimidazol-1-yl)-2-propanol, L2 = 1,3-bis(benzimidazol-1-yl)-2-propanol, H2nda = 2,6-naphthalenedicarboxylic acid, H2tbi = 5-tert-butyl isophthalic acid and H2bpdc = 4,4′-biphenyldicarboxylic acid) were synthesized and characterized by physicochemical and spectroscopic methods. Complex 1 exhibits a 1D loop-like structure, which is further extended into a 3D 3,3,4T31 network through two O–H···O hydrogen bonding interactions. Complex 2 displays a 1D ladder-like chain, arranged into a 2D supramolecular network with 3,3,4L34 topology via classical O–H···O hydrogen bonding interactions, whereas complex 3 features a 2D 3,4L13 layer structure and further assembles into a 3D framework with a twofold interpenetrating sqc65 topology through O–H···O hydrogen bonding interactions. The fluorescence and catalytic properties of these complexes for the degradation of Congo red in a Fenton-like process have been investigated.  相似文献   

18.
The incorporation of LnIII ions into the 12-metallacrown-4 topology affords the formation of four mixed 3d-4f pentanuclear complexes of compositions [NH(C2H5)3]{[Ln(OAc)4] [12-MC Mn III (N)shi-4]}·xH2O (Ln = Sm (1), Gd (2), Tb (3), Dy (4); x = 0.5 for 1 and 3, x = 0.25 for 2, x = 0 for 4; H3shi = salicylhydroxamic acid). Compounds 14 were obtained from the reactions of H3shi with Mn(CH3COO)2·4H2O and Ln(NO3)3·6H2O, in the presence of N(C2H5)3. They all contain a crown-like [Mn4Ln(μ-NO)4]11+ core with four MnIII atoms being at the rim of the crown and an LnIII ion occupying the dome of the crown. The peripheral ligation about the core is provided by four η11:µ acetate groups. The identity of the LnIII ions slightly affects the 12-metallacrown-4 frameworks, as demonstrated by the gradual decrease of the distances between the LnIII ions and the centres of the Mn4 planes (1.85 Å for 1, 1.81 Å for 2, 1.80 Å for 3, and 1.77 Å for 4). Variable-temperature dc magnetic susceptibility studies were carried out on polycrystalline samples of 14. Antiferromagnetic interactions are determined for complexes 14.  相似文献   

19.
Three complexes, [3RBzIQl]2[Cu(mnt)2] (mnt2? = maleonitriledithiolate; [3RBzIQl]+ = 1-(3′-R-benzyl)isoquinolinium, R = Cl (1), I (2) or NO2 (3)), have been prepared and characterized by spectroscopic and physicochemical methods as well as by X-ray crystallography. The [Cu(mnt)2]2? anions formed a 1D chain in complex 1, a dimer in 2 and a sheet structure in 3 through C···N and/or N···N interactions. The neighboring dimers of the cations arranged in a boat-type pattern stack into columns through weak π···π, Cl···π or O···π, C–H···π interactions. The anions and cations stack together into a columnar structure with a ···A–CC–A–CC–A··· sequence. The magnetic susceptibilities measured in the temperature range 2.0–300 K reveal that complex 1 undergoes a change from weak ferromagnetic to antiferromagnetic exchange around 132 K, while 2 shows antiferromagnetic behavior and 3 shows a weak ferromagnetic interaction when the temperature is lowered.  相似文献   

20.
Seven new cobalt(II) complexes based on the Schiff bases, 2,6-diacetylpyridine bis(isonicotinoylhydrazone) (H2L1) and 2,6-diacetylpyridine bis(nicotinoylhydrazone) (H2L2), are synthesized and studied by X-ray diffraction analysis: [Co(H2L1)(NCS)2] · 2.25H2O (I), [Co(H2L2)(NCS)2] · CH3OH (II), [Co(H2L2)(NCS)(H2O)]NCS (III), [Co(H4L1)(NCS)2](NO3)2 · 2H2O (IV), [Co(H4L1)(NCS)2][Co(NCS)4] · 0.75H2O (V), [Co(H4L2)(NCS)2][Co(NCS)4] · 1.75H2O (VI), and [Co(H2L2)(NCS)(CH3OH)]2[Co(NCS)4] · 2CH3OH (VII) (CIF files CCDC 941186 (I), 1457906 (Ia), 1457905 (II), 941187 (III), 1457907 (IV), 1457908 (V), 1457909 (VI), and 941188 (VII)). The organic ligands in the complexes act as pentadentate neutral H2L or doubly protonated (H4L)2+ coordinated through the same set of donor atoms N3O2. In all compounds IVII, the coordination polyhedron of the Co2+ ion in a complex with the Schiff bases has a shape of a pentagonal bipyramid. The hydrazones are arranged in the equatorial plane of the bipyramid. Its axial vertices are occupied by the nitrogen atoms of the NCS ̄ anions in compounds I, II, and IV–VI and by the nitrogen atoms of NCS ̄ and oxygen of the water molecule in compound III or methanol in compound VII. The NO 3 - anions or [Co(NCS)4]2 ̄ complex anions obtained by the reactions are involved along with the NCS ̄ anions in the formation of compounds IV–VII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号