首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

4.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

5.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

6.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

7.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

8.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

9.
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg-1.To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm-2 and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.  相似文献   

10.
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(InxNi@SiO2)have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In0.5Ni@SiO2)shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.  相似文献   

11.
以低共熔溶剂(DESs)/H2O混合溶剂为介质成功制备了形貌均一、尺寸小且稳定性高的亚微米Cu2O空心球。采用扫描电镜、透射电镜和X射线衍射等方法表征了所制备样品的形貌、尺寸和结构。同时,研究了温度、p H、聚乙烯吡咯烷酮(PVP)用量等因素对样品尺寸、形貌及纯度的影响。结果表明,制备高纯Cu2O空心球的优化工艺条件为40℃、p H=11和PVP用量0.9g。混合溶剂中DESs的存在对提高所制备Cu2O样品的纯度、形态均一性和稳定性以及缩小颗粒的尺寸起到了重要作用。  相似文献   

12.
在室温离子液体1-十二烷基-3-甲基氯化咪唑([C12mim]Cl)中,通过水热法制备了具有单晶结构的金红石纳米材料。采用X射线衍射、扫描电镜和透射电镜对样品进行了表征,结果显示所得样品为纯金红石相,形貌呈棒状。扫描电镜和透射电镜图样显示金红石纳米棒的直径约为15 nm,长度在10~100 nm之间。高分辨投射电镜图样显示金红石纳米棒为单晶结构,并沿c轴方向生长。实验结果表明离子液体[C12mim]Cl中的Cl-有利于金红石相生成,[C12mim]+起到了模板剂的作用并提高了金红石纳米棒的结晶度。  相似文献   

13.
The rutile titania with hierarchical nanostructure was conveniently prepared in a room temperature ionic liquid (RTIL) of [Bmim]+Cl system. The obtained materials were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N2 adsorption-desorption analysis. XRD patterns revealed that only rutile phase was formed in the ionic liquid of [Bmim]+Cl. The SEM and TEM micrographs as well as N2 adsorption-desorption measurements showed that the nanorods of rutile titania were interaggregated to fabricate a large mesoporous structure and the voids packed in the nanorods formed a small mesostructure. It was proposed that the formation of rutile crystal phase was due to high acidity and high Cl content in the special reaction media, and also the combination of ionic liquid-templated effects with so-called reaction limited aggregation resulted in the hierarchical nanostructure.  相似文献   

14.
朱珠  罗贸兰  张杰  杨琴  周丽梅 《分子催化》2017,31(5):455-462
我们通过原位还原的方法将吸附在g-C3N4表面上Cu2+还原,制备出Cu2O/g-C3N4复合材料,并利用XRD、SEM、FT-IR、XPS等分析手段表征Cu2O/g-C3N4.表征结果显示:Cu元素主要以Cu2O的形式吸附在g-C3N4载体上.另外,还考察了Cu2O/g-C3 N4在“一锅法”合成吲哚-2-甲酸乙酯的反应中的催化性能.结果表明:即使在较低的催化担载量和温和的反应条件下,Cu2O/g-C3 N4仍能表现出良好的催化性能并获得44.1%的收率.  相似文献   

15.
So far,m any im portant sem iconductor m aterialssuch as ZnO,SnO2,Cu2O,In2O3have been synthesizedby using a variety of techniques including sol-gelm ethod[1],direct oxidation m ethod[2],m icrowave irradia-tion[3,4],sonochem ical m ethod[5],solution disper…  相似文献   

16.
以硝酸铜和硝酸铝为原料,草酸为铜离子的沉淀剂,半湿法制得前驱体,再于氮气气氛下热处理形成了铜铁矿结构的CuAlO2。对样品进行热失重(TG),X射线衍射(XRD),紫外-可见漫反射(UV-Vis-DR)及透射电镜(TEM)表征分析,探讨了CuAlO2的形成过程。结果显示,随着热处理温度的升高,含铜物质经历了由CuO、Cu2O到CuAl2O4,再到CuAlO2的变化历程;制得的CuAlO2晶体结晶完整性较好,直接禁带宽度为3.1 eV左右。用沉淀复合的方法制备出了n-p异质复合型光催化剂WO3-CuAlO2、TiO2-CuAlO2和ZnO-CuAlO2,对复合催化剂进行了XRD和TEM表征分析,并测试了复合催化剂的光催化活性。结果表明,上述催化剂均由两种物相复合而成,且在紫外光的照射下均可分解纯水放出氢气。  相似文献   

17.
表面Cu2O纳米颗粒修饰高效促进γ-Bi2MoO6的可见光催化活性   总被引:1,自引:0,他引:1  
采用水热法在γ-Bi2MoO6光催化剂表面修饰了纳米级Cu2O, 得到了具有高效可见光响应的复合光催化材料, 并利用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、选区电子衍射(SAED)、X射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis-DRS)等技术对其相结构、微观形貌和光吸收性能进行了表征. 在可见光条件下(λ>400 nm)考察了Cu2O表面修饰对γ-Bi2MoO6光催化降解亚甲基蓝(MB)性能的促进作用. 结果表明, 纳米级Cu2O(~10 nm)颗粒均匀地修饰于γ-Bi2MoO6的表面, 使γ-Bi2MoO6的可见光吸收带发生明显红移, 且吸收强度大幅提高, 增强了复合材料光生电子-空穴对的分离效率, 从而使复合材料表现出较高的光催化活性. 当Cu2O的表面修饰量为1.5%(w)时, 复合光催化剂降解MB的活性与纯γ-Bi2MoO6相比提高了6.4倍.  相似文献   

18.
溶胶凝胶法合成Li3V6O16及其电化学性能研究   总被引:2,自引:2,他引:0  
张孟雄  张友祥 《无机化学学报》2012,28(10):2065-2070
本文以双氧水为配位剂,以CH3COOLi·2H2O和V2O5为原料,采用溶胶凝胶法合成了一种新型的晶体Li3V6O16。随后分别采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和电子衍射(SAED)、X光电子能谱(XPS)和充放电测试等手段对材料进行了表征。SEM观察表明,产物主要是表面比较光滑的纳米片状晶体,TEM和SAED研究都证实了XRD和SEM的研究结果。充放电测试结果表明,该物质具有较高的比容量、良好的可逆性和循环稳定性。  相似文献   

19.
A novel and efficient synthesis of cuprous oxide (Cu2O) nano-octahedron was successfully prepared via a green chemie douce approach utilized a microwave hydrothermal route at low growth temperature without the presence of any surfactant. The crystalline structure of the Cu2O was characterized by several techniques like X-ray powder diffraction (XRD), Fourier transformation spectroscopy, field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy and transmission electron microscopy (TEM). XRD results indicate that the size of Cu2O nano—octahedron is 71 nm which is calculated with the help of Scherer equation, as supported by FESEM and TEM. The formation mechanism of the Cu2O octahedral was discussed. Optical absorption spectra reveal that the optical band gap of the Cu2O is controlled by quantum confinement effect. The obtained optical energy gap value E g of Cu2O octahedron was about 2.43 eV. The photoluminescence emission spectra of the Cu2O nano-octahedrons exhibit two emission peaks located at 342 and 365 nm due to the quantum effect. It is evaluated that the green chemie douce approach is a cheap and fast to synthesize Cu2O nano-octahedrons and could be potentially extended to other inorganic systems for industrial production.  相似文献   

20.
本论文采用阳极氧化法在金属钛基底上制备高度有序的TiO2纳米管阵列薄膜,然后采用脉冲电流法在TiO2纳米管阵列上沉积Cu2O,从而制备出Cu2O-TiO2纳米管阵列异质结复合薄膜。借助X射线衍射仪(XRD),场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)等表征手段,详细探讨了Cu2O沉积过程中电解液的不同扰动方式(静止、磁力搅拌和超声搅拌)对复合薄膜物相和形貌的影响。实验结果表明电解液的扰动方式会影响Cu2O沉积过程中的离子扩散和微区化学环境,从而影响Cu2O的形貌。通过漫反射紫外-可见吸收光谱(UV-Vis)和光电流性能测试可知所制备的负载Cu2O型TiO2纳米管阵列薄膜具有显著的可见光响应效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号