首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of synthesis conditions, the nature of components, and the ratio between the components on the phase composition, the texture, and the redox and catalytic properties of the Ce-Zr-O, Ce-Zr-M1-O (M1 = Mn, Ni, Cu, Y, La, Pr, or Nd), N/Ce-Zr-O (N = Rh, Pd, or Pt), and Pd/Ce-Zr-M2-O/Al2O3 (M2 = Mg, Ca, Sr, Ba, Y, La, Pr, Nd, or Sm) was considered. A cubic solid solution with the fluorite structure was formed on the introduction of <50 mol % zirconium into CeO2, and the stability of this solid solution depended on preparation procedure and treatment conditions. The presence of transition or rare earth elements in certain concentrations extended the range of compositions with the retained fluorite structure. The texture of the Ce-Zr-O system mainly depended on treatment temperature. An increase in this temperature resulted in a decrease in the specific surface area of the samples. The total pore volume varied over the range of 0.2–0.3 cm3/g and depended on the Ce/Zr ratio. The presence of transition or rare earth elements either increased the specific surface area of the system or made it more stable to thermal treatment. The introduction of the isovalent cation Zr4+ into CeO2 increased the number of lattice defects both on the surface and in the bulk to increase the mobility of oxygen and facilitate its diffusion in the Ce1 − x Zr x O2 lattice. The catalytic properties of the Ce-Zr-M1-O or N/Ce-Zr-M2-O systems were due to the presence of anion vacancies and the easy transitions Ce4+ ai Ce3+, M12n+ ai M1 n+, and N δ+N 0 in the case of noble metals.  相似文献   

2.
The interaction of hydrogen with reduced ceria (CeO2?x) powders and CeO2?x(111) thin films was studied using several characterization techniques including TEM, XRD, LEED, XPS, RPES, EELS, ESR, and TDS. The results clearly indicate that both in reduced ceria powders as well as in reduced single crystal ceria films hydrogen may form hydroxyls at the surface and hydride species below the surface. The formation of hydrides is clearly linked to the presence of oxygen vacancies and is accompanied by the transfer of an electron from a Ce3+ species to hydrogen, which results in the formation of Ce4+, and thus in oxidation of ceria.  相似文献   

3.
This work is mainly focused on investigating the effects of different doped metal cations on the formation of Ce20M1Ox (M=Zr, Cr, Mn, Fe, Co, Sn) composite oxides and their physicochemical and catalytic properties for NO reduction by CO as a model reaction. The obtained samples were characterized by using N2 physisorption, X‐ray diffraction, laser Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, inductively coupled plasma atomic emission spectroscopy, X‐ray photoelectron spectroscopy, temperature‐programmed reduction by hydrogen and by oxygen (H2‐TPR and O2‐TPD), in situ diffuse reflectance infrared Fourier transform spectroscopy, and the NO+CO model reaction. The results imply that the introduction of Mx+ into the lattice of CeO2 increases the specific surface area and pore volume, especially for variable valence metal cations, and enhances the catalytic performance to a great extent. In this regard, increases in the oxygen vacancies, reduction properties, and chemisorbed O2? (and/or O?) species of these Ce20M1Ox composite oxides (M refers to variable valence metals) play significant roles in this reaction. Among the samples, Ce20Cr1Ox exhibited the best catalytic performance, mainly because it has the best reducibility and more chemisorbed oxygen, and significant reasons for these attributes may be closely related to favorable synergistic interactions of the vacancies and near‐surface Ce3+ and Cr3+. Finally, a possible reaction mechanism was tentatively proposed to understand the reactions.  相似文献   

4.
Ag nanoparticles grown on reduced CeO2-x thin films have been studied by X-ray photoelec-tron spectroscopy and resonant photoelectron spectroscopy of the valence band to understand the effect of oxygen vacancies in the CeO2-x thin films on the growth and interfacial elec-tronic properties of Ag. Ag grows as three-dimensional particles on the CeO2-x(111) surface at 300 K. Compared to the fully oxidized ceria substrate surface, Ag favors the growth of smaller particles with a larger particle density on the reduced ceria substrate surface, which can be attributed to the nucleation of Ag on oxygen vacancies. The binding energy of Ag3d increases when the Ag particle size decreases, which is mainly attributed to the final-state screening. The interfacial interaction between Ag and CeO2-x(111) is weak. The resonant enhancement of the 4f level of Ce3+ species in RPES indicates a partial Ce4+→Ce3+ re-duction after Ag deposited on reduced ceria surface. The sintering temperature of Ag on CeO1.85(111) surface during annealing is a little higher than that of Ag on CeO2(111) surface, indicating that Ag nanoparticles are more stable on the reduced ceria surface.  相似文献   

5.
In this work, we investigate the structure, conductivity and ion dynamics of mixed di and tri-valent doped Ce0.8Sm0.2-xSrxO2-δ (x = 0–0.2) oxygen ion conductors. The lattice parameter and root mean square strain are significantly affected by the ionic radius of dopants and their solubility into ceria lattice. Due to the solubility limit of Sr2+ ions, SrCeO3 phase increases with the doping concentration of Sr2+. The increase of Sr2+ ions into ceria lattice promotes the formation of large defect clusters by expense of formed oxygen vacancies. The coulombic interaction between oxygen vacancies with substituted dopant cations enhances with Sr2+ ions due to decrease of the value of dielectric constant of the compositions. The defect interaction significantly affects the conductivity values by means of increase of SrCeO3 phase and defect clusters. The conductivity values are found to be consistent with the migration and association energy. The scaled spectra of dielectric tangent loss and real part of complex conductivity confirm the temperature and defect interaction independent nature of hoping mechanism in the compositions.  相似文献   

6.
The sintering behavior of gadolinia-doped ceria powders was studied by the master sintering curve (MSC). Dilatometric analyses of powders produced by a soft chemical method were performed to provide the experimental data set for the construction of the MSC. The assumed model provided good fittings of the MSC and the activation energy for the sintering of Ce1−x Gd x O3−δ, with x = 0, 0.05, 0.1, and 0.2 were found to be in the 218–325 KJ/mol range, depending on the dopant content. The results supported that both the nanometric size of the particles and the difference in ionic radii between Gd3+ and Ce4+ affects the sintering of Gd-doped CeO2.  相似文献   

7.
A series of precipitants and commercial surfactants (soft templates) were employed to synthesize mesoporous/nano CeO2 by a hydrothermal method. As-prepared CeO2 was impregnated with palladium and employed for low-temperature catalytic oxidation of CO. It was found that both soft templates and precipitants had significant effects on the morphology, particle size, crystallinity, and porous structure of the CeO2, having a significant effect on the surface palladium abundance, molar ratios of surface species, and catalytic activity of the final impregnated Pd/CeO2. Using ammonia as precipitant could facilitate increased surface palladium abundance and surface molar ratios of PdO/Pd SMSI , Ce3+/(Ce3+ + Ce4+), and Osurface/Olattice. The catalytic activity of the final Pd/CeO2 catalysts could be enhanced as well. The optimal P123-assisted ammonia-precipitated Pd/CeO2 catalyst exhibited over 99% catalytic conversion of CO at 50 °C.  相似文献   

8.
The study reports the first attempt to address the interplay between surface and bulk in hydride formation in ceria (CeO2) by combining experiment, using surface sensitive and bulk sensitive spectroscopic techniques on the two sample systems, i.e., CeO2(111) thin films and CeO2 powders, and theoretical calculations of CeO2(111) surfaces with oxygen vacancies (Ov) at the surface and in the bulk. We show that, on a stoichiometric CeO2(111) surface, H2 dissociates and forms surface hydroxyls (OH). On the pre-reduced CeO2−x samples, both films and powders, hydroxyls and hydrides (Ce−H) are formed on the surface as well as in the bulk, accompanied by the Ce3+ ↔ Ce4+ redox reaction. As the Ov concentration increases, hydroxyl is destabilized and hydride becomes more stable. Surface hydroxyl is more stable than bulk hydroxyl, whereas bulk hydride is more stable than surface hydride. The surface hydride formation is the kinetically favorable process at relatively low temperatures, and the resulting surface hydride may diffuse into the bulk region and be stabilized therein. At higher temperatures, surface hydroxyls can react to produce water and create additional oxygen vacancies, increasing its concentration, which controls the H2/CeO2 interaction. The results demonstrate a large diversity of reaction pathways, which have to be taken into account for better understanding of reactivity of ceria-based catalysts in a hydrogen-rich atmosphere.  相似文献   

9.
The influence of SiO2, TiO2, and ZrO2 on the structural and redox properties of CeO2 were systematically investigated by various techniques namely, X-ray diffraction (XRD), Raman spectroscopy (RS), UV–Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HREM), BET surface area, and thermogravimetry methods. The effect of supporting oxides on the crystal modification of ceria was also mainly focused. The investigated oxides were obtained by soft chemical routes with ultrahigh dilute solutions and were subjected to thermal treatments from 773 to 1073 K. The XRD results suggest that the CeO2–SiO2 sample primarily consists of nanocrystalline CeO2 on the amorphous SiO2 surface. Both crystalline CeO2 and TiO2-anatase phases were noted in the case of CeO2–TiO2 sample. Formation of cubic Ce0.75Zr0.25O2 and Ce0.6Zr0.4O2 (at 1073 K) were observed in the case of CeO2–ZrO2 sample. The cell ‘a’ parameter estimations revealed an expansion of the ceria lattice in the case of CeO2–TiO2, while a contraction is noted in the case of CeO2–ZrO2. The DRS studies suggest that the supporting oxides significantly influence the band gap energy of CeO2. Raman measurements disclose the presence of oxygen vacancies, lattice defects, and displacement of oxide ions from their normal lattice positions in the case of CeO2–TiO2 and CeO2–ZrO2 samples. The XPS studies revealed the presence of silica, titania, and zirconia in their highest oxidation states, Si(IV), Ti(IV), and Zr(IV) at the surface of the materials. Cerium is present in both Ce4+ and Ce3+ oxidation states. The HREM results reveal well-dispersed CeO2 nanocrystals over the amorphous SiO2 matrix in the case of CeO2–SiO2, isolated CeO2 and TiO2 (A) nanocrystals and some overlapping regions in the case of CeO2–TiO2, and nanosized CeO2 and Ce–Zr oxides in the case of CeO2–ZrO2 sample. The exact structural features of these crystals as determined by digital diffraction analysis of HREM experimental images reveal that the CeO2 is mainly in cubic fluorite geometry. The oxygen storage capacity (OSC) as determined by thermogravimetry reveals that the OSC of mixed oxides is more than that of pure CeO2 and the CeO2–ZrO2 exhibits highest OSC.  相似文献   

10.
Highly dispersed Pt‐CeO2 hybrids arched on reduced graphene oxide (Pt‐CeO2/rGO) were facilely synthesized by a combination of the reverse micelle technique and a redox reaction without any additional reductant or surfactant. Under a N2 atmosphere, the redox reaction between Ce3+ and Pt2+ occurs automatically in alkaline solution, which results in the formation of Pt‐CeO2/rGO nanocomposites (NCs). The as‐synthesized Pt‐CeO2/rGO NCs exhibit superior catalytic performance relative to that shown by the free Pt nanoparticles, Pt/rGO, Pt‐CeO2 hybrid, and the physical mixture of Pt‐CeO2 and rGO; furthermore, the nanocomposites show significantly better activity than the commercial Pt/C catalyst toward the hydrolysis of ammonia borane (NH3BH3) at room temperature. Moreover, the Pt‐CeO2/rGO NCs have remarkable stability, and 92 % of their initial catalytic activity is preserved even after 10 runs. The excellent activity of the Pt‐CeO2/rGO NCs can be attributed not only to the synergistic structure but also to the electronic effects of the Pt‐CeO2/rGO NCs among Pt, CeO2, and rGO.  相似文献   

11.
《中国化学》2018,36(7):639-643
Two types of CeO2 nanocubes (average size of 5 and 20 nm, respectively) prepared via the hydrothermal process were selected to load gold species via a deposition‐precipitation (DP) method. Various measurements, including X‐ray diffraction (XRD), Raman spectra, high resolution transmission electron microscopy (HRTEM), in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS), and temperature‐programmed reduction by hydrogen (H2‐TPR), were applied to characterize the catalysts. It is found that the sample with ceria size of 20 nm (Au/CeO2‐20) was covered by well dispersed both Au3+ and Auδ+ (0 < δ < 1). For the other sample with ceria size of 5 nm (Au/CeO2‐5), Au3+ is the dominant gold species. Au/CeO2‐20 performed better catalytic activity for CO oxidation because of the strong CO adsorption of Auδ+ in the catalysts. The catalytic activity of Au/CeO2‐5 was improved due to the transformation of Au3+ to Auδ+. Based on the CO oxidation and in situ DRIFTS results, Auδ+ is likely to play a more important role in catalyzing CO oxidation reaction.  相似文献   

12.
This work reports the analysis of the distribution of Gd atoms and the quantification of O vacancies applied to individual CeO2 and Gd‐doped CeO2 nanocrystals by electron energy‐loss spectroscopy. The concentration of O vacancies measured on the undoped system (6.3±2.6 %) matches the expected value given the typical Ce3+ content previously reported for CeO2 nanoparticles. The doped nanoparticles have an uneven distribution of dopant atoms and an atypical amount of O vacant sites (37.7±4.1 %). The measured decrease of the O content induced by Gd doping cannot be explained solely by the charge balance including Ce3+ and Gd3+ ions.  相似文献   

13.
In this work, CeO2 nanoplates were synthesized by a hydrothermal reaction assisted by hexadecyltrimethylammonium bromide (CTAB) at 100-160 °C. The size of nanoplates was around 40 nm. Further experiment showed that the controlled conversion of nanoplates into nanotubes, and nanorods can be realized by changing the reaction time, temperature, and CTAB/Ce3+ ratio value. X-ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) nitrogen adsorption-desorption measurements were employed to characterize the samples. The CO oxidation properties of nanorods, nanoplates, and nanotubes were investigated. An enhanced catalytic activity has been found for CO oxidation by using CeO2 nanoplates as compared with CeO2 nanotubes and nanorods, and the crystal surfaces (100) of CeO2 nanoplates were considered to play an important role in determining their catalytic oxidation properties.  相似文献   

14.
CeO_2 morphology was proposed to be a crucial factor for reducing nitrobenzene to azoxybenzene under the base-free condition.Herein,the structure-activity relationship of CeO_2 catalysts was explored to improve the azoxybenzene yield.A series of CeO_2 catalysts we re synthesized with seven morphologies to obtain different Ce~(3+) proportion and various surface areas.Notably,the catalytic performance of these samples for reducing nitrobenzene to azoxybenzene enhanced with the increasing Ce~(3+) proportio n.With the highest surface Ce~(3+)proportion,the Rod-CeO_2 catalyst exhibited 100% conversion of nitrobenzene and 89.8% azoxybenzene selectivity in 7 h at 150℃ under 1 MPa CO.Moreover,the preliminary mechanistic analysis indicated that the inhabitation of azoxybenzene to by-product azobenzene resulted in the high selectivity of azoxybenzene.  相似文献   

15.
The adsorption of SO2 gas on ceria solid at room temperature has been investigated by thermal analysis, Raman spectroscopy and electron paramagnetic resonance (EPR). The results confirm that SO2 transformation into sulphate species occurs at 25°C with a concomitant reduction of Ce4+ to Ce3+ ions. The formation of Ce(III)-sulphate phase has been evidenced on ceria surface. The thermal analysis revealed a complete decomposition of cereous sulphate phase to CeO2 at 785°C. The change of oxidation state of Ce(IV) to Ce(III) during the formation of sulphate phase has been confirmed also by EPR technique. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.

Cr/MgO(x)–CeO2(100?x) nanocatalysts were synthesized by a coprecipitation method and characterized by X-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FESEM), energy-dispersive x-ray (EDX) spectroscopy, diffuse reflectance spectroscopy (DRS), and Brunauer–Emmett–Teller (BET) analysis. The effect of ceria addition on their physicochemical characteristics was investigated, and the results were correlated with their catalytic performance in oxidative dehydrogenation of ethane. A decrease in the size of the metal particles was found when adding a suitable content of ceria to the support. Crystalline Cr2O3 was not found in the calcined samples, indicating good dispersion of Cr species on the support. All samples showed nanosized particles with uniform morphology, with the best surface morphology for the Cr/MgO(50)–CeO2(50) sample, on which the particle distribution mainly lay in the range of 40–60 nm. Variation of the amount of Ce in the support led to an enhancement of the Cr6+/Cr3+ ratio, with the highest value for the Cr/MgO(50)–CeO2(50) sample. This catalyst effectively dehydrogenated ethane to ethylene with CO2 at 700 °C even after 5 h on-stream, giving 42.76 % ethylene yield.

  相似文献   

17.
The interactions and reduction mechanisms of O2 molecule on the fully oxidized and reduced CeO2 surface were studied using periodic density functional theory calculations implementing on‐site Coulomb interactions (DFT + U) consideration. The adsorbed O2 species on the oxidized CeO2 surface were characterized by physisorption. Their adsorption energies and vibrational frequencies are within ?0.05 to 0.02 eV and 1530–1552 cm?1, respectively. For the reduced CeO2 surface, the adsorption of O2 on Ce4+, one‐electron defects (Ce3+ on the CeO2 surface) and two‐electron defects (neutral oxygen vacancy) can alter geometrical parameters and results in the formation of surface physisorbed O2, O2a? (0 < a < 1), superoxide (O2?), and peroxide (O22?) species. Their corresponding adsorption energies are ?0.01 to ?0.09, ?0.20 to ?0.37, ?1.34 and ?1.86 eV, respectively. The predicted vibrational frequencies of the peroxide, superoxide, O2a? (0 < a < 1) and physisorbed species are 897, 1234, 1323–1389, and 1462–1545 cm?1, respectively, which are in good agreement with experimental data. Potential energy profiles for the O2 reduction on the oxidized and reduced CeO2 (111) surface were constructed using the nudged elastic band method. Our calculations show that the reduced surface is energetically more favorable than the unreduced surface for oxygen reduction. In addition, we have studied the oxygen ion diffusion process on the surface and in bulk ceria. The small barrier for the oxygen ion diffusion through the subsurface and bulk implies that ceria‐based oxides are high ionic conductivity at relatively low temperatures which can be suitable for IT‐SOFC electrolyte materials. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

18.
It has been ascertained that the electrochemically deposited thin films of cerium oxides, containing mainly CeO2 and also some insignificant amount of Ce2O3, are acting as an effective cathodic coating, leading to restoration of the passive state of the studied stainless steel (OC 404) samples. This effect is associated with a strong shifting of the stationary corrosion potential of the steel in positive direction, moving over from potentials characteristic of corrosion in active state to potentials falling within the zone of passivity. In this respect, another basic purpose of the investigations was the elucidation of the mechanism of action of the cerium oxide film and in particular collecting experimental evidence for the supposition about the occurrence of an efficient depolarization reaction of CeO2 reduction (resulting in a state of passivity—improved ability of self-passivation) instead of hydrogen depolarization reaction. For this purpose, we considered also the decrease in the surface concentration of ceria in the passive layer under the conditions of the actual corrosion process (self-dissolution) of the stainless steel by means of XPS, SEM, ICP-AES, and gravimetric analyses. A decrease in the surface concentration of CeO2 (Ce4+) has been observed, which is known to be chemically inert in acidic media. The obtained results prove the occurrence of an effective cathodic process of Ce4+ (CeO2) reduction into Ce3+ (soluble in acids Ce2O3 ) in the superficial oxide film.  相似文献   

19.
Copper doped ceria porous nanostructures with a tunable BET surface area were prepared using an efficient and general metal–organic-framework-driven, self-template route. The XRD, SEM and TEM results indicate that Cu2+ was successfully substituted into the CeO2 lattice and well dispersed in the CeO2:Cu2+ nanocrystals. The CeO2:Cu2+ nanocrystals exhibit a superior bifunctional catalytic performance for CO oxidation and selective catalytic reduction of NO. Interestingly, CO oxidation reactivity over the CeO2:Cu2+ nanocrystals was found to be dependent on the Cu2+ dopants and BET surface area. By tuning the content of Cu2+ and BET surface area through choosing different organic ligands, the 100% conversion temperature of CO over CeO2:Cu2+ nanocrystals obtained from thermolysis of CeCu–BPDC nanocrystals can be decreased to 110 °C. The porous nanomaterials show a high CO conversion rate without any loss in activity even after five cycles. Furthermore, the activity of the catalysts for NO reduction increased with the increase of BET surface, which is in accordance with the results of CO oxidation.  相似文献   

20.
Studies with a series of metal/ceria(111) (metal=Co, Ni, Cu; ceria=CeO2) surfaces indicate that metal–oxide interactions can play a very important role for the activation of methane and its reforming with CO2 at relatively low temperatures (600–700 K). Among the systems examined, Co/CeO2(111) exhibits the best performance and Cu/CeO2(111) has negligible activity. Experiments using ambient pressure X‐ray photoelectron spectroscopy indicate that methane dissociates on Co/CeO2(111) at temperatures as low as 300 K—generating CHx and COx species on the catalyst surface. The results of density functional calculations show a reduction in the methane activation barrier from 1.07 eV on Co(0001) to 0.87 eV on Co2+/CeO2(111), and to only 0.05 eV on Co0/CeO2−x (111). At 700 K, under methane dry reforming conditions, CO2 dissociates on the oxide surface and a catalytic cycle is established without coke deposition. A significant part of the CHx formed on the Co0/CeO2−x (111) catalyst recombines to yield ethane or ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号