首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starting from 6-O-tert-butyldimethylsilyl-2,3;4,5-di-O-isopropylidenealdehydo-D-galactose (1), the carbon backbone elongated GDP-L-fucose analogue 15 bearing a chromophore tag at the end of a spacer was synthesized. Additionally, the analogues of 3-L-fucosyllactose (29) and 2′-L-fucosyllactose (36), where the fucosyl moiety is marked by a five atom alkyl chain at C-5, were prepared as labeled oligosaccharides of human milk.  相似文献   

2.
Radical C-glycosidation of racemic 5-exo-benzeneselenyl-6-endo-chloro-3-methylidene-7-oxabicyclo[2.2.1]heptan-2-one ((±)-2) with α-acetobromofucose (3) provided a mixture of α-C-fucosides that were reduced with NaBH4 to give two diastereomeric alcohols that were separated readily. One of them ((?)-6) was converted into (?)-methyl 2-acetamido-4-O-acetyl-2,3-dideoxy-3-C-(3′,4′,5′-tri-O-acetyl-2′,6′-anhydro-1′,7′-dideoxy-α-L-glycero-D-galacto-heptitol-1′-C-yl)-α -D-galactopyranuronate ((?)-11) and then into (?)-methyl 2-acetamido-2,3-dideoxy-3-C-(2′,6′-anhydro-1′,7′-dideoxy-α-L-glycero-D-galacto-heptitol-1′-C-yl)-β -D-galactopyranoside ((?)-1), a new α-C(1→3)-L-fucopyranoside of N-acetylgalactosamine. Its 1H NMR data shows that this C-disaccharide (α-L-Fucp-(1→3)CH2-β-D-GalNAc-OMe) adopts a major conformation in solution similar to that expected for the corresponding O-linked disaccharide, i.e., with antiperiplanar σ(C-3′,C-2′) and σ(C-1′,C-3) bonds.  相似文献   

3.
《Analytical letters》2012,45(2):188-202
Abstract

Air assisted dispersive liquid–liquid microextraction (AA-DLLME) using hydrophilic–hydrophobic deep eutectic solvents (DES) was developed for the simultaneous isolation of monosaccharides and amino acids with wide ranges of polarities from kelp using high performance liquid chromatography (HPLC). A response surface methodology (RSM) on a Box–Behnken design (BBD) model was employed to identify the optimal extraction parameters. Air assisted dispersive liquid-phase microextraction performed using the optimum deep eutectic solvent system, five push–pull cycles, a ratio of solid to liquid equal to 3?mg·mL?1, 10% (w/v) NaCl, and a centrifugation time of 6?min provided the best analytical performance. The optimal extracted concentrations of d-(+)-galactose, l-(-)-fucose, dl-tyrosine, and dl-valine in kelp were 16.7?±?0.2, 8.6?±?0.2, 2.6?±?0.1, and 1.6?±?0.1?mg·g?1, respectively. The method recoveries for d-(+)-galactose, l-(-)-fucose, dl-tyrosine, and dl-tyrosine were from 87 to 102%, 84 to 103%, 87 to 104%, and 85 to 103%. The relative standard deviations (RSDs) (n?=?4) for the intra-day and inter-day determinations were <6.17%.  相似文献   

4.
Abstract

Perbenzyl derivatives of d-glucose, d-mannose, d-galactose, d-xylose, d-ribose and l-arabinose were prepared by treatment of reducing sugars with benzyl bromide in DMSO in the presence of potassium hydroxyde and the composition (α/β, Pyranoside/Furanoside) of the reaction mixtures determined by 13C-Nuclear Magnetic Resonance spectroscopy. Most of the per-O-benzyl glycosides were obtained in crystalline form unlike the corresponding methyl per-O-benzyl glycosides. Benzylation of d-mannose gave almost exclusively penta-O-benzyl-β-d-mannopyranoside (≥ 95%) as cristalline material. Benzylated reducing sugars were further obtained in good yield by acid hydrolysis of above compounds.  相似文献   

5.
A series of diphosphite ligands, which were derived from D-(-)-tartaric acid, have been synthesized and successfully applied in the Cu-catalyzed asymmetric conjugate addition of organozincs to enones. There was a synergic effect between the stereogenic centers of the D-(-)-tartaric acid skeleton and the axially H8-binaphthyl moieties of ligand 2c. And ligand 2c shows a comparative catalytic performance to ligand 1-N-benzylpyrrolidine-3,4-bis[(S)-1,1′-H8-binaphthyl-2,2′-diyl]phosphite-L-tartaric acid1d derived from L-(+)-tartaric acid. Therefore, for cyclic enones, both enantiomers of the addition products can be obtained in high enantioselectivity (ees up to 96%) by simply selecting ligands 1d or 2c derived from D-(-)-tartaric acid or L-(+)-tartaric acid. Moreover, the sense of enantiodiscrimination of the products was mainly determined by the configuration of the binaphthyl phosphite moieties.  相似文献   

6.
Two tetrameric arabinogalactans, β-D-galactopyranosyl-(1→6)-β-D-galactopyranosyl-(1→6)-[α-L-arabinofuranosyl-(1→3)]-D-galactopyranose (14) and α-L-arabinofuranosyl-(1→3)-β-D-galactopyranosyl-(1→6)-β-D-galactopyranosyl-(1→6)-D-galactopyranose (25), which are good candidates for CCRC-M7 epitope characterization, were synthesized efficiently using a convergent strategy. Migration of an acceptor acetyl group proved to be an obstacle to synthesis, but regioselective glycosylation or 4-O-benzyl protection of the acceptor circumvented this problem allowing efficient synthesis of the 1→6 linked target compounds.  相似文献   

7.
A crude polysaccharide possessing antitumour, radiation-resistant and anti-ageing attributes was extracted from Tricholoma matsutake by water extraction and alcohol precipitation. From this crude polysaccharide, a homogeneous polysaccharide, TMP-5II, was successfully purified by Sephacryl S-300 column chromatography. The average molecular weight (Mw) of TMP-5II was 15.76 kDa. Monosaccharide analysis indicated that the homogeneous polysaccharide contained four different residues: d-glucose, d-galactose, d-mannose and d-fucose. Attenuated total reflectance infrared spectroscopy revealed characteristics typical of carbohydrate polymers and a peak typical of a β-type glycosidic bond. TMP-5II was selected for structural characterisation by nuclear magnetic resonance (NMR) analysis. According to 1H NMR, 13C NMR and two-dimensional-NMR analysis, TMP-5II contains two kinds of linkages, β and α, at a ratio of 4:1. Preliminary results indicated that the polysaccharide had (1-4)-beta-pyran glucose as the main chain, and a branched chain in the O-6 location with fucose (1-2) mannose (1-3)-alpha-pyran galactose.  相似文献   

8.
The disaccharides 2-O-Me-α-L-Fucp-(1→2)-β-D-Galp-(1→OAllyl) 12, α-L-Fucp-(1→2)-4-O-Me-β-D-Galp-(1→OAllyl) 15, and 2-O-Me-α-L-Fucp-(1→2)-4-O-Me-β-D-Galp-(1→OAllyl) 18 have been synthesized. Glycosylation reactions were performed using ethyl 1-thiofucopyranosides as glycosyl donors and N-iodosuccinimide-triflic acid as the activating agent. The O-methylated disaccharides correspond to highly immunogenic O-glycan antigens occurring at the surface of Toxocara canis and Toxocara cati larvae.  相似文献   

9.
《合成通讯》2013,43(8):1219-1226
ABSTRACT

A facile synthesis of the trisaccharide α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranose and the tetrasaccharide α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranosyl-(1→6)-D-mannopyranose, the repeating units of fungal cell-wall polysaccharide from Microsporum gypseum and Trychophyton, was achieved using α-(1→2)-linked disaccharide imidate as the donor. The disaccharide imidate was prepared from the self-condensation of 3,4,6-tri-O-benzoyl-1,2-O-allyloxyethylidene-β-D-mannopyranose.  相似文献   

10.
The conformational space of D and L, deoxy and nondeoxy, 5‐thio‐pyranoses with biological properties as enzymatic inhibitors was explored using MM and B3LYP/6–31+G* methods in gas phase and solution. The preferred ring conformation for α and β anomers of 5‐thio‐L‐fucopyranose was the 1C4 form (about 99%), and for 5‐thio‐D‐glucopyranose and 5‐thio‐D‐mannopyranose, the 4C1 one. The experimental conformational order (4C1>1C4>2SS) for L‐ido derivatives was reproduced only considering the solvent, though for 3‐O‐methyl‐5‐thio‐α‐L‐idopyranose, the inclusion of methyl in C3 changed the 2SS form to the B1,4 one.  相似文献   

11.
Convenient regioselective syntheses of 3‐acetates of methyl pyranosides of α‐L‐rhamnose, α‐ and β‐L‐arabinose, α‐D‐fucose, α‐D‐lyxose, and β‐D‐ribose with good yields have been attained using MoCl5 as catalyst. Methyl β‐L‐rhamnopyranoside under this conditions gave 2‐acetate.  相似文献   

12.
Abstract

1,3‐Dipolar cycloaddition of N‐benzyl nitrone 2 to D‐threo δ‐lactone 15 proceeded with excellent stereoselectivity to provide only one adduct 16. Cycloadduct 16 was subsequently subjected to a sequence of reactions involving rearrangement to γ‐lactone, glycolic cleavage/reduction, protection of the terminal hydroxymethyl group, reduction of the lactone, desilylation/mesylation, and hydrogenolysis of the N‐O bond providing (?)‐isofagomine and its N‐substituted derivatives. The biologic activity of N‐substituted (?)‐isofagomines toward commercially available α‐ and β‐glucosidases, α‐D‐mannosidase, α‐L‐fucosidase, β‐D‐glucuronidase, and β‐D‐galactosidase was tested.  相似文献   

13.
A new triterpenoid glycoside (1) was isolated from the methanol extract of the leaves and stems of Duranta repens L. (Verbenaceae) along with 14 known compounds consisting of eight triterpenoids, four iridoids, one phenylethanoid glycoside and one flavonoid. The chemical structure of 1 was determined to be bayogenin 3-O-[β-D-glucopyranoside]-28-O-[α-L-rhamnopyranosyl-(1→5)-O-β-D-apiofuranosyl-(1→4)-O-α-L-rhamnopyranosyl-(1→2)-O-α-L-arabinopyranosyl] ester, based on spectroscopic data. In addition, the inhibitory effects of the isolates on lipoxygenase activity were examined. Among them, acteoside and apigenin resulted in 94 ± 3.6% and 82 ± 4.7% inhibition, respectively, at 0.5 mM.  相似文献   

14.
An extracellular galactoglucoxylomannan protein composed of d-galactose, d-glucose, d-xylose and d-mannose in a 2.9:1.0:1.1:10.2 mole proportion has been isolated from culture medium of Cryptococcus laurentii var. laurentii. The polymer of number average molecular mass 19,000 contained 86% carbohydrates, 6.5% protein and 0.7% phosphorus. Results of structural analyses suggested a highly branched comb-like structure of the polysaccharide with a backbone composed of 6-linked α-d-Man residues. Mannose units of the backbone are highly branched at O-2, O-3, and O-4 by side chains composed mainly of 2-linked α-d-Man mostly in the form of dimers and trimers, and to a lesser amount as tetra- and pentamers. Galactosyl units were found to be mostly 6-linked with a very low degree of substitution. Mannose side chains are further branched with d-Xyl, d-Glc, and d-Gal residues preferably in β their forms. The protein part of the glycoprotein was O-glycosylated by mannose, mannobiose, and mannotetrose.  相似文献   

15.
A tetrasaccharide, α-D-mannopyranosyl-(1→2)-α-D-mannopyranosyl-(1→6)-α-D-mannopyranosyl-(1→6)-D-mannopyranose (1), the repeating unit of the cell-wall mannans of Microsporum gypseum and related species of Trychophyton, was synthesized using 6-O-acetyl-2,3,4-tri-O-benzoyl-α-D-mannopyranosyl trichloroacetimidate (5) and 2-O-acetyl-3,4,6-tri-O-benzoyl-α-D-mannopyranosyl trichloroacetimidate (13) as the glycosyl donors in “the inverse Schmidt” procedure.  相似文献   

16.
Reaction of trans(N)-[Co(D-pen)2]? (pen = penicillaminate) or trans(N)-[Co(L-pen)2]? with [MCl2(L)] {M = Pd or Pt, L = 2,2′-bipyridine (bpy) or 1,10-phenanthroline (phen)} in the presence of tetrafluoroborate stereoselectively gave an optically active S-bridged dinuclear complex, [M(L){Co(D-pen)2}]BF4 · 2H2O or [M(L){Co(L-pen)2}]BF4 · 2H2O. The mixture of equimolar amounts of these enantiomers in H2O crystallizes as [M(L){Co(D-pen)2}]0.5[M(L){Co(L-pen)2}]0.5BF4 · 4H2O (DLbpyM · 4H2O, DLphenM-A · 4H2O), in which the enantiomeric complex cations are included by the ratio of 1 : 1. In crystals of DLbpyM · 4H2O and DLphenM-A · 4H2O, [M(L){Co(D-pen)2}]+ and [M(L){Co(L-pen)2}]+ interact stereospecifically with each other through π-conjugated systems to form dimeric structures. Other racemic crystals with the same chemical compositions as DLphenM-A · 4H2O, DLphenM-B · 4H2O, were obtained from equimolar amounts of [M(phen){Co(D-pen)2}]+ and [M(phen){Co(L-pen)2}]+ in aqueous acetonitrile solution. In the crystals of DLphenM-B · 4H2O, [M(phen){Co(D-pen)2}]+ and [M(phen){Co(L-pen)2}]+ are arranged alternately while overlapping phen planes, and the π electronic systems of phen interact with each other. Although stereospecific hydrogen bonds between the coordinated ?NH2 and ?COO? groups are formed in both DLphenM-A · 4H2O and DLphenM-B · 4H2O, their bonding modes differ noticeably from each other. As a result, DLphenM-A · 4H2O builds up 1-D ladder-like networks due to the stereospecific π–π stackings and hydrogen bondings between enantiomers, while 2-D sheet-like networks are established for DLphenM-B · 4H2O.  相似文献   

17.
The disaccharide methyl (4-O-benzoyl-3-O-benzyl-2-O-acetyl-α-L-rhamno pyranosyl)-(1→4)-(allyl 2,3-di-O-benzyl-β-D-galactopyranosid)uronate (13) was obtained in an excellent yield of 88% using methyl (allyl 2,3-di-O-benzyl-β-D-galactopyranosid)uronate ((12) as the glycosyl acceptor and a slight excess of the 1,2-di-O-acetyl-rhamnoglycosyl donor 5a. Disaccharide 13 is a key intermediate that can be used either as a glycosyl acceptor or glycosyl donor for the preparation of rhamnogalacturonan fragments. Here, introduction of the trichloroacetimidate function at the anomeric center gave the disaccharide glycosyl donor 28, which could be applied in a blockwise glycosylation reaction to form the L-Rha-α(1→4)-D-GalA-α(1→4)-D-GalA trisaccharide 29. Generally, on condition that no neighboring group effect influenced the reaction at the anomeric center of the α-trichloroacetimidate galacturonate glycosyl donors (20–22, 28), α-glycosidic linkages were nearly exclusively formed, except in the case of the 4-O-methylgalactopyranosyluronate 22.  相似文献   

18.
An efficient and simple resolution methodology for the preparation of (S)- and (R)-Vigabatrin has been developed. In addition, a method of preparation for the novel compounds Vigabatrin-l-tartarate and Vigabatrin-d-tartarate is also described. The title compounds have been synthesized via resolution of Vigabatrin using commercially available l-(+)- and d-(?)-tartaric acids respectively.  相似文献   

19.
D-Erythrose was synthesized in four steps from D-ribono-1,4-lactone via the 3,5-O-benzylidene derivative of the latter compound. Reduction of the benzylidene D-ribonolactone, and periodate cleavage of the resulting 3,5-O-benzylidene-D- ribitol were performed in a one-flask reaction. The ensuing 2,4-O-benzylidene-D-erythrose was hydrolyzed with 10% acetic acid to obtain syrupy D-erythrose.  相似文献   

20.
Microwave irradiation (MWI) has accelerated the synthesis of S‐(2,3,4,6‐tetra‐O‐acetyl‐β‐D‐glucopyranosyl)thiouronium bromide (2a), whose reaction with 2,3,4,6‐tetra‐O‐acetyl‐α‐D‐glucopyranosyl bromide (1a) in the presence of Et3N afforded stereoselectively the acetylated β,β‐1‐thiotrehalose 4a. Similarly, the respective D‐galactopyranosyl 4b and 2‐acetylamino‐2‐deoxy‐D‐glucopyranosyl 4c analog as well as 4,4′‐di‐O‐(2,3,4,6‐tetra‐O‐acetyl‐β‐D‐galactopyranosyl) 4d and 4,4′‐di‐O‐(2,3,4,6‐tetra‐O‐acetyl‐α‐D‐glucopyranosyl) 4e derivatives of 2,2′,3,3′,6,6′‐hexa‐O‐acetyl β,β‐1‐thiotrehalose were prepared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号