首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 229 毫秒
1.
Four dioxomolybdenum(VI) complexes were synthesized by reaction of [MoO2(acac)2] with thiosemicarbazones derived from 5-allyl-2-hydroxy-3-methoxybenzaldehyde (1), 2-hydroxynaphthaldehyde (2), 2,3-dihydroxybenzaldehyde (3), or 5-tert-butyl-2-hydroxybenzaldehyde (4). The ligands were coordinated to molybdenum as tridentate ONS donors. X-ray crystallography showed that the distorted octahedral coordination of molybdenum is completed by methanol (D) in 1a, 3a, and 4a or H2O in 2a. The molecular structures of 1, 3, and 4, and the complexes were determined by single-crystal X-ray crystallography. Binding of the ligand and complexes with calf thymus DNA were investigated by UV, fluorescence titrations, and viscosity measurements. Gel electrophoresis revealed that all the complexes can cleave pBR322 plasmid DNA. The cytotoxic properties of the complexes against human colorectal (HCT 116) cell line showed strong antiproliferative activities in relative order 4a?>?3a?>?1a?>?2a with IC50 values of 1.6, 4.0, 4.8, and 6.7?μM, respectively. The complexes exhibited more activity than the standard reference drug, 5-fluorouracil (IC50 7.3?μM). These studies show that dioxomolybdenum(VI) complexes have potential use in chemotherapy.  相似文献   

2.
New silicon-, germanium-, and tin-containing imido-alkyl molybdenum complexes (ArN)2Mo(CH2EMe3)2 (Ar is 2,6-diisopropylphenyl; E = Si (1), Ge (2), Sn (3)) were prepared in the crystalline state in 58–66% yields by the reactions of the (ArN)2MoCl2(DME) complex with alkyllithium derivatives Me3ECH2Li (E = Si or Ge) or the Grignard reagents Me3ECH2MgCl (E = Ge or Sn). The structures of complexes 13 and the known analog (ArN)2Mo(CH2But)2 (4) were established by X-ray diffraction analysis. Complexes 13 were found to be isostructural. The coordination environment about the Mo atom can be described as a distorted tetrahedron. Complex 4 has a similar structure. The Mo-C distance tends to decrease with increasing electron donating ability of the EMe3 group.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 597–600, March, 2005.  相似文献   

3.
Reactions of 2-fluoro-3-methylbuta-1,3-diene with diazomethane in ether at 15 °C and with diazocyclopropane generated in situ by decomposition of N-cyclopropyl-N-nitrosourea in the presence of K2CO3 in CH2Cl2 at –10 °C selectively involve the double bond at the methyl group to give 3-(1-fluorovinyl)-3-methylpyrazolines. Thermal dediazotization of the latter at 250 °C yields 1-(1-fluorovinyl)-1-methylcyclopropane and -spiropentane 5, which are capable of isomerizing, under more severe conditions (400—600 °C), into 1-fluoro-2-methylcyclopent-1-ene and 5-fluoro-4-methylspiro[2.4]hept-4-ene (7), respectively. Spiropentane derivative 5 partially isomerizes into 1-fluoro-2-methyl-3-methylidenecyclohex-1-ene. In a similar way, thermolysis of 6-(2,3,3-trifluorocyclobut-1-enyl)-4,5-diazaspiro[2.4]hept-4-ene at 400 °C gives a mixture of 1-(spiropentyl)-2,3,3-trifluorocyclobut-1-ene and 2,3,3-trifluoro-1-(2-methylidenecyclobutyl)cyclobut-1-ene. Thermolysis of 1-cyclopropyl-2,3,3-trifluorocyclobut-1-ene at 550—620 °C affords a mixture of 1-(trifluorovinyl)cyclopentene and 2,3-difluorotoluene.  相似文献   

4.
The reactivity of mixed [organohydrazido(1-)][organohydrazido(2-)]molybdenum(VI) complexes [Mo(NHNRPh)(NNRPh)(acac)X2] {R?=?Ph, X?=?Br (1); R?=?Ph, X?=?I (2) and R?=?Me; X?=?I (3)} with tertiary phosphines as PPh3, PMePh2 and PMe2Ph are examined. The syntheses of [Mo(NNPh2)2Br2(PPh3)] (4), [Mo(NNPh2)2Br2(PMePh2)2] (5), [Mo(NNPh2)2Br2(PMe2Ph)2] (6), [Mo(NNPh2)2(acac)I(PPh3)] (7), [Mo(NNPh2)2(acac)(PMePh2)2]+I? (8) and [Mo(NNMePh)2(acac)(PMePh2)2]+I? (9) are reported. All complexes were characterized by elemental analysis, UV-visible, IR, 1H and 31P{H} NMR spectroscopy.  相似文献   

5.
Antimony(m) chlorofluoride complexes M2SbCl3F2 (M = Rb, Cs, or NH4) were studied by the121,123Sb NQR method. A temperature range (77–285 K) with anomalous change in the NQR parameters and a second-order phase transition at 250–280 K for (NH4)2SbCl3F2 were found.Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 382–385, February, 1996  相似文献   

6.
Reaction between the tridentate NNN donor ligand, (E)-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)benzo[d]thiazole (HL), and V2O5 in ethanol gave a new vanadium(V) complex, [VO2L] (1), while the similar reaction by using [VIVO(acac)2] as the metal source gave two different types of crystals related to compounds [VO2L] (1) and [VIVO(acac)L] (2). The molecular structures of the complexes were determined by single-crystal X-ray diffraction and spectroscopic characterization was carried out by means of FT-IR, UV–vis and NMR experiments as well as elemental analysis. The oxidovanadium(IV) and dioxidovanadium(V) species were used as catalyst precursors for olefin oxidation in the presence of hydrogen peroxide (H2O2) as an oxidant. Under similar experimental conditions, the presence of 1 resulted in higher oxidation conversion than 2.  相似文献   

7.
Reaction of [AuIII(C6F5)3(tht)] with RaaiR′ in dichloromethane medium leads to [AuIII(C6F5)3 (RaaiR′)] [RaaiR′=p-R-C6H4-N=N-C3H2-NN-l-R′, (1-3), R = H (a), Me (b), Cl (c) and R′= Me (1), CH2CH3 (2), CH2Ph (3), tht is tetrahydrothiophen]. The nine new complexes are characterised by ES/MS as well as FAB, IR and multinuclear NMR (1H,13C,19F) spectroscopic studies. In addition to dimensional NMR studies as1H,1H COSY and1H13C HMQC permit complete assignment of the complexes in the solution phase.  相似文献   

8.
The structure and gas-phase metal affinities (M = Cu2+, Ni2+, and Zn2+) of formohydroxamic acid derivatives R–C(O)NHOH (R = H, NH2, CH3, CF3 and Phenyl) were studied using the B3LYP/6-311+G(d,p) method of DFT theory. In order to evaluate the conformational behavior of these systems in water, we carried out CPCM-SCRF optimization calculations at the B3LYP/6-311+G(d,p) levels of theory. The obtained optimized geometries and interaction affinities of the gas and solution phase were compared. The following order of stability was found for ionic complexes of the transition metals: Cu2+ > Ni(t)2+ > Zn2+. The same stability order would be expected according to the Irving–Williams order of stability constants. The high-spin complexes of the Ni2+ were more stable than the low-spin complexes. The solvent effect reduced the observed relative stability of individual metallic complexes of substituted hydroxamic acids.  相似文献   

9.
Reactions of diimines dtb-BIAN and dph-BIAN with GeCl2 afford germanium(II) complexes with radical-anionic ligands, (dtb-BIAN)GeCl (5) and (dph-BIAN)GeCl (6a), respectively, where dtb-BIAN is 1,2-bis[(2,5-di-tert-butylphenyl)imino]acenaphthene and dph-BIAN is 1,2-bis[(2-biphenyl)imino]acenaphthene. The latter reaction gives 6a along with [(dph-BIAN)GeCl]+[GeCl3] (6b). The reactions of tin(II) and antimony(III) chlorides with dtb-BIAN and dpp-BIAN produce complexes of these halides with neutral coordinated diimines, viz., (dtb-BIAN)SnCl2 (7) and (dpp-BIAN)SbCl3 (8) (dpp-BIAN is 1,2-bis[(2,6-di-isopropylphenyl)imino]acenaphthene). Paramagnetic complexes 5 and 6a were studied by ESR spectroscopy. Diamagnetic compounds 7 and 8 were characterized by 1H NMR spectroscopy. The structures of complexes 5, 6a,b, 7, 8, and (dpp-BIAN)Ge (9) were established by X-ray diffraction analysis. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 71–80, January, 2006.  相似文献   

10.
Iron and cobalt siloxides and germyloxides [(Me3Si)3SiO]2M (M = Fe (1), Co (2)), (Me5Si2O)2Fe (3), (Pri 3SiO)2M (M = Fe (4), Co (5)), (Pri 3GeO)2Fe (6), (Ph3SiO)2Fe (7), (Me3SiO)2Fe (8), (Pri 3GeO)2Fe(bpy) (9), and [(Me3Si)2NFe(-OSi2Me5)2]2Fe·C6H6 (10) were synthesized by the reactions of metal silylamides [(Me3Si)2N]2M (M = Fe, Co) with the corresponding silanols or triisopropylgermanol. The reaction of pentamethyldisilanol with iron(ii) silylamide affords either polymeric complex 3 or coordination oligomer 10, depending on the ratio of the reactants. The structures of complexes 9 and 10 were established by X-ray diffraction analysis. The interaction of the prepared compounds with carbon oxides was studied. Low-coordination cobalt siloxide is the only among all prepared compounds that absorbs CO (2 mol) at room temperature and under 1 atm to form an unstable cluster. Compounds 1, 2, and 48 react with CO2 to form carbonate complexes, and their reactivity decreases with a decrease in the electron-donating ability of the substituents at the central atom: (Me3Si)3SiO > Pri 3GeO Pri 3SiO > Me3SiO Ph3SiO.  相似文献   

11.
Two new mixed ligand complexes of copper(II) with acetylacetonate (acac), 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) belonging to the class of cytotoxic and antineoplastic compounds known as CASIOPEINAS® were synthesized and structurally characterized. Crystals of both complexes [Cu(acac)(bpy)(H2O)]NO3 · H2O (1), [Cu(acac)(phen)Br] (2) contain square pyramidal Cu(II) complex species. In frozen solution both compounds give well resolved EPR spectra with very similar parameters.  相似文献   

12.
Reactions of a number of germylenes and dimethylsilylene with a phosphaalkene, 2,2-bis(trimethylsilyl)-1-phenyl-1-phosphaethene (1), were studied. The reaction of short-lived dimethylgermylene with 1 produced a phosphagermirane 3 (the first representative of a new class of heterocyclic compounds). Compound 3 was characterized in solution by 1H, 13C, 31P, and 29Si NMR spectroscopy. Subsequent reaction of 3 with dimethylgermylene results in 2,2,3,3-tetramethyl-4,4-bis(trimethylsilyl)-1-phenyl-2,3-digerma-1-phosphacyclobutane 4, which has not been reported so far. In order to rationalize different reactivities of germylenes towards alkenes and phosphaalkenes, the addition products of GeH2 to ethylene and phosphaethene (HP=CH2) were studied using the G2 computational scheme and DFT PBE technique. The adducts of GeMe2 (GeCl2) with HP=CH2 and of GeMe2 with PhP=C(SiH3)2 were also calculated by the DFT PBE method. According to calculations, the exothermicity, DE, of cycloaddition of GeH2 and GeMe2 to the phosphaalkenes HP=CH2 and PhP=C(SiH3)2 (43.5—39.7 kcal mol–1) is nearly twice as high as the exothermicity of cycloaddition of these germylenes to ethylene. In addition to the minimum corresponding to the three-membered cycle, a number of minima corresponding to quite stable donor-acceptor complexes in which the Ge atom is coordinated by the lone electron pair of the P atom in the phosphaalkene molecule were located on the potential energy surface of the germylene—phosphaalkene system. The complexation energy of the complex of GeH2 (GeMe2) with phosphaethene is 25.0 (16.9) kcal mol–1. For GeCl2, the exothermicity of cycloaddition to HP=CH2 decreases to 7.6 kcal mol–1 and the complexation energy decreases to 8.2 kcal mol–1.  相似文献   

13.
Abstract

Five complexes [M(NCS)2(bc)2] M?=?Mn (1), Co (2), Ni (3), Zn (4), and [Cd(NCS)2(bc)]n (5), (bc) = benzyl carbazate (benzyl hydrazinecarboxylate), have been synthesized and characterized by physico-chemical and spectroscopic methods. The crystal structures of all five complexes have been confirmed by X-ray structural analysis. These results confirm that 14 are isotypes, and all four are centrosymmetric, with two mutually trans N,O chelating (bc) ligands in equatorial positions and a pair of trans-thiocyanate anions in the axial positions. The cadmium complex (5) is a coordination polymer. The asymmetric unit contains a square planar CdN2OS core, in which the (bc) ligand adopts an N, O bidentate coordination mode together with N and S bound thiocyanato anions. Polymer expansion increases the coordination number to six with the N and S bound thiocyanate ligands linking two adjacent complexes. This expansion results in double layers of cadmium octahedra propagating along the c axis direction. The thermal analyses of these compounds show endothermic decomposition processes to give respective metal thiocyanates as intermediates. For the Mn, Co, Ni, and Zn compounds these intermediates decompose exothermically to form metal oxides, whereas the Cd complex forms cadmium sulfide as the end product.  相似文献   

14.
The preparation of SiO2-M x O y (M = V, Sn, Sb) binary oxide thin films by sol-gel method was investigated. The reaction of silicic acid with metal chloride (M = Sn and Sb) or oxychloride (M = V) formed homogeneous solutions. The dip-coating of slide glass and silicon wafer followed by heat treatment gave oxide films having Si—O—M bond. The changes of FT-IR spectra as a function of heat treatment temperature and molar composition confirmed the Si—O—M bonds. The sheet resistance of films increased with an increase on heat treatment temperature and decrease in the content of metal oxide M x O y . X-ray diffraction peaks were observed for the SiO2-V2O5 films with high V2O5 contents and heat-treated above 250°C, while the others were amorphous. Oxide films heat treated at 500°C had a thickness between 340–470 nm.  相似文献   

15.
Two new oxovanadium(V) complexes, [VOL1(OEt)(EtOH)] (1) and [VOL2(OMe)(MeOH)] (2), were prepared by reaction of [VO(acac)2] (where acac?=?acetylacetonate) with N′-(3-bromo-2-hydroxybenzylidene)-4-methylbenzohydrazide (H2L1) in ethanol and N′-(3-bromo-2-hydroxybenzylidene)-4-methoxybenzohydrazide (H2L2) in methanol, respectively. Crystal and molecular structures of the complexes were determined by elemental analysis, infrared spectra, and single-crystal X-ray diffraction. The V ions have octahedral coordination. Thermal stability and the inhibition of urease of the complexes were studied.  相似文献   

16.
The reactions of Ga(acac)3 with N-salicylidene-o-aminophenol (saphH2) and its 5-methyl (5MesaphH2) and 5-bromo (5BrsaphH2) derivatives in alcohols afforded the complexes [Ga(acac)(saph)(EtOH)] (1), [Ga(acac)(5Mesaph)(MeOH)] (2) and [Ga(acac)(5Brsaph)(EtOH)] (3), respectively, in good yields. The crystal structures of 1 and 2 have been solved by single-crystal X-ray crystallography. All three complexes are mononuclear with the GaIII atoms being surrounded by a dianionic tridentate Schiff base ligand, one bidentate acac ligand and a terminal alcohol molecule. Characteristic IR data are discussed in terms of the nature of bonding and the structures of the three complexes.  相似文献   

17.
Tin(II) compounds containing the ligands [CH(C6H3Me2-2,5)C(But)NSiMe3] (≡ L1), [CH(Ph)C(Ph)NSiMe3] (≡L2), [CH(SiMe3)P(Ph)2NSiMe3] (≡ L3),

(≡ L4), [C(Ph)C(Ph)NSiMe3]2− (≡ L5), and [C(SiMe3)P(Ph)2NSiMe3]2− (≡ L6) are reported: the transient SnBr(L1) (1) and SnBr(L2) (2), Sn(L1)2 (3) [P.B. Hitchcock, J. Hu, M.F. Lappert, M. Layh, J.R. Severn, J. Chem. Soc., Chem. Commun. (1997) 1189], the labile Sn(L2)2 (4), [Sn(L5)]2 (5), SnCl(L3) (6), Sn(L3)2 (7), [Sn(L6)]2 (8), Sn(L4)2 (9) and Pb(L4)2 (10). They were prepared from (i) SnBr2 and K(L1) (1, 3) or K(L2) (2, 4, 5); (ii) SnCl2 and Li(L3) (6–9); or (iii) PbCl2 and Li(L4) (10). Each of 1, 3 and 510 has been characterised by multinuclear NMR spectra; 3, 5, 6, 8, 9 and 10 by EI-mass spectra, but only 3, 5, 8, 9 and 10 were isolated pure and furnished X-ray quality crystals. Of greatest novelty are the title binuclear fused tricyclic ladder-like compounds 5 and 8. Quantum chemical calculations, on alternative pathways to 5 from 2 and to 8 from 7, are reported.  相似文献   

18.
Thermal decomposition of three tetravanadates, [MII(phen)3]2V4O12·phen·22H2O, where M II is Co (1), Ni (2), Cu (3) and phen is 1,10-phenanthroline, was studied by dynamic method (for 1 and 2) or isothermally (for 3). The thermal decomposition of the studied compounds is a multi-step process which involve: discontinuous dehydration, release of uncoordinated, and of coordinated phenanthroline molecules. In course of the latter process, a phase transition of the cyclo-tetravanadates to polymeric metavanadates occurred. Metavanadates with chain structure of the anion were the final decomposition products of all tetravanadates studied. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Novel copper(II) X-salicylate complexes with N,N-diethylnicotinamide (dena) of the formula [Cu(RCOO)2(dena)2(H2O)2] (RCOO = 3-methylsalicylate anion (3-Mesal, 1), 4-methylsalicylate anion (4-Mesal, 2), 5-methylsalicylate anion (5-Mesal, 3), 5-methoxysalicylate anion (5-MeOsal, 4) or 4-methoxysalicylate anion (4-MeOsal, 5)), and complex [Cu(3-MeOsal)2(dena)2(H2O)2]∙2H2O (3-MeOsal = 3-methoxysalicylate anion (6)) have been prepared in the crystalline forms and characterized by spectroscopic methods (IR, Vis–UV, EPR). All the compounds according to their composition (15) seem to possess octahedral copper(II) stereochemistry. The complex 1 has been prepared in two different forms. X-ray analyses of the complexes 1, 4, and 5 were carried out and they featured a tetragonal-bipyramidal geometry around the copper atoms. The tetragonal planes are created by X-salicylate anions bonded to the copper(II) atoms via unidentate carboxylate oxygen atoms and the pyridine ring nitrogen atoms of the neutral ligand N,N-diethylnicotinamide, while in axial positions are water molecules. The two forms of complex 1 present conformation polymorphs and supramolecular isomers.  相似文献   

20.

New compounds with formulae Y(2,4′-bpy)1.5Cl3·8H2O (I), Y(2,4′-bpy)0.5Br3·8H2O (II), La(2,4′-bpy)Cl3·5H2O (III) and La(2,4′-bpy)1.5Br3·5H2O (IV) were prepared and characterized by chemical and elemental analysis, IR spectroscopy and powder X-ray diffraction. The thermal properties of compounds in the solid state were studied using TG-DTA techniques under dry air atmosphere. The thermal behavior of investigated compounds was studied in the temperature range 298–1273 K. They are stable up to 323 K. The complexes decompose in several stages, accompanied by endo- and exothermic effects. In all cases, the first step of pyrolysis is partial or total dehydration. When the temperature rises, deamination takes place. The solid final products of decomposition are Y2O3 and La2O3, respectively. Additionally, for all complexes mass spectrometry was used to analyze principal volatile thermal decomposition and fragmentation products evolved during pyrolysis under dry air atmosphere.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号