首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 215 毫秒
1.
New series of lactic acid derivatives with alkyl terminal chain have been synthesised and their mesomorphic properties studied. We have varied the length of chiral and non-chiral terminal alkyl chains and found that prolonging both chains has a strong effect on the SmA*–SmC* phase transition. Most of the new materials exhibit only paraelectric SmA* phase; for homologues with a longer non-chiral chain (m ≥ 10), the ferroelectric (SmC*) phase appears below the SmA* on cooling and persists down to a room temperature. The role of the chiral terminal chain in the molecule is quite opposite – only its short length supports the existence of ferroelectric phase. Additionally, a hexatic phase appeared below the SmA*–SmC* phase sequence for several homologues at low temperatures. All materials have been studied using standard experimental techniques (differential scanning calorimetry (DSC), texture observations, polarisation and tilt angle measurements, etc.). Liquid crystalline properties of new materials have been compared with the previously prepared and studied lactic acid derivatives.  相似文献   

2.
Dielectric and DSC methods were used to study a new fluorinated liquid crystalline compound exhibiting ferroelectric and paraelectric phases as well as an intermediate alpha sub-phase. Two dielectric relaxation processes were revealed in the SmC* phase: a typical Goldstone mode over the whole temperature range and a soft mode in the pre-transition region on both sides of the SmC*–SmA* transition. From the temperature dependencies of the dielectric increments and critical frequencies for the dielectric relaxation processes observed in all the liquid crystalline phases, as well as from texture observations, it was shown that there is a SmC*α sub-phase between the ferroelectric SmC* and paraelectric SmA* phases.  相似文献   

3.
We present the experimental evidence and theoretical studies of the para–ferroelectric phase transition in the chiral liquid crystal C12HH. The investigated compound presents a large SmC* range. Both microscopic observation and dielectric measurements show thermal hysteresis and coexistence phases at paraelectric (SmA)–ferroelectric (SmC*) phase transition. The thermal hysteresis is analysed in samples with different planar cell thickness. The SmA–SmC* phase transition under electric field is also investigated. Finally, the Landau free energy density is used to analyse the experimental measurements, showing a satisfactory agreement with experimental data.  相似文献   

4.
A photoinduced phase transition and helix untwisting in a new liquid crystal forming the SmC* phase were studied in detail. The compound consists of a cinnamoyl photosensitive fragment with C?=?C double bond capable of photoisomerisation and photocycloaddition. It was shown that ultraviolet (UV) irradiation (365 nm) induces an extreme decrease in phase transitions temperatures (SmC*–SmA*, SmA*–N*, N*–I). Vertically aligned samples in the SmC* phase cause selective light reflection in the visible spectral range. The light action results in a noticeable helix untwisting that causes a shift in the selective light reflection peak to the long-wavelength spectral region. The temperature dependence of spontaneous polarisation P s was measured and it was found that UV irradiation induces a decrease in the values of P s. Photo-optical phenomena taking place in the liquid crystal are attributed to the formation of photoproducts having low anisometry, which disrupts mesophases.  相似文献   

5.
Frequency- and temperature-dependent dielectric and switching parameters of a room temperature tri-component antiferroelectric liquid crystal mixture W-287 have been determined. Dielectric, optical texture and thermodynamic studies show wide room temperature range antiferroelectric SmC*a (?91.1°C to <–25°C) phase in addition to high temperature paraelectric SmA* (?2.6°C) and ferroelectric SmC* (?4.4°C) phases. The dielectric studies carried out in the frequency range of 1–35 MHz under planar anchoring condition of the molecules show five different relaxation modes appearing in the SmA*, SmC* and SmC*a phases. Using Curie–Weiss law fit, ferroelectric SmC* to paraelectric SmA* transition temperature has been found to be 91.8°C. The dielectric response of SmC*a phase exhibits unusually three relaxation modes due to collective as well as individual molecular processes in addition to phason mode in the SmC* phase and amplitudon mode in the SmA* phase. Spontaneous polarisation, switching time and rotational viscosity have also been determined. The maximum value of PS is ?300 nC/cm2, whereas viscosity is moderate. Switching time is of the order of few milli seconds.  相似文献   

6.
Complex dielectric spectroscopy (frequency range 5 Hz–13 MHz) has been used to analyse the frequency, temperature and bias‐field dependences of the molecular dynamics of a very high‐spontaneous‐polarization ferroelectric liquid crystalline material exhibiting SmA, SmC* and unknown SmX smectic phases. Different smectic phase transition temperatures have been observed from the study of the temperature dependence of the dielectric strength and the relaxation frequency. The phase transition temperatures (crystalline to isotropic phases) have also been described very accurately from the temperature‐dependent symmetric and asymmetric shape parameters of the relaxation function and also the dc conductivity. In a planar aligned cell, two symmetric modes (Goldstone mode and domain mode) have been observed in both the SmX and SmC* phases. One asymmetric mode (X‐mode) observed in the SmC* and SmA phases could be related to the interaction of dipoles of the ferroelectric liquid crystals being affected by the surface of the cell. The soft mode, which usually appears very close to the SmC*–SmA phase transition was not observed until the bias field was applied. The second order nature of the SmC*–SmA phase transition was revealed.  相似文献   

7.
The fluorinated compound, (S)-4′′-(6-perfluoropentanoyoxyhexyl-1-oxy)-2′,3′-difluoro-4-(1-methylheptyloxycarbonyl)-[1,1′:4′,1′′]-terphenyl, which exhibits antiferroelectric SmCA*, ferroelectric SmC* and paraelectric SmA* phases, has been investigated by polarising optical microscopy, differential scanning calorimetry, X-ray diffraction and frequency-dependent dielectric spectroscopy methods. X-ray studies have revealed that the layer thickness remains almost constant in the SmA* phase but within the SmC* and SmCA* phases it decreases with decreasing temperature, a step jump being observed only at the SmA*–SmC* transition. The tilt angle in the SmCA* phase decreases from 22.2° to 19.5°, and in the SmC* phase it decreases from 18.8° to 5.5°. Spontaneous polarisation is found to be quite high and varies between 74.1 and 118.7 nC cm?2. The variation in ε′ and ε′′ with temperature shows a discontinuous change at the transition temperatures. Goldstone mode relaxation is only observed in the ferroelectric and antiferroelectric phases and is found to be of the Cole–Cole type. The soft mode is observed on application of a bias field near the SmC*–SmA* transition. Neither the soft mode nor the anti-phase azimuthal angle fluctuation mode is observed in SmCA*. Rotational viscosity decreases quite rapidly with temperature but in a different manner in the ferroelectric and antiferroelectric phases. Activation energy for this process is found to be 48.14 kJ mol?1 in the SmC* phase.  相似文献   

8.
New compound showing a direct SmA*–SmCA* phase transition was synthesised. As far as authors know there are a few pure compounds showing para- and antiferroelectric phases without SmC* between them. Direct current (DC) field applied into a planar-oriented cell induces ferroelectric SmC* phase in an investigated compound. Typical for SmC*, Goldstone mode starts to be detectable. DC field also shifts down the temperature of a SmCA* phase creation. Moreover, modes in the appearing antiferroelectic phase are enhanced by DC field. This paper shows and discusses relations between modes detected in SmA*, SmCA* and SmC* (SmC* phase – nucleated by DC field) phases. Parameters of observed modes are calculated using the Cole–Cole relaxation model and a calculation procedure useful especially for high frequency relaxations (higher than 200 kHz).  相似文献   

9.
Two series of ferroelectric liquid crystals derived from (S)‐2‐(6‐methoxy‐2‐naphthyl)propionic acid, with non‐fluorinated or semi‐perfluorinated alkanes positioned at a chiral terminal chain, have been synthesized and characterized by differential scanning calorimetry, polarizing optical microscopy and electro‐optical measurements. The non‐fluorinated compounds, 1‐hexyl (S)‐2‐{6‐[4‐(4‐alkanoyloxyphenyl)benzoyloxy]‐2‐napthyl}propionates exhibit rich mesomorphism—the BPII, N*, TGBA*, SmA* and SmC* phases. The fluorinated compounds display only the SmA* and SmC* phases, suggesting that the fluorination promotes the formation of smectic phases. In addition, the SmA* and SmC* phases of the fluorinated compounds have enhanced thermal stability as compared with the corresponding phases of the non‐fluorinated compounds. The spontaneous polarization (P s values) for the non‐fluorinated compounds are higher than those of the fluorinated compounds at any reduced temperature below the SmA*–SmC* transition. The electro‐optical responses measured for these compounds in the ferroelectric phase displayed thresholdless, V‐shaped switching.  相似文献   

10.
We studied the electro-optic and dielectric properties of three pure ferroelectric liquid crystal materials (C10, C11 and C12) of the same series exhibiting cholesteric (N*), smectic A (SmA) and chiral smectic C (SmC*) phases. From electro-optic investigations, the tilt angle and spontaneous polarisation were determined as a function of temperature. In the dielectric measurements carried out without a dc bias field, we studied the soft-mode relaxation in the SmA phase. From experimental data and using the results of a Landau model, we evaluated the soft-mode rotational viscosity and the electroclinic coefficient in the SmA phase. A soft-mode like mechanism was also observed in the N* phase for compounds with shorter chains (C10 and C11). This relaxation process is not detected for the homologue with a longer chain (C12). The observation of this mechanism is related to smectic order fluctuations within N* phase whose amplitude is increased when approaching the SmC*–SmA–N* multicritical point.  相似文献   

11.
Dielectric properties of four recently formulated room temperature multi-component liquid crystalline mixtures with paraelectric (SmA*), ferroelectric (SmC*) and antiferroelectric (SmC*A) phases have been studied as a function of temperature and frequency. Under planer anchoring condition, dielectric spectroscopy revealed all the characteristic modes: low frequency PL and high frequency PH mode in SmC*A phase, Goldstone mode (GM) in SmC* phase and soft mode (SM) in SmA* phase. Dielectric behaviour has also been studied under the application of DC bias electric field. With bias electric field, we have been able to study the soft mode dielectric behaviour in the SmC* phase. An unknown high frequency mode (X-mode) with and without bias is also observed in SmC* phase. Dielectric results are explained in the light of generalised Landau theory. The mixtures show very high soft mode electroclinic coefficient in the SmA* phase in addition to fast switching in SmC*A and SmC* phases [30].  相似文献   

12.
A new series of non-symmetric chiral isoflavone-based liquid crystalline dimers, α-(2-methylbutyl-4′-(4″-phenyloxy)benzoate)-ω-(3-(4′-decyloxyphenyl)-4H-1-benzopyran-4-one-7-oxy)alkanes, with 3–12 carbon atoms in the alkyloxy spacer, have been synthesised. A pronounced odd–even effect for the phase transition temperatures upon varying the spacer length was observed. The short dimers exhibited monolayer smectic A (SmA) and smectic C (SmC*) phases while for longer homologues a chiral nematic (N*) phase was found. The temperature range of the nematic phase was broadened with elongation of the alkyl spacer. Stabilisation of the nematic phase resulted from competition between the monolayer and intercalated smectic structures. The SmA–SmC* phase transition was second order for all studied compounds with a cross over to the de Vries type behaviour for the shortest homologue.  相似文献   

13.
A main‐chain liquid crystalline polymer has been obtained by applying a Hoveyda–Grubbs 2nd generation catalyst in acyclic diene metathesis polymerization (ADMET) of a monomer containing on one end a terminal dimethylvinylsilyl group and at the other end a terminal C C double bond. This material showed an interesting Iso‐de Vries SmA* – SmC* – Glass phase transition with a very small layer shrinkage on progressing from the SmA* phase into the SmC* phase. Will this material present a helical structure along the fiber axis in the SmC* temperature range? Several physical characterization methods including XRD, optical observation, and microtome technique have been used to investigate the internal structural organization in this liquid crystalline fiber.

  相似文献   


14.
The syntheses and liquid crystal properties of two novel esters derived from 4-(4-(decyloxy)phenyl)thiophene-2-carboxylic acid and either (±)-oct-1-en-3-yl 4?-hydroxybiphenyl-4-carboxylate or (S)-(+)-oct-1-en-3-yl 4?-hydroxybiphenyl-4-carboxylate are reported. Within the synthesis of the (S)-(+)-oct-1-en-3-yl 4?-hydroxybiphenyl-4-carboxylate, mushroom alcohol, a natural source of chiral oct-1-en-3-ol and a platform molecule, was employed. The phases present within these compounds have been characterised by thermal optical polarising microscopy and differential scanning calorimetry and assigned as SmA, SmC and SmC Alt for the racemic compound and; SmA, SmC* and SmC*A for the enantiomerically pure compound. This is first reported occurrence of a liquid crystalline ester derived from mushroom alcohol, and potential platform molecule, exhibiting SmA*, SmC* and SmC*A phases.  相似文献   

15.
Two new chiral series, with benzoate cores and monofluoro-substitution in positions 2 and 3 of the first phenyl ring near the chiral chain, have been synthesized and characterized. The mesomorphic properties have been analysed by optical microscopy, differential scanning calorimetry and electro-optical measurements. The first series (Ic) displays a very rich polymorphism including SmA, SmC*α, SmC*, SmC*FI, SmC*A phases, whereas the second (Ib) does not exhibit the SmC*A phase, and moreover only displays the SmA phase for short alkoxy chains. The effect of the position of the fluoro substituent and the influence of the alkoxy chain length on the mesomorphic behaviour are discussed.  相似文献   

16.
Novel chiral two ring compounds possessing phenylethenoate moieties were synthesized and their liquid crystalline properties determined. Some of these compounds were found to exhibit SmC* γ, AF and SmC* A phases, whereas in other compounds only SmA* and SmC* phases appear. The influence of the molecular structure on the appearance of SmC* γ, AF and SmC* γ phases is discussed. The basic electro-optical properties of the homologous series of ( S )-( E )4-(1-methylheptyloxycarbonyl)phenyl 4-alkoxycinnamates, in which SmC*, SmC* γ, AF and SmC* A phases appear, were also investigated. High values of spontaneous polarization, low threshold voltages and fast switching times at room temperature were observed.  相似文献   

17.
Two new chiral alcohols, 2(S)‐[2(R)‐methylhexyloxy]propanol ( 5 ) and 2(S)‐[2(S)‐methylhexyloxy]propanol ( 6 ), were prepared from the corresponding propionic acid ethyl ester 1 and 2 in the presence of sodium borohydride. They were used as the chiral moiety for the synthesis of two diastereomeric liquid crystals 7 and 8 . Both of them exhibit the phase sequence I‐SmA‐SmC*‐SmX‐Cr. The mesogenic properties of the (S,S)‐diastereomer 8 are more unique in comparison with those of the (S,R)‐diastereomer 7. It possesses not only lower SmA and SmC* phase transition temperature, 103 °C vs. 112 °C for SmA phase and 31 °C vs. 65 °C for SmC* phase, but wider SmA and SmC* phase range, 40 °C vs. 31 °C for SmA phase and 72 °C vs. 47 °C for SmC* phase. The diastereomer 8 also has a larger Ps value than that of 7, 24 vs. 15 nC cm?2 measured at Tc ‐ T = 10 °C. The difference in these mesogenic properties is discussed by comparing their conformation difference at the molecular part of benzoate.  相似文献   

18.
Compounds with differing numbers of lactate units in the chiral part were synthesized. For all materials, at least two smectic phases were found. In addition to the SmA, the SmC* and/or the tilted hexatic SmI*(F*) phase appear according to the length of the non-chiral alkyl chain. For the shortest non-chiral chain, a direct transition from the SmA phase to the SmI*(F*) phase has been discovered and studied. For compounds with the 2-(S)-methylbutyl alkyl chain and two lactate units in the chiral part the antiferroelectric SmC*A phase occurs. The ferroelectric character of the hexatic phase has been confirmed even just below the SmC*A phase.  相似文献   

19.
ABSTRACT

Two partially fluorinated ferroelectric liquid crystals (2F3R, 3F3R) with biphenylyl benzoate core have been investigated by frequency domain dielectric spectroscopy and electro-optic method. Both the compounds exhibit SmC* phase over a wide range of temperature along with tilted hexatic phase SmF* and soft crystal phases SmJ* (in 2F3R) and SmG* (in 3F3R) and one coexistence phase of (SmF*+SmC*). Both BOO phason and tilt phason relaxations are observed in SmF* phase and cooperative relaxation behaviour is also observed in crystal-like smectic phases. Goldstone mode relaxation is observed in SmC* phase and Maxwell Wagner mode is observed in all the phases. In 2F3R soft mode is detected in both SmC* and SmA* phases but not in 3F3R which melts directly to isotropic phase from SmC* phase. Compounds possess moderate values of spontaneous polarisation and exhibit quite sharp electrical response especially in 2F3R. Rotational viscosities, pitch and elastic constant are also measured. Effect of chain length and fluorination on various physical parameters has been discussed.  相似文献   

20.
Polarizing microscope textures of the twist grain boundary A* (TGBA*) phase are reviewed for two different compounds in different geometries with different surface treatments giving monostable planar and homeotropic boundary conditions. The textures are discussed in the light of the helical structure of the TGBA* phase. Depending on the compound, the underlying phase is either SmA* or SmC*, whereas the adjacent phase at higher temperature is cholesteric (N*). Sample preparations in wedge-shaped cells subjected to a slight temperature gradient exhibit TGBA* textures much more typical for the cholesteric than for the ordinary SmA* phase. For instance, Grandjean steps and fingerprint textures are observed for planar and homeotropic boundary conditions, respectively. Preparation of smectic droplets clearly reveals the helical axis of the TGBA* phase to be perpendicular to the helical axis of the helielectric SmC* phase. For thin samples, a suppression of the TGBA* helix leading to a surface-induced structure corresponding to a conventional bulk SmA* phase is observed. Under certain conditions, a cholesteric phase in the vicinity of a twist inversion point may exhibit very similar textures to the TGBA* phase near the transition to the SmA* phase. On exemplified textures similarities are discussed and differences pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号