首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 22 毫秒
1.
建立了高效液相色谱-氢化物发生-原子荧光光谱法测定As(Ⅲ)和As(Ⅴ)的分析方法。通过在载流HCl中加入硫脲使经色谱柱分离后的As(Ⅴ)在线还原为As(Ⅲ),使As(Ⅴ)以As(Ⅲ)的形式与Na BH4进行反应,结果等浓度的As(Ⅴ)和As(Ⅲ)可以获得近似相同的荧光信号,有效地提高了方法检出As(Ⅴ)的能力。  相似文献   

2.
在自然界水体中砷主要以无机的As(Ⅲ)和As(Ⅴ)的形态存在,而As(Ⅲ)的毒性比As(Ⅴ)大得多[1],因此必须对As(Ⅲ)和As(Ⅴ)分别测定才能可靠评价砷的毒性及其生物重要性[2-4]。目前砷的化学形态分析方法很多,萃取法、巯基棉富集分离法、离子交换法[5]等可实现砷的形态分析,但操作复  相似文献   

3.
采用钼蓝比色法测定水中As(Ⅲ)和As(Ⅴ)的含量,实验优化了测定As(Ⅲ)和As(Ⅴ)的条件。结果表明,显色温度在24~28℃范围,配合物在40min后吸光度达到最大;显色温度高于30℃时,还原剂不稳定导致配合物吸光度一直增大;增大抗坏血酸的量可以消除过量的氧化剂对配合物显色的影响,过量的还原剂对配合物显色无影响;砷的检测在5~100μg/L范围线性良好,线性相关系数为0.9989;检出限为5μg/L;相对标准偏差为2.1%~5.9%。采用该方法测定实际水样中无机砷的含量,砷的加标回收率在98.2%~104.5%之间。  相似文献   

4.
在模拟动物体生理条件下,研究As(Ⅲ)和As(V)与牛血清白蛋白(BSA)的相互作用.用氢化物发生-超低温捕集-原子吸收分光光度法测定平衡透析后As(Ⅲ)或As(V)的浓度,用Scatchard方法分别处理实验数据,确定结合部位和结合常数.发现当As(Ⅲ)浓度(cAs(Ⅲ)∶cBSA≤1∶1)较低时,在BSA中有1.3个强结合部位,结合常数为1.7×106,为强结合;当As(Ⅲ)的浓度(cAs(Ⅲ)∶cBSA≥2∶1)较高时,没有明显的特征结合点,表现为弱结合.而As(V)与BSA无任何结合作用.  相似文献   

5.
借助季铵型阴离子交换纤维在弱酸性介质中对As(V)和As(Ⅲ)吸附效果的差异性,结合紫外分光光度法,建立了一种利用纤维填充微柱分离As(V)和As(Ⅲ)的新方法。考察了样品pH、样品流速、初始浓度等因素对As(Ⅲ)和As(V)分离效果的影响。在最优工艺条件下,吸附柱对砷含量在1.0~12.0mg/L的样品的分离效率在95%以上,微柱可重复使用15次以上,再生性良好。  相似文献   

6.
以La(OH)_3为原材料,探究其对水中As(Ⅲ)和As(Ⅴ)的吸附性能,并考察吸附剂投加量、p H值、初始浓度及温度对As(Ⅲ)和As(Ⅴ)吸附效果的影响。在单因素初步实验基础上,采用响应面法对La(OH)_3吸附水中As(Ⅲ)和As(Ⅴ)过程进行优化,并研究等温吸附及吸附动力学、热力学特性。结果表明,水中As(Ⅲ)和As(Ⅴ)的最佳去除条件分别为:投加量为0.437g和0.469g,p H值为4.365和3.672,初始浓度为106.716mg/L和108.65mg/L,该条件下As(Ⅲ)和As(Ⅴ)的去除率分别达71.68%和99%以上,且相同条件下As(Ⅴ)的去除效果要优于As(Ⅲ)。等温吸附及动力学拟合结果表明,As(Ⅲ)和As(Ⅴ)的吸附等温线均符合Freundlich模型,相同条件下As(Ⅴ)优于As(Ⅲ)的吸附效果,As(Ⅴ)在200mg/L时的吸附量是As(Ⅲ)的1.43倍,吸附过程均遵循准二级动力学模型,吸附过程为吸热且非自发反应过程。  相似文献   

7.
建立了As(Ⅲ)、As(V)的树脂分离 氢化物 原子荧光光谱分析方法。利用717阴离子交换树脂选择性的吸附水中的As(Ⅴ),从而实现了对水样中As(Ⅲ)和As(Ⅴ)的分离。考察了溶液的pH和流速以及洗脱剂浓度等条件对分离效果的影响,同时研究了仪器的工作条件、KBH4质量浓度和介质浓度对砷原子荧光强度的影响,并对测定砷时共存离子的干扰和消除进行了探讨。在最佳工作条件下,砷的检出限为0.096μg L,相对标准偏差为2.1%,将该方法应用于水样分析,其回收率为94.7%~107.9%。  相似文献   

8.
本研究通过测定不同浓度As(Ⅲ)作用下小球藻叶绿素a、可溶性蛋白、丙二醛(MDA)等生化指标,结合藻细胞SEM-EDS、TEM形貌分析和MOE分子模拟,探究As(Ⅲ)对小球藻生长的抑制作用;通过评估藻细胞内抗氧化酶(SOD、POD、CAT)活性,揭示小球藻应对As(Ⅲ)胁迫的反应机制。结果显示:在高浓度As(Ⅲ)(300、600mg/L,6天)胁迫下,叶绿素a含量仅为对照组的40%,可溶性蛋白含量与对照组相当,MDA含量较第4天降低40%。SEM、TEM显示,小球藻在As(Ⅲ)作用下细胞表面皱缩、细胞器溶解、藻体破裂。MOE模拟表明,小球藻内大分子通过氢键与As(Ⅲ)结合,从而提高藻细胞耐受能力。研究表明小球藻对As(Ⅲ)具有一定的耐受性,但高浓度As(Ⅲ)会导致藻体死亡。  相似文献   

9.
基于KBrO3与HCl反应,其产物能使丁基罗丹明B荧光猝灭,在As(Ⅴ)共存时As(Ⅲ)能灵敏抑制该反应,据此建立了测定痕量As(Ⅲ)的新方法.在最佳实验条件下,测定As(Ⅲ)的线性范围为7.7~153.8 ng/mL,方法的检出限为2.9 ng/mL.对30.8和92.3 ng/mL的As(Ⅲ)标准溶液平行测定11次,其相对标准偏差分别为1.3%和0.62%.并考察了常见物质的干扰情况.该方法用于环境水样中痕量As(Ⅲ)分析,回收率在98%~105%之间.并提出了可能的反应机理.  相似文献   

10.
研究了铁改性活性炭纤维(Fe-ACF)吸附地表水中砷离子的吸附特性。通过扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、比表面积和孔径变化等探讨了Fe-ACF表面物质形貌、组成和吸附机理,考察了不同pH值和吸附剂投加量对As(Ⅴ)去除效果的影响,讨论了303K、313K、323K等条件下的吸附动力学及热力学。实验结果表明,Fe-ACF表面生成的氧化物为Fe2O3和Fe3O4,改性前后比表面积和孔容显著减小,吸附机理为Fe(OH)3(s)絮凝除As(Ⅴ)和活性炭纤维吸附除As(Ⅴ)。当pH=7,吸附剂投加量为2.0g/L时,出水As(Ⅴ)浓度可以达到国家地表水环境质量标准(<0.05mg/L)。Fe-ACF对As(Ⅴ)的吸附动力学及等温吸附的实验结果与准二级动力学模型及Langmuir等温吸附模型相吻合;吸附速率及吸附容量都随着温度的增加而增加;吸附速率k2从0.0372g/mg min增加到0.0434g/mg min,由Langmuir等温吸附拟合得到的吸附容量从11.31mg/g增加到18.34mg/g。根据标准吉布斯自由能变ΔG0<0、标准反应焓变ΔH0>0判断,Fe-ACF对As(Ⅴ)的吸附为自发的吸热过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号