首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We have studied the palladium-mediated activation of C(spn)−X bonds (n = 1–3 and X = H, CH3, Cl) in archetypal model substrates H3C−CH2−X, H2C=CH−X and HC≡C−X by catalysts PdLn with Ln = no ligand, Cl, and (PH3)2, using relativistic density functional theory at ZORA-BLYP/TZ2P. The oxidative addition barrier decreases along this series, even though the strength of the bonds increases going from C(sp3)−X, to C(sp2)−X, to C(sp)−X. Activation strain and matching energy decomposition analyses reveal that the decreased oxidative addition barrier going from sp3, to sp2, to sp, originates from a reduction in the destabilizing steric (Pauli) repulsion between catalyst and substrate. This is the direct consequence of the decreasing coordination number of the carbon atom in C(spn)−X, which goes from four, to three, to two along this series. The associated net stabilization of the catalyst–substrate interaction dominates the trend in strain energy which indeed becomes more destabilizing along this same series as the bond becomes stronger from C(sp3)−X to C(sp)−X.  相似文献   

2.
The reactions of structurally diverse carboxylic acids with XeF2 in both CH2Cl2/Pyrex® and CH2Cl2/PTFE have been studied. Pyrex® appears to be a very effective heterogeneous catalyst for an electrophilic mode of reaction of polarised XeF2, leading to rearrangement, cyclisation and cationic products. In CH2Cl2/PTFE, fluorodecarboxylation is the main mode of reaction, in accordance with previous studies, and may occur via a SET reaction of unpolarised XeF2.  相似文献   

3.
C−H dissociation and C−C coupling are two key steps in converting CH4 into multi-carbon compounds. Here we report a synergy of Au and Ag to greatly promote C2H6 formation over Au1Ag single-atom alloy nanoparticles (Au1Ag NPs)-modified ZnO catalyst via photocatalytic oxidative coupling of methane (POCM) with O2 and H2O. Atomically dispersed Au in Au1Ag NPs effectively promotes the dissociation of O2 and H2O into *OOH, promoting C−H activation of CH4 on the photogenerated O to form *CH3. Electron-deficient Au single atoms, as hopping ladders, also facilitate the migration of electron donor *CH3 from ZnO to Au1Ag NPs. Finally, *CH3 coupling can readily occur on Ag atoms of Au1Ag NPs. An excellent C2H6 yield of 14.0 mmol g−1 h−1 with a selectivity of 79 % and an apparent quantum yield of 14.6 % at 350 nm is obtained via POCM with O2 and H2O, which is at least two times that of the photocatalytic system. The bimetallic synergistic strategy offers guidance for future catalyst design for POCM with O2 and H2O.  相似文献   

4.
5.
A series of salts with a diaminohalocyclopropenium cation and halide anion [C3(NiPr2)2X]X (X=Cl ([ 1 ]Cl) or Br ([ 2 ]Br) were isolated with a variety of solvates and, in one case, as a co-crystal with hydronium chloride. In particular, the initial synthesis of [ 1 ]Cl formed a co-crystal with hydronium and with CH2Cl2 solvate ([ 1 ]2[OH3Cl3] ⋅ CH2Cl2) upon isolation from acetone/CH2Cl2. Recrystallization of this from chloroform gave a dichloroform adduct [ 1 ]Cl ⋅ 2CHCl3, whereas treatment with ICl formed an octahalide cluster [ 1 ]2I4Cl4. The bromine salt [ 2 ]Br ⋅ C2H4Br2 was prepared by treatment of [ 1 ]Cl with dibromoethane and was isolated as a solvate. The hydronium cation was found as part of a hydronium trichloride cluster [OH3Cl3]2− and this, along with a partially-deuterated analogue of [OHD2Cl3]2− and [OD3Cl3]2−, was studied computationally and by mid- and far-infrared spectroscopy. Significant halogen bonds were found between 1 + or 2 + and chloride or bromide, respectively. On the other hand, the distance to the octahalide [I4Cl4]2− is too long for a halogen bond. Hydrogen bonding from the halides to the halomethane solvates is also significantly stronger than to the cation isopropyl groups. The geometries formed at the halide ions with respect to the halogen bond and strong hydrogen bonds are pyramidal with approximately orthogonal angles.  相似文献   

6.
Quantum chemistry calculations predict that besides the reported single metal anion Pt, Ni can also mediate the co-conversion of CO2 and CH4 to form [CH3−M(CO2)−H] complex, followed by transformation to C−C coupling product [H3CCOO−M−H] ( A ), hydrogenation products [H3C−M−OCOH] ( B ) and [H3C−M−COOH]. For Pd, a fourth product channel leading to PdCO2…CH4 becomes more competitive. For Ni, the feed order must be CO2 first, as the weaker donor-acceptor interaction between Ni and CH4 increases the C−H activation barrier, which is reduced by [Ni−CO2]. For Ni/Pt, the highly exothermic products A and B are similarly stable with submerged barrier that favors B . The smaller barrier difference between A and B for Ni suggests the C−C coupling product is more competitive in the presence of Ni than Pt. The charge redistribution from M is the driving force for product B channel. This study adds our understanding of single atomic anions to activate CH4 and CO2 simultaneously.  相似文献   

7.
Ab initio MP2/aug’-cc-pVTZ calculations have been carried out to investigate H2CO : PXH2 pnicogen-bonded complexes and HCO2H : PXH2 complexes that are stabilized by pnicogen bonds and hydrogen bonds, with X=NC, F, Cl, CN, OH, CCH, CH3, and H. The binding energies of these complexes exhibit a second-order dependence on the O−P distance. DFT-SAPT binding energies correlate linearly with MP2 binding energies. The HCO2H : PXH2 complexes are stabilized by both a pnicogen bond and a hydrogen bond, resulting in greater binding energies for the HCO2H : PXH2 complexes compared to H2CO : PXH2. Neither the O−P distance across the pnicogen bond nor the O−P distance across the hydrogen bond correlates with the binding energies of these complexes. The nonlinearity of the hydrogen bonds suggests that they are relatively weak bonds, except for complexes in which the substituent X is either CH3 or H. The pnicogen bond is the more important stabilizing interaction in the HCO2H : PXH2 complexes except when the substituent X is a more electropositive group. EOM-CCSD spin-spin coupling constants 1pJ(O−P) across pnicogen bonds in H2CO:PXH2 and HCO2H : PXH2 complexes increase as the O−P distance decreases, and exhibit a second order dependence on that distance. There is no correlation between 2hJ(O−P) and the O−P distance across the hydrogen bond in the HCO2H : PXH2 complexes. 2hJ(O−P) coupling constants for complexes with X=CH3 and H have much greater absolute values than anticipated from their O−P distances.  相似文献   

8.
Solar-to-chemical energy conversion under weak solar irradiation is generally difficult to meet the heat demand of CO2 reduction. Herein, a new concentrated solar-driven photothermal system coupling a dual-metal single-atom catalyst (DSAC) with adjacent Ni−N4 and Fe−N4 pair sites is designed for boosting gas-solid CO2 reduction with H2O under simulated solar irradiation, even under ambient sunlight. As expected, the (Ni, Fe)−N−C DSAC exhibits a superior photothermal catalytic performance for CO2 reduction to CO (86.16 μmol g−1 h−1), CH4 (135.35 μmol g−1 h−1) and CH3OH (59.81 μmol g−1 h−1), which are equivalent to 1.70-fold, 1.27-fold and 1.23-fold higher than those of the Fe−N−C catalyst, respectively. Based on theoretical simulations, the Fermi level and d-band center of Fe atom is efficiently regulated in non-interacting Ni and Fe dual-atom pair sites with electronic interaction through electron orbital hybridization on (Ni, Fe)−N−C DSAC. Crucially, the distance between adjacent Ni and Fe atoms of the Ni−N−N−Fe configuration means that the additional Ni atom as a new active site contributes to the main *COOH and *HCO3 dissociation to optimize the corresponding energy barriers in the reaction process, leading to specific dual reaction pathways (COOH and HCO3 pathways) for solar-driven photothermal CO2 reduction to initial CO production.  相似文献   

9.
Quinones are mild oxidants, the redox potentials of which can be increased by supramolecular interactions. Whereas this goal has been achieved by hydrogen bonding or molecular encapsulation, a Lewis acid-binding strategy for redox amplification of quinones is unexplored. Herein, the redox chemistry of silicon tris(perchloro)dioxolene 1 was studied, which is the formal adduct of ortho-perchloroquinone QCl with the Lewis superacid bis(perchlorocatecholato)silane 2 . By isolating the anionic monoradical 1 . − , the redox-series of a century-old class of compounds was completed. Cyclic voltammetry measurements revealed that the redox potential in 1 was shifted by more than 1 V into the anodic direction compared to QCl , reaching that of “magic blue” or NO+. It allowed oxidation of challenging substrates such as aromatic hydrocarbons and could be applied as an efficient redox catalyst. Remarkably, this powerful reagent formed in situ by combining the two commercially available precursors SiI4 and QCl .  相似文献   

10.
《Polyhedron》1999,18(5):717-719
1,1-Dimethylhydrazinium azide, [ (CH3)2NH–NH2] [N3], was prepared in high yield from 1,1-dimethylhydrazine and HN3 in CH2Cl2 solution at −20°C. The new compound has been fully characterized by elemental analysis, multinuclear NMR (1H, 13C, 14 N, 15 N) and vibrational spectroscopy (IR, Raman). The structure in the solid state was determined by a low temperature (173 K) single crystal X-ray diffraction analysis.  相似文献   

11.
Direct selective oxidation of hydrocarbons to oxygenates by O2 is challenging. Catalysts are limited by the low activity and narrow application scope, and the main focus is on active C−H bonds at benzylic positions. In this work, stable, lead-free, Cs3Bi2Br9 halide perovskites are integrated within the pore channels of mesoporous SBA-15 silica and demonstrate their photocatalytic potentials for C−H bond activation. The composite photocatalysts can effectively oxidize hydrocarbons (C5 to C16 including aromatic and aliphatic alkanes) with a conversion rate up to 32900 μmol gcat−1 h−1 and excellent selectivity (>99 %) towards aldehydes and ketones under visible-light irradiation. Isotopic labeling, in situ spectroscopic studies, and DFT calculations reveal that well-dispersed small perovskite nanoparticles (2–5 nm) possess enhanced electron–hole separation and a close contact with hydrocarbons that facilitates C(sp3)−H bond activation by photoinduced charges.  相似文献   

12.
《Polyhedron》1999,18(6):765-772
The synthesis, spectroscopic characterisation and X-ray structure determination of Ade2(CH2)3 1, [(H-Ade)2(CH2)3]Cl2⋅H2O 2 and the outer sphere complex [(H-Ade)2(CH2)3]2[Cd2Cl8(H2O)2]⋅4H2O 3 are reported (Ade=adenine). An important change of conformation appears when trimethylene–bisadenine is protonated. The eclipsed and anti conformation between the two adenine moieties of 1 varies to a gauche and syn conformation for the corresponding Cl 2 and [Cd2Cl8(H2O)2]4− 3 salts. Compound 3 presents a new dimeric [Cd2Cl8(H2O)2]4− anion in which cadmium(II) has a distorted-octahedral co-ordination with two cis chlorine atoms bridging two cadmium atoms. The corresponding Zn(II) and Hg(II) salts have been obtained by similar procedures.  相似文献   

13.
《Polyhedron》1999,18(26):3527-3531
The redox reaction between [Pt(NH3)4]2+ and [W(CN)8]3− in the presence of Cl anions in aqueous solution affords single crystals of [PtII(NH3)4]2[WIV(CN)8] and [PtIV(NH3)4Cl2]Cl2. Trapped cyano ligands of [W(CN)8]4− rectangular antiprisms of D2 point symmetry between parallel Pt(II) square planes show that the inner-sphere redox pathway is prohibited. The presence of Cl counterions enables the formation of [Pt(NH3)4Cl2]Cl2 as the product of the rare outer-sphere pathway of the oxidation of Pt(II) by [W(CN)8]3−.  相似文献   

14.
The novel electrophilic organo-tantalum catalyst AlS/TaNpx ( 1 ) (Np=neopentyl) is prepared by chemisorption of the alkylidene Np3Ta=CHtBu onto highly Brønsted acidic sulfated alumina (AlS). The proposed catalyst structure is supported by EXAFS, XANES, ICP, DRIFTS, elemental analysis, and SSNMR measurements and is in good agreement with DFT analysis. Catalyst 1 is highly effective for the hydrogenolysis of diverse linear and branched hydrocarbons, ranging from C2 to polyolefins. To the best of our knowledge, 1 exhibits one of the highest polyolefin hydrogenolysis activities (9,800 (CH2 units) ⋅ mol(Ta)−1 ⋅ h−1 at 200 °C/17 atm H2) reported to date in the peer-reviewed literature. Unlike the AlS/ZrNp2 analog, the Ta catalyst is more thermally stable and offers multiple potential C−C bond activation pathways. For hydrogenolysis, AlS/TaNpx is effective for a wide variety of pre- and post-consumer polyolefin plastics and is not significantly deactivated by standard polyolefin additives at typical industrial concentrations.  相似文献   

15.
The two new hybrids single crystals having the general formula [(CH3CH2CH2)4N]2MIICl4 with MII = Co (1) and Mn (2) have been synthetised by the slow evaporation process in aqueous solutions. In this article, these compounds were described by the following characterization techniques: X-rays diffraction, thermal analysis (TGA-TDA), vibrational spectroscopy, nuclear magnetic resonance (NMR), and electrical properties. From the crystallographic study, the crystals (1) and (2) have been disclosed to be crystallized too in the centrosymmetric monoclinic systems, with space group P21/c (Z = 4) and C2/c (Z = 8), respectively. Their crystal structures consist of [MCl4]2− anions and two different cations [(CH3CH2CH2)4N]+, which are connected by a three dimensional network of C-H···Cl hydrogen bonds. In both crystals, each MII center atom being surrounded by four chloride ligands forming a slightly distorted tetrahedral geometry. The tetrahedral [CoCl4]2− is ordered, while the tetrahedral [MnCl4]2− is disordered. Some tetrapropylammonium cations of these compounds are found to be disordered. The thermal analysis studies made in the temperature range (298–473 K) did not show any phase transition for the two crystals. Furthermore, the electrical properties of the two compounds are studied by using the complex impedance spectroscopy technique in the temperature and frequency field varied of 290–363 K and 1 kHz–13 MHz, respectively.  相似文献   

16.
We propose an effective highest occupied d-orbital modulation strategy engendered by breaking the coordination symmetry of sites in the atomically precise Cu nanocluster (NC) to switch the product of CO2 electroreduction from HCOOH/CO to higher-valued hydrocarbons. An atomically well-defined Cu6 NC with symmetry-broken Cu−S2N1 active sites (named Cu6(MBD)6, MBD=2-mercaptobenzimidazole) was designed and synthesized by a judicious choice of ligand containing both S and N coordination atoms. Different from the previously reported high HCOOH selectivity of Cu NCs with Cu−S3 sites, the Cu6(MBD)6 with Cu−S2N1 coordination structure shows a high Faradaic efficiency toward hydrocarbons of 65.5 % at −1.4 V versus the reversible hydrogen electrode (including 42.5 % CH4 and 23 % C2H4), with the hydrocarbons partial current density of −183.4 mA cm−2. Theoretical calculations reveal that the symmetry-broken Cu−S2N1 sites can rearrange the Cu 3d orbitals with as the highest occupied d-orbital, thus favoring the generation of key intermediate *COOH instead of *OCHO to favor *CO formation, followed by hydrogenation and/or C−C coupling to produce hydrocarbons. This is the first attempt to regulate the coordination mode of Cu atom in Cu NCs for hydrocarbons generation, and provides new inspiration for designing atomically precise NCs for efficient CO2RR towards highly-valued products.  相似文献   

17.
The development of efficient electrocatalysts with non-copper metal sites for electrochemical CO2 reduction reactions (eCO2RR) to hydrocarbons and oxygenates is highly desirable, but still a great challenge. Herein, a stable metal–organic framework (DMA)4[Sn2(THO)2] (Sn-THO, THO6− = triphenylene-2,3,6,7,10,11-hexakis(olate), DMA = dimethylammonium) with isolated and distorted octahedral SnO62− active sites is reported as an electrocatalyst for eCO2RR, showing an exceptional performance for eCO2RR to the CH4 product rather than the common products formate and CO for reported Sn-based catalysts. The partial current density of CH4 reaches a high value of 34.5 mA cm−2, surpassing most reported copper-based and all non-Cu metal-based catalysts. Our experimental and theoretical results revealed that the isolated SnO62− active site favors the formation of key *OCOH species to produce CH4 and can greatly inhibit the formation of *OCHO and *COOH species to produce *HCOOH and *CO, respectively.  相似文献   

18.
《Electroanalysis》2017,29(2):387-391
Electrodeposition of functional metal surfaces has received great attention because of their useful applications. Recently, interesting electrodeposition behavior of Pt at −0.8 V (vs. Ag/AgCl) was reported, where underpotential deposited H (Hupd) layers played a unique role in the electrodeposition. Here, we report the effect of anionic electrolytes and precursor concentrations on the electrochemical deposition behavior of Pt. Depending on these two experimental parameters, two distinct Pt structures, monolayer Pt films and Pt spheres, were electrodeposited at −0.8 V. In addition to the underpotential deposited H (Hupd) layers formed at −0.8 V, the adsorption of Cl also plays a significant role in determining the electrodeposited Pt structures. When the PtCl42− concentration was low and the Cl concentration was high enough for the adsorption of PtCl42− to be blocked by the Hupd and Cl layers, monolayer Pt films were electrodeposited. Otherwise, further electrodeposition of Pt spheres over the monolayer Pt films occurred. The effect of other halide ion adsorption and the controlled growth of Pt spheres during the Pt electrodeposition were also investigated. The electrochemical deposition behavior of Pt demonstrated in this work provides insight into the fabrication of functional Pt surfaces.  相似文献   

19.
《化学:亚洲杂志》2017,12(2):239-247
Five bis(quinolylmethyl)‐(1H ‐indolylmethyl)amine (BQIA) compounds, that is, {(quinol‐8‐yl‐CH2)2NCH2(3‐Br‐1H ‐indol‐2‐yl)} ( L1H ) and {[(8‐R3‐quinol‐2‐yl)CH2]2NCH(R2)[3‐R1‐1H ‐indol‐2‐yl]} ( L2–5H ) ( L2H : R1=Br, R2=H, R3=H; L3H : R1=Br, R2=H, R3=i Pr; L4H : R1=H, R2=CH3, R3=i Pr; L5H : R1=H, R2=n Bu, R3=i Pr) were synthesized and used to prepare calcium complexes. The reactions of L1–5H with silylamido calcium precursors (Ca[N(SiMe2R)2]2(THF)2, R=Me or H) at room temperature gave heteroleptic products ( L1, 2 )CaN(SiMe3)2 ( 1 , 2 ), ( L3, 4 )CaN(SiHMe2)2 ( 3 a , 4 a ) and homoleptic complexes ( L3, 5 )2Ca ( D3 , D5 ). NMR and X‐ray analyses proved that these calcium complexes were stabilized through Ca⋅⋅⋅C−Si, Ca⋅⋅⋅H−Si or Ca⋅⋅⋅H−C agostic interactions. Unexpectedly, calcium complexes (( L3–5 )CaN(SiMe3)2) bearing more sterically encumbered ligands of the same type were extremely unstable and underwent C−N bond cleavage processes as a consequence of intramolecular C−H bond activation, leading to the exclusive formation of (E )‐1,2‐bis(8‐isopropylquinol‐2‐yl)ethane.  相似文献   

20.
The dyad and triad tacticities of polypropylenes were determined quantitatively with the aid of a computer form the 100-MHz proton magnetic resonance spectra in o-dichlorobenzene solution at 165[ddot]C. The contents of tactic dyad and traid evaluated from the 100-MHz PMR spectra are in fair agreement with the values determined from the 220-MHz PMR and 13C-(1H) spectra, respectively. The fraction soluble in boiling ethyl ether of polymer prepared with the Ti(O-n-Bu)Cl3-AlEt2 Cl catalyst shows a character of stereorandomness, and the ethyl ether-soluble portion of polymer polymerized with the TiCl3-AlEt2 Cl catalyst has a character of stereoblock sequence. Furthermore, by IR analysis, it has become apparent that the former has a (CH2)2 group formed by two propylene units in a tail-to-tail arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号