首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new mesogenic monomer was prepared from biphenyl‐3,3′,4,4′‐tetracarboxylic dianhydride and 4‐aminophenol followed by the acylation of OH groups with propionic anhydride. This diphenol propionate was polycondensed by transesterification with decane‐1,10‐dicarboxylic acid, dodecane‐1,12‐dicarboxylic acid, and eicosane‐1,20‐dicarboxylic acid or with equimolar mixtures of two dicarboxylic acids. The resulting poly(ester imide)s were characterized by elemental analyses, 1H NMR spectra, inherent viscosities, DSC measurements, optical microscopy, and X‐ray measurements with synchrotron radiation at variable temperatures. An enantiotropic smectic A phase in the molten state and a crystalline smectic E (or H) phase in the solid state were found in all cases. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3019–3027, 2000  相似文献   

2.
A diimide dicarboxylic acid, 1,4‐bis(4‐trimellitimidophenoxy)naphthalene (1,4‐BTMPN), was prepared by condensation of 1,4‐bis(4‐aminophenoxy)naphthalene and trimellitic anhydride at a 1 : 2 molar ratio. A series of novel poly(amide‐imide)s (IIa–k) with inherent viscosities of 0.72 to 1.59 dL/g were prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid 1,4‐BTMPN with various aromatic diamines (Ia–k) in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s showed good solubility in NMP, N,N‐dimethylacetamide, and N,N‐dimethylformamide. The thermal properties of the obtained poly(amide‐imide)s were examined with differential scanning calorimetry and thermogravimetry analysis. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures in the range of 215 to 263°C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses at temperatures in the range of 538 to 569°C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s also is presented. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1–8, 2000  相似文献   

3.
Nylon‐6‐b‐polyimide‐b‐nylon‐6 copolymers were prepared by first synthesizing a series of imide oligomers end‐capped with phenyl 4‐aminobenzoate. The oligomers were then used to activate the anionic polymerization of molten ϵ‐caprolactam. In the block copolymer syntheses, the phenyl ester groups reacted quickly with caprolactam anions at 120 °C to generate N‐acyllactam moieties, which activated the anionic polymerization. In essence, nylon‐6 chains grew from the oligomer chain ends. All of the block copolymers had higher moduli and tensile strengths than those of nylon‐6. However, their elongations at break were much lower. The thermal stability, chemical resistance, moisture resistance, and impact strength were dramatically increased by the incorporation of only 5 wt % polyimide in the block copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4247–4257, 2000  相似文献   

4.
New hydrogen‐bonded liquid‐crystalline poly(ester amide)s (PEA)s were obtained from 1,4‐terephthaloyl[bis‐(3‐nitro‐N‐anthranilic acid)] (5) or 1,4‐terephthaloyl[bis‐(N‐anthranilic acid)] (6), with or without nitro groups, respectively, through the separate condensation of each with hydroquinone or dihydroxynaphthalene. The dicarboxylic monomers were synthesized from 2‐aminobenzoic acid. The phase behavior of the monomers and polymers were studied with differential scanning calorimetry, polarized light microscopy, and wide‐angle X‐ray diffraction methods. Monomer 5, containing nitro groups, exhibited a smectic liquid‐crystalline phase, whereas the texture of monomer 6 without nitro groups appeared to be nematic. The PEAs containing nitro groups exhibited polymorphism (smectic and nematic), whereas those without nitro groups exhibited only one phase transition (a nematic threaded texture). The changes occurring in the phase behavior of the polymers were explained by the introduction of nitro groups. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1289–1298, 2004  相似文献   

5.
Epiclon [3a,4,5,7a‐tetrahydro‐7‐methyl‐5‐(tetrahydro‐2,5‐dioxo‐3‐furanyl)‐1,3‐isobenzofurandione or 5‐(2,5‐dioxotetrahydrofurfuryl)‐3‐methyl‐3‐cyclohexyl‐1,2‐dicarboxylic acid anhydride] was reacted with L ‐leucine in acetic acid, and the resulting imide acid ( 3 ) was obtained in a high yield. The diacid chloride ( 4 ) was obtained from its diacid derivative 3 by a reaction with oxalyl chloride in dry carbon tetrachloride. The polycondensation reaction of 4 with several aromatic diamines, such as 4,4′‐sulfonyldianiline, 4,4′‐diaminodiphenylmethane, 4,4′‐diaminodiphenylether, p‐phenylenediamine, m‐phenylenediamine, 2,4‐diaminotoluene, and 1,5‐diaminonaphthalene, was developed with a domestic microwave oven in the presence of a small amount of a polar organic medium such as N‐methylpyrrolidone. The polymerization reactions were also performed with two other methods: low‐temperature solution polycondensation in the presence of trimethylsilyl chloride and reflux conditions. A series of optically active poly(amide imide)s with moderate yields and inherent viscosities of 0.12–0.19 dL/g were obtained. All of these polymers were fully characterized by IR, elemental analysis, and specific rotation techniques. Some structural characterizations and physical properties of these optically active poly(amide imide)s are reported. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1077–1090, 2003  相似文献   

6.
A novel method was developed to prepare poly(benzoxazinone‐imide) by the dealcoholization of poly(amide‐imide), having pendent ethoxycarbonyl groups, which was prepared from poly(amide acid). The poly(amide acid) was prepared from the reaction of pyromellitic dianhydride and 4,4′‐diamino‐6‐ethoxycarbonyl benzanilide. The curing behavior of the poly(amide acid) was monitored by DSC, which indicated the presence of two broad endotherms, one with maximum at 153 °C due to imide‐ring formation and the other with maximum at 359 °C due to benzoxazinone‐ring formation. The poly(amide acid) was thermally treated at 300 °C/1 h to get poly(amide‐imide) with pendent ester groups, then at 350 °C/2 h to convert into poly(benzoxazinone‐imide) by dealcoholization. Viscoelastic measurements of the poly(amide‐imide) showed that the storage modulus dropped at about 280 °C with glass‐transition temperature (Tg ) at about 340 °C. The storage modulus of poly(benzoxazinone‐imide), however, was almost constant up to 400 °C and no Tg was detected below 400 °C. Also, the tensile modulus and tensile strength of the poly(benzoxazinone‐imide) was much higher than that of the poly(amide‐imide). The 5% decomposition of poly(benzoxazinone‐imide) film was at 535 °C, which reflects its excellent thermal stability. Also, poly(benzoxazinone‐imide) showed more hydrolytic stability against alkali in comparison to polyimides. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1647–1655, 2000  相似文献   

7.
A new one‐pot procedure for imide–acid monomer synthesis and polymerization is reported for four new poly(amide–imide)s. Bisphenol A dianhydride (BPADA) was reacted with twice the molar amount of 3‐aminobenzoic acid (3ABA) or 3‐amino‐4‐methylbenzoic acid (3A4MBA) in 1‐methyl‐2‐pyrrolidinone (NMP) and toluene mixture, and the amic acid intermediates cyclized in solution to give two diimide‐containing dicarboxylic acid monomers. Without isolation, the diacid monomers were then polymerized with either 1,3‐diaminomesitylene (DAM) or 1,5‐diaminonaphthalene (1,5NAPda) using triphenyl phosphite‐activation to give a series of four soluble poly(amide–imide)s, PAI. Isolation and purification of the dicarboxylic acid monomers was not necessary for formation of high molecular weight polymers as indicated by intrinsic viscosities of 0.64–1.04 dL/g determined in N,N‐dimethylacetamide (DMAc). All of the PAI were soluble in polar aprotic solvents such as NMP, DMAc, and dimethyl sulfoxide (DMSO). Glass transition temperatures ranged from 243 to 279°C by DSC, and 5% weight loss temperatures were above 400°C in both air and nitrogen. Flexible films cast from DMAc were light yellow, transparent, and tough. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1183–1188, 1999  相似文献   

8.
The synthesis of a new diamine monomer, Nn‐butyl 3,12‐diamino‐5,6,9,10‐tetrahydro[5]helicene‐7,8‐dicarboxylic imide (4), that contains a helically locked, U‐shaped 4′,4″‐o‐terphenyl moiety is described. The monomer was polymerized with 3,3′,4,4′‐oxydiphthalic dianhydride and 2,2‐bis[4‐(4‐aminophenoxy)phenyl]propane to form a series of copoly(ether imide)s (5a–e). The incorporation of 4 into the poly(ether imide)s varied the glass‐transition temperature of the copolymers of which it was a part. There was a tendency to form macrocyclic materials at higher molar percentages of 4 during polymerization. The fluorescence of all the copoly(ether imide)s gradually decreased as the content derived from monomer 4 increased in the polymer. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 758–763, 2000  相似文献   

9.
Wholly aromatic rigid‐rod polyamides such as poly(p‐phenyleneterephthalamide) (PPD‐T) were synthesized in situ in a solution of nylon‐6 via the phosphorylation polycondensation method to form nanocomposites or so‐called “molecular composites.” The incorporation of PPD‐T into a nylon‐6 matrix was achieved by this approach in a more compatibilized form than that obtained by the conventional coagulation method that entails precipitation of a blend of PPD‐T and nylon‐6 in a solvent, for example, concentrated sulfuric acid. Gelation occurred during the synthesis, presumably because of the formation of interpenetrating networks accompanied by some block‐copolymer formation. The transparency and tensile properties of the resultant composite films from the rigid‐rod aromatic polyamide/nylon‐6 combination were improved over those of nylon‐6 film alone. Rainbow‐colored intense birefringence was observed for the composite films under crossed polarizers. These properties are discussed in context with the in situ synthesized rigid‐rod polyamides uniformly incorporated in nylon‐6. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1014–1026, 2003  相似文献   

10.
We prepared 2,2‐dibutyl‐2‐stanna‐1,3‐dithiacycloalkanes from dibutyltin oxide and α,ω‐dimercaptoalkanes. Heterocycles with five‐, six‐, seven‐, or nine‐ring members were used as bifunctional monomers for polycondensations with aliphatic dicarboxylic acid chlorides. These polycondensations conducted in bulk were highly exothermic and yielded poly(thio ester)s with number average molecular weights (Mn's) in the range of 5000–30,000 Da. These poly(thio ester)s proved to be rapidly crystallizing materials with melting temperatures in the range of 90–150 °C. In addition to the success of the new synthetic approach, two interesting and unpredictable results were obtained. All volatile species detectable by matrix assisted laser desorption induced‐time of flight (MALDI‐TOF) mass spectrometry were cyclic oligo‐ and poly(thio ester)s. Second, several polyesters showed a reversible first‐order change of the crystal modification as identified by differential scanning calorimetry measurements and X‐ray scattering with variation of the temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3656–3664, 2000  相似文献   

11.
A novel tetraimide dicarboxylic acid was synthesized with the ring‐opening addition of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride, 4,4′‐oxydianiline, and trimellitic anhydride in a 1/2/2 molar ratio in N‐methyl‐2‐pyrrolidone followed by azeotropic condensation to tetraimide dicarboxylic acid. A series of poly(amide imide imide)s (PAIIs) with inherent viscosities of 0.8–1.1 dL/g were prepared from tetraimide dicarboxylic acid with various aromatic diamines by direct polycondensation. Most of the PAIIs were readily soluble in a variety of amide polar solvents and even in less polar m‐cresol and pyridine. Solvent‐cast films had tensile strengths ranging from 99 to 106 MPa, elongations at break ranging from 8 to 13%, and initial moduli ranging from 2.0 to 2.3 GPa. The glass‐transition temperatures of these PAIIs were recorded at 244–276 °C. They had 10% weight losses at temperatures above 520 °C in air or nitrogen atmospheres. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1092–1102, 2002  相似文献   

12.
3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (4,4′‐carbonyldiphathalic anhydride) was reacted with L ‐leucine in a mixture of acetic acid and pyridine (3 : 2), and the resulting imide‐acid [N,N′‐(4,4′‐carbonyldiphthaloyl)‐bis‐L ‐leucine diacid] was obtained in quantitative yield. The compound was converted to the N,N′‐(4,4′‐carbonyldiphthaloyl)‐bis‐L ‐leucine diacid chloride by reaction with thionyl chloride. A new facile and rapid polycondensation reaction of this diacid chloride with several aromatic diamines such as 4,4′‐diaminodiphenyl methane, 2,4‐diaminotoluene, 4,4′‐sulfonyldianiline, p‐phenylenedi‐amine, 4,4′‐diaminodiphenylether, and m‐phenylenediamine was developed by using a domestic microwave oven in the presence of a small amount of a polar organic medium such as O‐cresol. The polymerization reactions proceeded rapidly compared with the conventional solution polycondensation and were completed within 6 min, producing a series of optically active poly(amide‐imide)s with a high yield and an inherent viscosity of 0.37–0.57 dL/g. All of the above polymers were fully characterized by IR, elemental analyses, and specific rotation. Some structural characterization and physical properties of these optically active poly(amide‐imide)s are reported. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 177–186, 2001  相似文献   

13.
3,3′,4,4′‐Diphenylsulfonetetracarboxylic dianhydride was reacted with L ‐phenylalanine in acetic acid, and the resulting imide acid ( 3 ) was obtained in high yield. The diacid chloride ( 4 ) was obtained from its diacid derivative ( 3 ) by reaction with thionyl chloride. The polycondensation reaction of 4 with several aromatic diamines such as 4,4′‐sulfonyldianiline, 4,4′‐diaminodiphenyl methane, 4,4′‐diaminodiphenylether, p‐phenylenediamine, m‐phenylenediamine, 2,4‐diaminotoluene, and 1,5‐diaminonaphthalene was developed with a domestic microwave oven in the presence of trimethylsilyl chloride and a small amount of a polar organic medium such as o‐cresol. The polymerization reactions were also performed with two other methods: low‐temperature solution polycondensation in the presence of trimethylsilyl chloride and reflux conditions. A series of optically active poly(amide‐imide)s with moderate inherent viscosities of 0.21–0.42 dL/g were obtained in high yield. All of the aforementioned polymers were fully characterized by IR, 1H NMR elemental analyses, and specific rotation techniques. Some structural characterizations and physical properties of these optically active poly(amide‐imide) s are reported. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3974–3988, 2003  相似文献   

14.
A reactive three‐layered dendrimer containing carboxyl groups was synthesized by the coupling of dicarboxylic acid and a highly reactive, two‐layered glycopeptide dendrimer. Lactose, maltose, or maltotriose was reacted with the poly(lysine) dendrimer in its third and fourth generations by reductive amination and afforded two‐layered glycolysine dendrimers. The reaction was conducted in a borate buffer (pH 9.0). 1H NMR, 13C NMR, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analyses were applied for the determination of the structures of the products. When an excess amount of the oligosaccharide and a long reaction time were used, the degree of substitution increased to 1.5–2.0 against an amino group. For the preparation of highly reactive, multilayered dendrimers for an antigen carrier, C6 hydroxy groups of the oligosaccharides were selectively esterified by adipic acid and suberic acid to give 6‐O‐adipoyl oligosaccharide–poly(lysine) dendrimers and 6‐O‐suberoyl oligosaccharide–poly(lysine) dendrimers. The reactivity of these multilayered dendrimers was examined by a model reaction with phenylalanine ethyl ester. The dendrimer showed high reactivity, providing phenylalanine ethyl ester–dicarboxylate oligosaccharide–poly(lysine) dendrimers with a considerably high proportion of phenylalanine residues. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3622–3633, 2002  相似文献   

15.
The synthesis of a new A2X‐type difluoride monomer, N‐2‐pyridyl‐4′,4″‐bis‐(4‐fluorobenzenesulfonyl)‐o‐terphenyl‐3,6‐dimethyl‐4,5‐dicarboxylic imide ( 3 ), is described. The monomer 3 was incorporated into a series of copoly(aryl ether sulfone)s by polymerization of 4,4′‐isopropylidenediphenol and 4,4′‐difluorophenylsulfone. The incorporation of monomer 3 had an observable effect on both the glass‐transition temperature of poly(aryl ether sulfone)s and the tendency for macrocyclic oligomers to form during polymerization. Replacement of the pyridyl imide group via a transimidization reaction with propargyl amine proceeded quantitatively and without polymer degradation. The acetylene containing copoly(aryl ether sulfone) could be crosslinked by simple thermal treatment, resulting in an increase in the glass‐transition temperature and solvent resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 9–17, 2000  相似文献   

16.
A dicarboxylic acid {1,1‐bis[4‐(4‐trimellitimidophenoxy)phenyl]‐1‐phenylethane ( II )} bearing two performed imide rings was prepared from the condensation of 1,1‐bis[4‐(4‐aminophenoxy)phenyl]‐1‐phenylethane and trimellitic anhydride in a 1/2 molar ratio. A novel family of poly(amide‐imide)s with inherent viscosities of 0.83–1.51 dL/g was prepared by triphenyl phosphite‐activated polycondensation from the diimide‐diacid II with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidinone (NMP), pyridine, and calcium chloride. Because the 1,1,1‐triphenylethane group of II was unsymmetrical, most of the resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N‐dimethylacetamide. All the soluble poly(amide‐imide)s afforded tough, transparent, and flexible films, which had tensile strengths ranging from 88 to 102 MPa, elongations at break from 6 to 11%, and initial moduli from 2.23 to 2.71 GPa. The synthesized poly(amide‐imide)s possessed glass‐transition temperatures from 250 to 287 °C. The poly(amide‐imide)s exhibited excellent thermal stabilities and had 10% weight losses from 501 to 534 °C under a nitrogen atmosphere. A comparative study of some corresponding poly(amide‐imide)s is also presented. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 775–787, 2001  相似文献   

17.
A novel polymeric hollow nanostructure was generated using micellar template method through a three‐step procedure. First, the block copolymers were synthesized via ring‐opening metathesis polymerization by sequentially adding monomers 7‐oxanorborn‐5‐ene‐exoexo‐2,3‐dicarboxylic acid dimethyl ester and the mixture of norbornene and 2,3‐bis(2‐bromoisobutyryloxymethyl)‐5‐norbornene in chloroform, and also atom transfer radical polymerization of 4‐(3‐butenyl)styrene was carried out by using the as‐obtained block copolymer poly(7‐oxanorborn‐5‐ene‐exo,exo‐2,3‐dicarboxylic acid dimethylester)‐block‐poly(norbornene‐co‐2,3‐bis(2‐bromoisobutyryloxymethyl)‐5‐norbornene as macroinitiator to afford a graft copolymer bearing poly(4‐(3‐butenyl)styrene) branch poly(7‐oxanorborn‐5‐ene‐exo,exo‐2,3‐dicarboxylic acid dimethylester)‐block‐poly(norbornene‐co‐2,3‐bis(2‐bromoisobutyryloxymethyl)‐5‐norbornene)‐graft‐poly(4‐(3‐butenyl)styrene). Second, the shell‐crosslinked micelles were prepared by ruthenium‐mediated ring‐closing metathesis of poly(4‐(3‐butenyl)styrene) branches in intramicelle formed from the copolymers self‐assembly spontaneously in toluene. Finally, the hollowed spherical nanoparticles were presented by removing the micellar copolymer backbone through the cleavage of the ester bonds away from the crosslinked network of branches. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
Protoporphyrin IX and zinc protoporphyrin IX were grafted to the surface of nylon‐6,6 films via an ethylene diamine bridge and a poly(acrylic acid) (PAA) scaffold. X‐ray photoelectron spectroscopy showed that approximately 57% of the nylon surface was covered by PAA and approximately 6% of the carboxylic acid groups in PAA were grafted to the ethylene diamine derivative of protoporphyrin IX or its zinc salt. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 41–47, 2003  相似文献   

19.
The vinyl of the ester group of 2-vinyloxyethyl methacrylate was first selectively reacted with acetic acid to obtain 2-[1-(acetoxy)ethoxy]ethyl methacrylate ( 2 ). This protected monomer was subjected to anionic polymerization in tetrahydrofuran at −60°C in the presence of LiCl, using 1,1-diphenylhexyllithium as initiator. The molecular weight of the polymer could thus be controlled and a narrow molecular weight distribution obtained. The protecting group, 1-(acetoxy)ethyl, could be easily eliminated (by quenching the polymerization reaction with methanol and water) to generate poly(2-hydroxyethyl methacrylate) (poly(HEMA)). Block copolymers were also prepared by the sequential anionic polymerization of MMA and 2 or styrene and 2 . They possess narrow molecular weight distributions, and controlled molecular weights and compositions. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1865–1872, 1998  相似文献   

20.
A series of new poly(amide–imide)s (PAIs, series III ) with good processability and characteristics was synthesized by utilizing organosoluble polyimide (PI, 6FDA–PI series) to improve poor‐solubility polyamide (PA, PTPA series), which used terephthalic acid (TPA) as a monomer. The III series PAIs were synthesized starting from the 2 : 1 molar ratio of aromatic diamines ( I ) and 6FDA to prepare imide ring‐preformed diamines ( II ) and then reacted with equimolar amount of TPA by direct polycondensation. Furthermore, by adjustment of the stoichiometry of the I , II, and TPA monomers, PAIs IV having various components were prepared. Most of the resulting PAIs having inherent viscosities between 0.70 and 1.74 dL/g were obtained in quantitative yields, and they were readily soluble in polar solvents such as N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidone, dimethylformamide, and dimethyl sulfoxide. All of the soluble PAIs afforded transparent, flexible, and tough films. The glass‐transition temperatures of PAIs III were in the range of 236–256 °C, and the 10% weight loss temperatures were recorded at 522–553 °C in nitrogen. The char yields of the III series polymers in nitrogen atmosphere were all higher than 56% even at 800 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 93–104, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号