首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
Considering the earth powered by intermittent renewable energy in the coming future, solid oxide electrolysis cell(SOEC) will play an indispensable role in efficient energy conversion and storage on demand.The thermolytic and kinetic merits grant SOEC a bright potential to be directly integrated with electrical grid and downstream chemical synthesis process. Meanwhile, the scientific community are still endeavoring to pursue the SOEC assembled with better materials and operated at a more energy-...  相似文献   

2.
The chemical and electrochemical stability of lanthanide nickelates La2 NiO4+δ(LNO),Pr2 NiO4+δ(PNO)and their mixed compounds La(2-x)PrxNiO4+δ(LPNOs)with x=0.5,1 or 1.5 is reported.The aim is to promote these materials as efficient electrodes for solid oxide fuel cell(SOFC)and/or solid oxide electrolysis cell(SOEC).La2 NiO4+δand La1.5Pr0.5NiO4+δcompounds are chemically very stable as powders over one month in the temperature range 600-800℃,while the other materials rich in praseodymium progressively decompose into various perovskite-deriving components with additional Pr6 O11.Despite their uneven properties,all these materials are quite efficient and sustainable as electrodes on top of gadolinium doped ceria(GDCBL)//yttrium doped zirconia(8 YSZ)electrolyte,for one month at 700℃without polarization.Under polarization(300 mA·cm-2),the electrochemical performances of LNO,PNO and La1.5Pr0.5NiO4+δ(LP5 NO)quickly degrade in SOFC mode,i.e.for the oxygen reduction reaction,while they show durability in SOEC mode,i.e.for the oxide oxidation reaction.  相似文献   

3.
Solid oxide electrolysis cells(SOECs)can convert electricity to chemicals with high efficiency at ~600-900℃,and have attracted widespread attention in renewable energy conversion and storage.SOECs operate in the inverse mode of solid oxide fuel cells(SOFCs)and therefore inherit most of the advantages of SOFC materials and energy conversion processes.However,the external bias that drives the electrochemical process will strongly change the chemical environments in both in the cathode and anode,therefore necessitating careful reconsideration of key materials and electrocatalysis processes.More importantly,SOECs provide a unique advantage of electrothermal catalysis,especially in converting stable low-carbon alkanes such as methane to ethylene with high selectivity.Here,we review the state-of-the-art of SOEC research progress in electrothermal catalysis and key materials and provide a future perspective.  相似文献   

4.
Lithium metal-based secondary batteries are very promising for next generation power battery due to their high energy density.However,lithium anodes suffer from poor electrochemical reversibility in organic electrolytes due to Li dendrites and instability of the solid electrolyte interphase.Recent research demonstrated that the problem can be alleviated via tetraethoxysilane(TEOS)treated lithium metal to form a silicon oxide layer on the lithium surface,however,its reaction mechanism is controversial.Herein,we deeply explore the reaction mechanism between TEOS and Li and propose:Fresh Li can directly react with TEOS even though no lithium hydroxide exists on the lithium surface,and the participation of water will accelerate the reaction process.Moreover,it was found that the silicon oxide layer can promote the uniform deposition of lithium ions by providing lithiophilic nucleation sites,thereby achieving a long cycle life of Li metal batteries.  相似文献   

5.
Co-electrolysis of CO_2 and H_2O using high-temperature solid oxide electrolysis cells(SOECs) into valuable chemicals has attracted great attentions recently due to the high conversion and energy efficiency,which provides opportunities of reducing CO_2 emission, mitigating global warming and storing intermittent renewable energies. A single SOEC typically consists of an ion conducting electrolyte, an anode and a cathode where the co-electrolysis reaction takes place. The high operating temperature and difficult activated carbon-oxygen double-bond of CO_2 put forward strict requirements for SOEC cathode. Great efforts are being devoted to develop suitable cathode materials with high catalytic activity and excellent long-term stability for CO_2/H_2O electro-reduction. The so far cathode material development is the key point of this review and alternative strategies of high-performance cathode material preparation is proposed. Understanding the mechanism of CO_2/H_2O electro-reduction is beneficial to highly active cathode design and optimization. Thus the possible reaction mechanism is also discussed. Especially, a method in combination with electrochemical impedance spectroscopy(EIS) measurement, distribution functions of relaxation times(DRT) calculation, complex nonlinear least square(CNLS) fitting and operando ambient pressure X-ray photoelectron spectroscopy(APXPS) characterization is introduced to correctly disclose the reaction mechanism of CO_2/H_2O co-electrolysis. Finally, different reaction modes of the CO_2/H_2O coelectrolysis in SOECs are summarized to offer new strategies to enhance the CO_2 conversion. Otherwise,developing SOECs operating at 300-600 °C can integrate the electrochemical reduction and the Fischer-Tropsch reaction to convert the CO_2/H_2O into more valuable chemicals, which will be a new research direction in the future.  相似文献   

6.
正High temperature(700–900°C)steam electrolysis(HTSE)based on solid oxide electrolysis cells(SOECs)has been valued as an efficient and clean path for large scale hydrogen production with nearly zero carbon emissions,compared with the traditional paths of steam methane reforming or coal gasification.The main advantage of HTSE is that energy demand for electrolysis reaction of H2O at gaseous state is less than  相似文献   

7.
Polymorph screening is currently one of the most important tasks for innovators and for generic companies from both pharmaceutical and intellectual property rights aspects. The hemihydrate form(Form Ⅰ) and formamide solvate(Form Ⅱ) of estradiol are isolated and prepared via systemic crystallization screening in this paper, and the formamide solvate form is reported for the first time. Both polymorphic forms were characterized by single-crystal X-ray structure analysis(SXRD), powder X-ray diffraction(PXRD), and thermal analysis(TGA and DSC). The PXRD experiments indicate that the samples in this study are the pure polymorphic forms via comparing the patterns with the simulated ones. The stability and equilibrium solubility data of the solid-state phase were also examined in order to check the impact of the differences observed in their crystalline structures. It has been found that Forms I and II are of conformational polymorph and Form II is the more thermodynamically stable solid form, while Form I possesses higher solubility, indicating its possibility as an alternate solid form for its further solid formulation development if necessary.  相似文献   

8.
Many researchers have studied on perovskite oxide for its unique structure.Perovskite oxides,ABO_(3-δ),with different A and B metals have shown wide applications in many fields,in particular solid oxide electrolysers.SrFeO_(3-δ),typical perovskite oxides,in which iron is the mixed-valence cation with the capacity to change the chemical valence,have a wide range of oxygen nonstoichiometry.In this study,Sr_(0.9)Fe_(0.9)Zr_(0.1)O_(3-δ)(SFZO) is synthesized and then treated in 5%H_2/Ar and air at high temperature,exhibiting excellent redox stability.Redox-stable structure,oxygen vacancy and electrical properties of SFZO are investigated.Steam electrolysis is then performed with SFZO cathode under 5%H_2O/5%H_2/Ar and 5%H_2O/Ar atmospheres,respectively.The present results indicate that the SFZO is a novel promising cathode material for solid oxide steam electrolyser.  相似文献   

9.
Carbon-fueled solid oxide fuel cells(CF-SOFCs)can electrochemically convert the chemical energy in carbon into electricity,which demonstrate both superior electrical efficiency and fuel utilisation compared to all other types of fuel cells.However,using solid carbon as the fuel of SOFCs also faces some challenges,the fluid mobility and reactive activity of carbon-based fuels are much lower than those of gaseous fuels.Therefore,the anode reaction kinetics plays a crucial role in determining the electrochemical performance of CF-SOFCs.Herein,the progress of various anodes in CF-SOFCs is reviewed from the perspective of material compositions,electrochemical performance and microstructures.Challenges faced in developing high performance anodes for CF-SOFCs are also discussed.  相似文献   

10.
A series of sulfated binary and trinary oxide solid superacids were prepared, and their catalytic activities for n-butane isomerization at low temperature were measured. The incorporation of different metal oxides into ZrO2 may produce a positive or negative effect on the acid strength and catalytic activity of the solid superacids. Sulfated oxides of Cr-Zr, Fe-Cr-Zr and Fe-V-Zr are 2 - 3 times more active than the reported sulfated Fe-Mn-Zr oxide. The enhancement in the superacidity and catalytic activity of these new solid superacids has been discussed on account of the results of various characteriation techniques.  相似文献   

11.
基于高温固体氧化物电解池(SOEC)的高温蒸汽电解(HTSE)制氢技术作为一种非常有前景的大规模核能制氢新方法, 受到国际上的迅速关注. 但如何控制电解模式下的极化能量损失和性能衰减是HTSE实用化的关键. 本文通过在线电化学阻抗测试技术, 研究了实际运行状态下的单体固体氧化物池(SOC)在电池模式和电解模式下的极化阻抗分布, 阐述了SOEC与高温固体氧化物燃料电池(SOFC)的差异, 确定了SOEC氢电极支撑层水蒸气扩散过程极化损失大是制约电解池制氢性能提高的主要因素. 在此基础上, 采用聚甲基丙烯酸甲酯(PMMA)造孔剂对氢电极支撑层的微观结构进行了调整和优化. 微结构优化后, 氢电极材料的孔隙率提高了50%, 孔隙为规则圆形, 分布均匀, 更利于气体扩散; 电解电压1.3 V时, 单位面积产氢率高达328.1 mL·cm-2·h-1(标准态), 为改进前电解池的2倍, 实现50 h以上连续稳定性运行. 研究成果可为HTSE的实际应用提供一定的理论数据和技术基础.  相似文献   

12.
Journal of Solid State Electrochemistry - Degradation-related issues are among the main limitations to make solid oxide electrolysis cells (SOEC) meet performance targets economically viable for...  相似文献   

13.
Synthesis of carbon nanotubes (CNTs) from only carbon dioxide was performed using hybrid reactor of dielectric barrier discharge and solid oxide electrolyser cell (SOEC). The removal of oxygen by SOEC from the plasma region suppresses the regeneration of CO2 from CO and complete CO2 conversion was achieved by the hybrid reactor. Co–Mo catalyst supported on a quartz substrate was inserted into the hybrid reactor and aligned CNTs were able to be synthesized on the substrate using only CO2 as a carbon source.  相似文献   

14.
近年来,随着社会环保意识的迅速提高以及对可再生能源利用能力的大幅增强,以燃料电池和电解池为代表的电化学技术已经逐渐在能源的存储、转化和利用方面发挥着不可或缺的独特作用.其中,固态氧化物电解池经过多年的发展,在装置成本和工作效率上取得了长足的进步,在储能转化方面具有重要的潜力.与此同时,伴随着《巴黎协定》签订以来各国的“碳中和”路线图逐渐出台,利用相对廉价易得的可再生电能,将二氧化碳(CO2)和甲烷(CH4)等碳-(C1)分子电解转化为高附加值的可再生燃料(如水煤气、乙烯等),对于碳中和目标的实现具有重要的意义.因此,C1分子电化学转化的研究成为了当下重点关注的研究领域,许多重要的研究成果和技术进步在过去几年中不断涌现.固态氧化物电解池作为一种代表性的C1分子电解和转化平台,也日渐引起相关领域研究人员的关注和兴趣.与传统的C1分子催化转化方法相比,基于固态氧化物电解池的电解转化技术具有两个重要优点:高能量转换效率与体系抗中毒能力.这两个特性作为体系稳健性的基石,保障了C1分子转化为可再生燃料的反应过程的长期可持续性.本文首先简要回顾了固态氧化物电解池的前沿技术与发展,并从电解池系统分类、反应体系的特征和反应体系发展的前景与挑战这三个方面,简要介绍了近年来基于固态氧化物电解池体系的C1分子电化学转化的代表性工作.CO2与CH4作为廉价易得的C1分子的代表,其转化因其反应分子惰性及反应过程不可控性而广受研究者关注,本文重点关注了在固态氧化物电解池中CO2,CO2/H2O和CH4三个体系的电化学反应过程和近期研究进展,希望可为相关研究人员未来设计更合适的催化剂和构建更优的电解池结构提供有益的参考.本文还针对目前固态氧化物电解池体系在C1分子转化领域所面临的挑战,提出了未来的一些可能的研究方向,以期助力研究者在不远的将来实现C1分子电解生产可再生燃料的实用化.  相似文献   

15.
研究和开发高性能的钙钛矿型混合电导氧化物是目前高温固体氧化物电解池(SOEC)氧电极材料研究的热点.选择BaxSr1-xCo0.8Fe0.2O3-δ系列材料,通过对材料的容差因子、关口半径、晶格自由体积等计算,以及对平均键能、B位离子的变价能力、催化活性等方面的分析,确定了A位最佳配比.对优化出的Ba0.5Sr0.5Co0.8Fe0.2O3-δ材料的电化学性能进行了研究,并与自制的La0.2Sr0.8MnO3(LSM)氧电极材料进行了比较.结果表明:850℃下阳极极化阻抗(ASR)仅为0.07Ωcm2,远低于LSM;将其应用于SOEC氧电极进行高温电解制氢试验,产氢速率为相同条件下LSM的2.3倍,说明将Ba0.5Sr0.5Co0.8Fe0.2O3-δ用作SOEC阳极材料具有很好的应用前景.  相似文献   

16.
熔盐电化学低碳冶金新技术研究   总被引:1,自引:0,他引:1  
肖巍  朱华  尹华意  汪的华 《电化学》2012,18(3):193-200
本文重点介绍“氯化物熔盐体系电解还原固态氧化物冶金过程的高效化”和“氯化物熔盐体系电裂解硫化物及熔融碳酸盐与熔融氧化物体系电分解氧化物无温室气体排放冶金”的研究进展,结合武汉大学的部分代表性工作阐述了相关技术的原理,以期揭示熔盐电解技术在节能减排和资源高效利用上的优势及其发展前景,为发展短流程、低碳高效的电化学冶金工业提供理论和技术支持。  相似文献   

17.
Journal of Solid State Electrochemistry - The catalytic reduction of CO2 to CO using solid oxide electrolytic cells (SOECs) is considered as a sustainable solution to simultaneously remove...  相似文献   

18.
Compounding between NiO and La(2)O(3) protects the latter from water and molten salt attack, and ensures successful direct electrolytic conversion of the oxide precursors, in the solid state, to more affordable LaNi(5)-type hydrogen storage materials.  相似文献   

19.
High-temperature (700–900 ℃) steam electrolysis based on solid oxide electrolysis cells (SOECs) is valuable as an efficient and clean path for large-scale hydrogen production with nearly zero carbon emissions, compared with the traditional paths of steam methane reforming or coal gasification. The operation parameters, in particular the feeding gas composition and pressure, significantly affect the performance of the electrolysis cell. In this study, a computational fluid dynamics model of an SOEC is built to predict the electrochemical performance of the cell with different sweep gases on the oxygen electrode. Sweep gases with different oxygen partial pressures between 1.01 × 103 and 1.0 × 105 Pa are fed to the oxygen electrode of the cell, and the influence of the oxygen partial pressure on the chemical equilibrium and kinetic reactions of the SOECs is analyzed. It is shown that the rate of increase of the reversible potential is inversely proportional to the oxygen partial pressure. Regarding the overpotentials caused by the ohmic, activation, and concentration polarization, the results vary with the reversible potential. The Ohmic overpotential is constant under different operating conditions. The activation and concentration overpotentials at the hydrogen electrode are also steady over the entire oxygen partial pressure range. The oxygen partial pressure has the largest effect on the activation and concentration overpotentials on the oxygen electrode side, both of which decrease sharply with increasing oxygen partial pressure. Owing to the combined effects of the reversible potential and polarization overpotentials, the total electrolysis voltage is nonlinear. At low current density, the electrolysis cell shows better performance at low oxygen partial pressure, whereas the performance improves with increasing oxygen partial pressure at high current density. Thus, at low current density, the best sweep gas should be an oxygen-deficient gas such as nitrogen, CO2, or steam. Steam is the most promising because it is easy to separate the steam from the by-product oxygen in the tail gas, provided that the oxygen electrode is humidity-tolerant. However, at high current density, it is best to use pure oxygen as the sweep gas to reduce the electric energy consumption in the steam electrolysis process. The effects of the oxygen partial pressure on the power density and coefficient of performance of the SOEC are also discussed. At low current density, the electrical power demand is constant, and the efficiency decreases with growing oxygen partial pressure, whereas at high current density, the electrical power demand drops, and the efficiency increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号