首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Two methods of protein extraction for soybean seeds were evaluated in terms of preservation of the metal ions bound to proteins after the extraction and separation procedures. The proteins were firstly separated according to their molar masses by polyacrylamide gel electrophoresis. Then, the protein bands were mapped by synchrotron radiation X-ray fluorescence in order to establish which metal ions were present in each one. Finally, some mapped protein bands were decomposed by microwave-assisted combustion and Ca, Cu, K, Mg, Mn, and Zn were quantified by inductively coupled plasma mass spectrometry or inductively coupled plasma optical emission spectrometry. The extraction methods studied were Method A (based on the treatment of ground soybean seeds with hexane and their extraction with Tris–HCl and β-mercaptoethanol) and Method B (based on the treatment of ground soybean seeds with petroleum ether and their extraction with Tris–HCl, dithiothreitol, phenylmethanesulfonyl fluoride, sodium dodecyl sulfate and potassium chloride). The best method was Method B, in which a 78% higher extraction efficiency was obtained when compared to Method A. Additionally, the metal-protein interactions were more appropriately preserved when Method B was applied, where the most affected ions were those that are bound weakly to proteins, such as Ca, K, and Mg.  相似文献   

2.
An absorption and emission spectroscopic characterization of roseoflavin (8-dimethylamino-8-demethyl-riboflavin, RoF) in aqueous solutions was carried out. The studies were concentrated on roseoflavin in pH 8 phosphate buffer. Absorption cross-section spectra, fluorescence excitation spectra, fluorescence quantum distributions, fluorescence quantum yields and fluorescence lifetimes were determined. The fluorescence of RoF is quenched by photo-induced intra-molecular charge-transfer at room temperature. The photo-degradation of RoF in un-buffered water, in Tris–HCl buffer, and in phosphate buffer was studied. Phosphate buffer and to a smaller extent Tris buffer catalyse the RoF photo-degradation. Photo-excitation of the primary photoproduct, 8-methylamino-riboflavin (8-MNH-RF), enhanced the RoF degradation by triplet 8-MNH-RF – singlet RoF excitation transfer with subsequent triplet-state RoF degradation.  相似文献   

3.
A multiplexed bioanalytical assay is produced by incorporating two types of gold nanorods (GNRs). Besides retaining the desirable features of common GNRs LSPR sensors, this sensor is easy to fabricate and requires only a visible–NIR spectrometer for detection. This assay can simultaneously detect different acceptor–ligand pairs by choosing the proper GNRs possessing various LPWs in a wide detection wavelength range and can be developed into a high-throughput detection method. This bioanalytical assay allows easy detection of human serum specimens infected by S. japonicum and tuberculosis (TB) from human serum specimens (human serum/Tris–HCl buffer ratio = 1:104) without the need for sample pretreatment. The technique is very sensitive compared to other standard methods such as indirect hemagglutination assays (IHA) that require a serum concentration ratio of larger than 1:20 and enzyme-linked immunosorbent assays (ELISA) requiring a ratio larger than 1:100. This methodology can be readily extended to other immunoassays to realize wider diagnostic applications.  相似文献   

4.
Electric field gradient focusing (EFGF) is a technique used to simultaneously separate and concentrate biomacromolecules, such as proteins, based on the opposing forces of an electric field gradient and a hydrodynamic flow. Recently, we reported EFGF devices fabricated completely from copolymers functionalized with poly(ethylene glycol), which display excellent resistance to protein adsorption. However, the previous devices did not provide the predicted linear electric field gradient and stable current. To improve performance, Tris–HCl buffer that was previously doped in the hydrogel was replaced with a phosphate buffer containing a salt (i.e., potassium chloride, KCl) with high mobility ions. The new devices exhibited stable current, good reproducibility, and a linear electric field distribution in agreement with the shaped gradient region design due to improved ion transport in the hydrogel. The field gradient was calculated based on theory to be approximately 5.76 V/cm2 for R-phycoerythrin when the applied voltage was 500 V. The effect of EFGF separation channel dimensions was also investigated; a narrower focused band was achieved in a smaller diameter channel. The relationship between the bandwidth and channel diameter is consistent with theory. Three model proteins were resolved in an EFGF channel of this design. The improved device demonstrated 14,000-fold concentration of a protein sample (from 2 ng/mL to 27 μg/mL).  相似文献   

5.
Firefly bioluminescence is widely used in the measurement of adenosine 5′-triphosphate (ATP) levels in biological materials. For such assays in tissues and cells, ATP must be extracted away from protein in the initial step and extraction efficacy is the main determinant of the assay accuracy. Extraction reagents recommended in the commercially available ATP assay kits are chaotropic reagents, trichloroacetic acid (TCA), perchloric acid (PCA), and ethylene glycol (EG), which extract nucleotides through protein precipitation and/or nucleotidase inactivation. We found that these reagents are particularly useful for measuring ATP levels in materials with relatively low protein concentrations such as blood cells, cultured cells, and bacteria. However, these methods are not suitable for ATP extraction from tissues with high protein concentrations, because some ATP may be co-precipitated with the insolubilized protein during homogenization and extraction, and it could also be precipitated by neutralization in the acid extracts. Here we found that a phenol-based extraction method markedly increased the ATP and other nucleotides extracted from tissues. In addition, phenol extraction does not require neutralization before the luciferin–luciferase assay step. ATP levels analyzed by luciferase assay in various tissues extracted by Tris–EDTA–saturated phenol (phenol–TE) were over 17.8-fold higher than those extracted by TCA and over 550-fold higher than those in EG extracts. Here we report a simple, rapid, and reliable phenol–TE extraction procedure for ATP measurement in tissues and cells by luciferase assay.  相似文献   

6.
The purpose of this research is to establish a routine procedure for the application of proteomic analysis to olive tree. Olive leaf tissue is notoriously recalcitrant to common protein extraction methods due to high levels of interfering compounds. We developed a protocol for isolating proteins suitable for two-dimensional electrophoresis (2-DE) from olive leaf. The remarkable characteristics of the protocol include: (i) additional grinding dry acetone powder of leaf tissue to a finer extent, (ii) after extensive organic solvent washes to remove pigments, lipids etc., using aqueous tricholoroacetic acid washes to remove water-soluble contaminants, and (iii) phenol extraction of proteins in the presence of sodium dodecyl sulfate. The final protein preparation is free of interfering compounds based on its well-resolved 2-DE patterns. The protocol can be completed within 3 h, and protein yield is approximately 2.49 mg.g(-1) of aged leaf. We also evaluated the protocol by immunoblotting with anti-tyrosinate alpha-tubulin antibody. To our knowledge, this is the first time that a protocol for protein extraction from olive leaf appears to give satisfactory and reproducible results. The protocol is expected to be applicable to other recalcitrant plant tissues and could be of interest to laboratories involved in plant proteomics.  相似文献   

7.
The fraudulent addition of hazelnut oil to more expensive olive oil not only causes economical loss but may also result in problems for allergic individuals as they may inadvertently be exposed to potentially allergenic hazelnut proteins. To improve consumer safety, a rapid and sensitive direct biosensor immunoassay, based on a highly specific monoclonal antibody, was developed to detect the presence of hazelnut proteins in olive oils. The sample preparation was easy (extraction with buffer); the assay time was fast (4.5 min only) and the limit of detection was low (0.08 μg/g of hazelnut proteins in olive oil). Recoveries obtained with an olive oil mixed with different amounts of a hazelnut protein containing hazelnut oil varied between 93% and 109%. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
A method to classify olive leaves and pulps according to their cultivar using protein profiles obtained by capillary gel electrophoresis (CGE) has been developed. For this purpose, proteins were extracted using an enzyme-assisted method, which provided higher protein recoveries than other previously described methods. Ten and nine common peaks, for leaf and pulp samples, respectively, were identified in the 12 cultivars studied in this work. In addition, and using linear discriminant analysis of the CGE data, olive leaf and pulp samples belonging to 12 cultivars from different Spanish regions were correctly classified with an excellent resolution among all the categories, which demonstrated that protein profiles were characteristic of each cultivar.
Figure
Classification of olive leaves and pulps according to their cultivar by using protein profiles established by CGE  相似文献   

9.
As prerequisite for the investigation of arsenic-binding proteins in plants, the general influence of different extraction parameters on the binding behaviour of arsenic to the plant protein pool was investigated. The concentration of the extraction buffer affected the extraction yield both for proteins and for arsenic revealing an optimal buffer concentration of 5 mM Tris/HCl, pH 8. The addition of 1 or 2% (w/v) SDS to the extraction buffer produced a two- to threefold enhancement of the total protein extraction yield but strongly suppressed the simultaneous extraction of arsenic from 80 ± 8% extraction yield obtained without SDS to 48 ± 2% in presence of 2% (w/v) SDS. The arsenic binding capacity of the protein fraction obtained after extraction with Tris buffer and protein precipitation by trichloroacetic acid in acetone was estimated to be 1.4 ± 0.6% independently on the original spiking concentration of arsenic provided in the form of monomethylarsonate to the extracts. Due to the low total protein concentrations of the plant extracts that varied in the range from 75 to 412 μg mL−1 depending on the extraction parameters, high arsenic concentrations of 263-1001 mg (kg protein mass)−1 resulted for spiking concentrations of 10 mg As L−1. The optimized protein isolation procedure was applied to plants grown under arsenic exposure and revealed a similar arsenic binding capacity as for the spiked protein extracts.  相似文献   

10.
By using the isothermal titration calorimetry (ITC) technique, thermodynamic parameters have been determined for reactions of the Mg2+, Ca2+, Sr2+, and Ba2+ ions with the citrate anion. The measurements were run in the Cacodylate, Pipes and Mes buffer solutions of a pH of 6, at 298.15 K, as well as in the Tricine, Tapso, and Tris–HCl buffer solutions of a pH of 8. Further, based on the results of potentiometric titration, the conditional stability constants were determined for the citrate complexes at both pH values. The effect of the reaction environment and the metal ion identity on the interaction energy with the citrate ligand and the stability of the resulting compounds have been discussed.  相似文献   

11.
Microwave assistance is proposed for the first time in order to accelerate the extraction of biophenols from olive leaves. Under optimal working conditions, obtained using a multivariate methodology, complete extraction of the target analytes was achieved in 8 min. The extracts required no clean-up nor concentration prior to injection into a chromatograph–photodiode array detector assembly for individual separation–quantification. The optimal extractant (an 80:20 ethanol–water mixture) was also used in the development of a stirring-based extraction method which required around 24 h for complete extraction of the target compounds. These mixtures can be used as replacements for toxic extractants, with a view to exploiting olive leaves in order to obtain biophenols for human use.  相似文献   

12.
A dynamic approach has been proposed for the ultrasound-assisted extraction of twenty phenolic compounds from alperujo, a semisolid waste from the olive oil industry, that is a representative example of samples with a complex matrix. Multivariate methodology was used to carry out a detailed optimisation study of both the separation-determination and extraction steps in terms of resolution-analysis time and extraction efficiency, respectively. Consequently, the proposed method was able to extract the target analytes in 13 min; then, after dilution and centrifugation, the extract was injected into the capillary electrophoresis-diode array detection system for individual separation determination in 11 min. No cleanup of the extract was required. This method is less time-consuming, more selective and provides a larger information level than the Folin-Ciocalteau spectrophotometric method. Alperujo was demonstrated to be a powerful source of phenolic compounds, particularly as compared with olive oil--8680 versus 50-1200 microg/g.  相似文献   

13.
A capillary zone electrophoresis method has been carried out to determine and quantitate some compounds of the polyphenolic fraction of virgin olive oil which have never previously been determined before using capillary electrophoresis, such as elenolic acid, ligstroside aglycon, oleuropein aglycon, and (+)-pinoresinol. The compounds were identified using standards obtained by semipreparative high-performance liquid chromatography (HPLC). A detailed method optimization was performed to separate the phenolic compounds present in olive oil using a methanol-water extract of Picual extra-virgin olive oil, and different extraction systems were compared (C18-solid phase extraction (SPE), Diol-SPE, Sax-SPE and liquid-liquid extraction). The optimized parameters were 30 mM sodium tetraborate buffer (pH 9.3) at 25 kV with 8 s hydrodynamic injection, and the quantitation was carried out by the use of two reference compounds at two different wavelengths.  相似文献   

14.
Refolding of proteins must be performed under very dilute conditions to overcome the competing aggregation reaction, which has a high reaction order. Refolding on a chromatography column partially prevents formation of the intermediate form prone to aggregation. A chromatographic refolding procedure was developed using an autoprotease fusion protein with the mutant EDDIE from the Npro autoprotease of pestivirus. Upon refolding, self-cleavage generates a target peptide with an authentic N-terminus. The refolding process was developed using the basic 1.8-kDa peptide sSNEVi-C fused to the autoprotease EDDIE or the acidic peptide pep6His, applying cation and anion exchange chromatography, respectively. Dissolved inclusion bodies were loaded on cation exchange chromatographic resins (Capto S, POROS HS, Fractogel EMD SO3, UNOsphere S, SP Sepharose FF, CM Sepharose FF, S Ceramic HyperD F, Toyopearl SP-650, and Toyopearl MegaCap II SP-550EC). A conditioning step was introduced in order to reduce the urea concentration prior to the refolding step. Refolding was initiated by applying an elution buffer containing a high concentration of Tris–HCl plus common refolding additives. The actual refolding process occurred concurrently with the elution step and was completed in the collected fraction. With Capto S, POROS HS, and Fractogel SO3, refolding could be performed at column loadings of 50 mg fusion protein/ml gel, resulting in a final eluate concentration of around 10–15 mg/ml, with refolding and cleavage step yields of around 75%. The overall yield of recovered peptide reached 50%. Similar yields were obtained using the anion exchange system and the pep6His fusion peptide. This chromatographic refolding process allows processing of fusion peptides at a concentration range 10- to 100-fold higher than that observed for common refolding systems.  相似文献   

15.
The determination of metal-binding proteins in plankton is important because of their involvement in photosynthesis, which is fundamental to the biogeochemical cycle of the oceans and other ecosystems. We have elaborated a new strategy for screening of Cu and Zn-containing proteins in plankton on the basis of separation of proteins by use of Blue-Native PAGE (BN-PAGE), which entails use of a non-denaturing Tris–tricine system and detection of metals in the proteins by laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS). For comparison, denaturing PAGE based on Tris–glycine and Tris–tricine systems and Anodic-Native PAGE have also been investigated. A large number of protein bands with MW between 20 and 75 kDa were obtained by use of Tris–glycine PAGE but detection of metals by LA–ICP–MS was unsuccessful because of loss of metals from the proteins during the separation process. Different protein extraction, purification, and preconcentration methods were evaluated, focussing on both issues—achieving the best extraction and characterization of the proteins while maintaining the integrity of metal–protein binding in the plankton sample. Use of 25 mmol?L?1 Tris–HCl and a protease inhibitor as extraction buffer with subsequent ultrafiltration and acetone precipitation was the most efficient means of sample preparation. Two Cu and Zn proteins were detected, a protein band corresponding to a MW of 60 kDa and another poorly resolved band with a MW between 15 and 35 kDa.  相似文献   

16.
This paper demonstrates the analysis of levetiracetam, a new chiral antiepileptic drug, at ng/mL levels using an ultra-high-performance liquid chromatography (UHPLC)-photodiode absorbance (PDA) method. Three different sample preparation methods, liquid-liquid extraction with Extrelut, solid phase extraction (SPE) with Oasis HLB and Oasis MAX SPE cartridges, and protein precipitation with organic solvents were carried out. The last preparatory method is the simplest and provides the best recoveries: between 97.1% and 100.4% with RSD value below 5%. The column for separation is BEH C18 column (1.7 μm particle size and 100 × 2.1 mm i.d.) and acetonitrile-phosphate buffer (pH = 6.6; 0.01 M) (10/90 v/v) is the mobile phase. The results obtained are compared to analysis conducted by the HPLC method. The UHPLC method was validated in the range of 2-100 μg/mL levetiracetam concentration (R(2) = 0.9997). LOD and LOQ are 10 ng/mL and 33 ng/mL, respectively. The developed UHPLC method was applied to plasma samples of patient with epilepsy.  相似文献   

17.
For olive oil production a metal hammer-decanter olive processing line was compared to a traditional metal hammer-press line, a discontinuous method which, if properly used, yields high-quality virgin olive oils. Galega, Carrasquenha and Cobrançosa olives (traditional Portuguese varieties) were studied. The analysis of the aroma compounds was performed after headspace-solid phase micro extraction. The analytical results obtained after comprehensive gas chromatography in tandem with time of flight mass spectrometry (GC × GC/ToFMS) for these three different olive oil varieties, from a single year harvest and processed with two different extraction technologies, were compared using statistical image treatment, by means of ImageJ software, for fingerprint recognitions and compared with principal component analysis when the area data of each chromatographic spot of the contour plots were considered. The differences used to classify the olive oils studied under different groups after principal component analysis were observed independently of the treatment used (peak areas or the sum of the pixels counts). When the individual peak areas were considered, more then 75.7% of the total variance is explained by the first two principal components while in the case where the data were subjected to image treatment 84.0% of the total variance is explained by the first two principal components. In both cases the first and second principal components present eigenvalues higher then 1.0. Fingerprint image monitoring of the aroma compounds of the olive oil allowed a rapid differentiation of the three varieties studied as well as the extraction methods used. The volatile compounds responsible for their characterization were tentatively identified in a bi-dimensional polar/non-polar column set in the GC × GC/Tof-MS apparatus. This methodology allowed the reduction of the number of compounds needed for matrices characterization, preserving the efficiency of the discrimination, when compared with the traditional methods where the identification of all peaks is needed.  相似文献   

18.
Olive pomace, the solid by-product derived from olive oil production consists of a high concentration of bioactive compounds with antioxidant activity, such as phenolic compounds, and their recovery by applying innovative techniques is a great opportunity and challenge for the olive oil industry. This study aimed to point out a new approach for the integrated valorization of olive pomace by extracting the phenolic compounds and protecting them by encapsulation or incorporation in nanoemulsions. Innovative assisted extraction methods were evaluated such as microwave (MAE), homogenization (HAE), ultrasound (UAE), and high hydrostatic pressure (HHPAE) using various solvent systems including ethanol, methanol, and natural deep eutectic solvents (NADESs). The best extraction efficiency of phenolic compounds was achieved by using NADES as extraction solvent and in particular the mixture choline chloride-caffeic acid (CCA) and choline chloride-lactic acid (CLA); by HAE at 60 °C/12,000 rpm and UAE at 60 °C, the total phenolic content (TPC) of extracts was 34.08 mg gallic acid (GA)/g dw and 20.14 mg GA/g dw for CCA, and by MAE at 60 °C and HHPAE at 600 MPa/10 min, the TPC was 29.57 mg GA/g dw and 25.96 mg GA/g dw for CLA. HAE proved to be the best method for the extraction of phenolic compounds from olive pomace. Microencapsulation and nanoemulsion formulations were also reviewed for the protection of the phenolic compounds extracted from olive pomace. Both encapsulation techniques exhibited satisfactory results in terms of encapsulation stability. Thus, they can be proposed as an excellent technique to incorporate phenolic compounds into food products in order to enhance both their antioxidative stability and nutritional value.  相似文献   

19.
The analysis of polyphenols in tea extracts is important due to their potential health benefits. Therefore, efficient and high throughput analytical methods have been developed for the separation of seven predominant polyphenols, also known as catechin derivatives, present in tea extracts. Columns packed with sub-2-μm particles operating at elevated pressure (UHPLC strategy) were selected to improve chromatographic performance. The potential of UHPLC–UV was demonstrated with baseline resolution of all standard catechins in only 30 s using a 50-mm column packed with 1.7-μm particles. When dealing with real samples such as tea extracts, however, longer columns of up to 150 mm in length were employed to enhance the separation of catechin derivatives and other constituents within the tea samples while maintaining an acceptable analysis time. Two strategies based on 2-D experiments were proposed to clearly identify catechins. Firstly, a liquid–liquid extraction procedure was added prior to the UHPLC–UV analysis to decrease the complexity of the sample. Secondly, UHPLC was coupled to ESI-MS/MS to attain sufficient sensitivity and selectivity between catechin derivatives and other constituents of tea extract. These two strategies were found extremely promising as a clear discrimination of catechins from the matrix could be attained.  相似文献   

20.
The conductances of aqueous solutions of tris(hydroxymethyl)aminomethane hydrochloride (Tris·HCl) at 25°C and 37°C have been measured. The concentration of salt varied from 4×10–4 to 1.6×10–2 mole-dm–3. The data were analyzed by the full Pitts equation which yielded the following parameters: at 25°C, ° = 106.07 S-cm2-mole–1, KA=1.01; at 37°C, ° = 106.07 S-cm2-mole–1, KA=0.99. These values suggest that Tris·HCl is essentially completely dissociated in water. The mobility of the Tris·H+ ion was found to be considerably smaller than that of the alkali metal cations. This result is consistent with abnormal liquid-junction potentials for Tris buffer solutions at 25 and 37°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号