首页 | 本学科首页   官方微博 | 高级检索  
    检索          
共有20条相似文献,以下是第1-20项 搜索用时 198 毫秒

1.  合成气制低碳烯烃用Fe/AC催化剂的制备及性能表征  被引次数:8
   张敬畅  卫国宾  曹维良《催化学报》,2003年第24卷第4期
    研究了以活性炭(AC)作为载体制备的铁基催化剂,通过对不同铁盐、活性炭和助剂的筛选,研制出对合成气转化为低碳烯烃具有高活性和高选择性的催化剂.对反应前及反应过程中催化剂体相结构的XRD测试结果表明,Fe-Cu-K/AC催化剂在反应前主要由α-Fe,Fe3O4和Cu0组成,经合成气反应后主要由α-Fe,Fe5C2,Fe7C3,Cu0和K2O组成.Fe-Mn-K/AC催化剂的晶体结构主要以Fe嵌入MnO中形成的(Fe,Mn)O结构存在.实验中得出的α-Fe,FexCy及(Fe,Mn)O与激光热解法制备的催化剂的的晶体结构相似.对催化剂的制备方法进行了筛选,考察了不同助剂Cu,Mn,Si和K等元素对催化剂性能的影响.结果表明,以草酸铁为铁源,椰壳炭为载体制备的Fe-Mn-K/AC催化剂的催化效果最佳,在空速600h-1,压力1.5MPa和温度320℃条件下,CO转化率可达97.4%,C=2~C=4选择性可达68.0%.    

2.  N/C稳定的单原子Co催化剂  
   李灿《催化学报》,2016年第9期
   单原子催化剂(SAC)是多相催化领域一个新兴的研究热点,是指催化剂中活性组分完全以孤立的单个原子的形式存在,并通过与载体作用或与第二种金属形成合金得以稳定.相比于纳米/亚纳米催化剂,单原子催化剂具有诸多优势:(1)活性组分达到最大程度分散(100%),可有效提高金属(特别是贵金属)原子利用率;(2)活性位点的组成和结构单一,可避免因活性组分组成和结构不均匀导致的副反应,从而显著提高目标产物的选择性;(3)单原子催化剂兼具高活性、高选择性和可循环使用的优点,有望成为连接均相催化与非均相催化的桥梁.因此,单原子催化剂为在原子尺度上理解催化机理和构效关系提供了一个很好的平台.2011年,中国科学院大连化学物理研究所张涛院士团队首次合成了单原子铂催化剂Pt1/FeOx.该催化剂通过共沉淀法制备,在CO氧化以及PROX反应中展示出优异的催化性能,其TOF值为相应的纳米催化剂3倍之高,在此基础上,该团队随后发展了一系列贵金属单原子催化剂,例如Ir/FeOx,Pd/ZnO,Au/CeO2和Ag-Pd/SiO2.这些催化剂在水气变换反应、乙炔选择性加氢反应、芳香硝基化合物选择加氢等反应中表现出了优异的催化活性及选择性.尤其是在3-硝基苯乙烯选择性加氢反应中,单原子催化剂Pt1/FeOx的TOF值高达1500 h-1,是文献报道最优催化剂的20倍;产物3-氨基苯乙烯的选择性高达99%.在单原子催化剂概念提出的短短几年,它已经成为目前多相催化领域的研究热点,并且发展出许多新的单原子催化剂制备方法.然而,由于单个原子具有较高的表面能,因此目前制备的单原子催化剂负载量往往较低(<0.5 wt%).另一方面,目前单原子催化剂的研究对象主要为贵金属,而非贵金属单原子催化剂却鲜有报道.近日,张涛团队在非贵金属单原子催化剂领域取得新的进展.他们成功制备出了负载量高达3.6 wt%的Co-N-C单原子催化剂,并结合密度泛函理论(DFT)和X-射线吸收精细结构(XAFS)技术首次解析出Co-N-C催化位点的精确结构.Co(Fe)-N-C是一类在电催化领域受到广泛关注的材料,在氧还原反应,析氢反应以及CO2电还原反应中均有良好的催化性能,被认为是一种最有希望取代商业Pt/C电极的非贵金属催化剂.然而,由于其组成较为复杂,人们对其活性中心的认识存在诸多争议.Co(Fe)-N-C催化剂通常采用高温焙烧法制备,即将金属前驱体,含N,C配体以及碳载体在600-9000℃高温下焙烧,这往往导致催化剂中同时含有不同尺寸的Co(0),CoOx以及CoM,也含有常规表征手段难以发现的Co(Fe)单原子.张涛团队利用Mg(OH)2作为牺牲载体,制备出了完全单原子分散的Co-N-C催化剂(图1(a)).作者通过原子分辨的高角环形暗场-扫描透射电镜(HAADF-STEM),XAFS和DFT计算,首次证明Co-N-C催化活性中心的结构为CON4C8-1-20z.在这种模型中,Co中心在径向方向与4个N配位,轴向有2个弱吸附的氧气分子吸附在Co原子上(图1(b)).与之前报道的贵金属催化剂显著不同的是,在Co-N-C单原子催化剂中,Co含量高达3.6 %.值得称道的是,这种Co-N-C单原子催化剂在芳硝基化合物选择加氢制备偶氮化合物的反应中的催化活性和选择性可媲美贵金属催化剂.使用Co-N-C催化剂,在温和条件下即可实现从芳香硝基化合物一锅法绿色合成偶氮化合物,并且该催化剂具有优异的底物普适性,即使底物含有-C=C,-I,-Br等基团时,也可高效生成相应的偶氮苯.这项工作的另外一个意义在于获得了非常均一的Co-N-C活性位组成和结构,这为利用多种表征手段精确解析结构提供了一个很好的切入点.某种意义上讲,之前文献中报道的含有多种Co物种的Co-N-C催化剂,其活性中心的认定需要重新审视.事实上,Co的配合物作为分子催化剂已经广泛应用于均相催化中;而这项工作中的Co单原子通过与N,C配位而稳定,活性中心类似于均相催化剂中的Co配合物,但却形成了真正的多相催化剂.因此我们可以预测,许多过渡金属均相催化剂有可能通过该工作中的单原子制备策略转化为多相催化剂,从而使单原子催化剂真正成为均相催化和多相催化的桥梁.    

3.  机械合金化-低温烧结Ti3SiC2导电陶瓷材料  
   刘可心  金松哲《人工晶体学报》,2016年第2期
   采用化学计量比为3Ti/Si/2C的单质粉体为反应原料,通过机械合金化工艺和热处理制备高纯度的Ti3SiC2陶瓷粉体,研究了热处理温度对提高机械合金化混合粉体中Ti3SiC2纯度的影响.研究表明:在球磨转速400 r/min,球磨时间10 h的条件下,合成以Ti3SiC2为主相的混合粉体,其中Ti3SiC2含量为75.5vol%,同时出现表面灰黑色且坚硬的不规则块体,成分与球磨粉体相似.在热处理温度为850~1000℃范围内,混合粉体中Ti3SiC2的含量随着热处理温度的升高而提高,当热处理温度为1000℃时,计算粉体中Ti3SiC2的含量高达98.5vol%..    

4.  Co2Si@C催化剂的合成及其加氢脱硫性能  
   张亮亮  汪镭  陈霄  李闯  马保军  梁长海《分子催化》,2020年第34卷第2期
   采用微波法制备了Co2Si@C催化剂并对其在加氢脱硫反应中的催化性能进行了研究。通过XRD、XPS、TEM和N2-物理吸附表征分析Co2Si@C催化剂的组成和结构。Co2Si@C催化剂具有一致的介孔结构,高钴含量(21 at%)、高比表面积(116.6 m2/g)和均匀分布的纳米粒子。由于硅原子对钴原子结构和参数的修饰、纳米粒子效应和高金属含量等因素,Co2Si@C催化剂在温和的反应条件下(340 ℃和3.0 MPa)具有良好的加氢脱硫活性和对直接脱硫(DDS)反应途径的高选择性,产物联苯的选择性超过了60%。    

5.  Cu2O/SiC高效催化卤代芳烃与酚类的Ullmann偶联反应  
   王一冰  郭晓宁  吕曼乾  翟兆洋  王英勇  郭向云《催化学报》,2017年第38卷第4期
   卤代苯与酚类化合物反应制取二芳基醚是现代有机合成中的一个重要反应.传统的二苯醚合成方法是铜催化卤代苯与酚类化合物的Ullmann型C-O偶联反应,但是这种方法需要苛刻的反应条件.后来,人们发现了Pd(0)和Cu(Ⅰ)基催化剂,但是前者成本较高,且需要使用昂贵的配体,因此其应用受到了限制,而铜作为一种成本较低的催化剂受到了越来越多的关注.铜催化剂可以分为均相和非均相两大类.均相铜催化剂使用的是铜盐,并且需要加入配体,成本较高,且不易分离和循环利用.非均相铜催化剂研究较多的是CuO,Cu2O及Cu纳米颗粒,其中Cu2O纳米颗粒催化剂对Ullmann型C-O偶联反应具有很高的催化活性,但是它在潮湿的空气中容易被氧化,因此需要寻找一种合适的载体防止Cu2O纳米颗粒被氧化.SiC具有优良的化学稳定性及导电导热性能,并且作为载体己经成功应用到很多热催化及光催化反应中.本文以高比表面积的SiC为载体,以二乙二醇作为溶剂和还原剂,采用传统的两步液相还原法制备了Cu2O/SiC催化剂,并通过X射线衍射、X射线光电子能谱、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和H2程序升温还原等方法对Cu2O/SiC催化剂进行了表征.SEM和TEM结果表明,Cu2O纳米颗粒均匀分散在SiC表面,同时上述表征结果都表明Cu在SiC上主要以Cu2O的形式存在.将制备的Cu2O/SiC催化剂用于催化卤代芳烃与酚类的Ullmann C-O偶联反应中.以碘苯和苯酚的Ullmann C-O偶联反应为模型实验,考察了反应温度、反应时间、溶剂、碱的种类及用量和催化剂用量等条件的影响,得到了碘苯与苯酚UllmannC-O偶联反应的最优反应条件为:卤代芳烃14 mmol,酚类14 mmol,1.0当量的Cs2CO3,Cu2O/SiC(5 wt%) 10 mg,四氢呋喃10mL,在Ar气氛下150℃反应3h.在该条件下,二苯醚收率达到97%,转化频率(TOF)高达1136 h-1.Cu2O/SiC催化剂对Ullmann C-O偶联反应具有很好的普适性,并且对Ullmann C-S偶联反应也表现出很高的活性,TOF高达1186h-1.以碘苯和苯酚的Ullmann C-O偶联反应为基准实验,对催化剂的循环稳定性进行了考察.Cu2O/SiC催化剂五次循环后二苯醚的收率从97%降低至64%,这主要是由于活性组分Cu2O的流失所致.    

6.  Ni修饰碳纳米管促进合成气高效制甲醇Cu基催化剂研究  被引次数:2
   沈炳顺  武小满  张鸿斌  林国栋  董鑫《化学学报》,2004年第62卷第18期
   利用化学还原沉积法 ,制备一类Ni高度分散 /修饰的多壁碳纳米管基新型材料y %Ni/MWCNT(y %为质量百分数 ) ,并用其作为促进剂 ,制备共沉淀型y %Ni/MWCNT促进的合成气高效合成甲醇Cu ZnO Al2 O3 催化剂 ,Cu6Zn3 Al1 x %(y %Ni/MWCNT) (x %为质量百分数 ) .实验发现 ,Ni对MWCNT的预修饰能明显地提高单纯MWCNT促进的Cu ZnO Al2 O3 催化剂对合成气转化为甲醇的催化活性 .在 2 0MPa ,493K ,V(H2 )∶V(CO)∶V(CO2 )∶V(N2 ) =62∶3 0∶5∶3 ,GHSV =2 70 0mL(STP)·h-1·(g cat .) -1的反应条件下 ,所观测CO转化率达 3 4% ,相应甲醇时空产率为 44 2mg·h-1·(g cat .) -1,分别是非促进的基质催化剂Cu6Zn3 Al1[最佳操作温度 5 13K时为 3 2 0mg·h-1·(g cat.) -1]和单纯MWCNT促进的催化剂Cu6Zn3 Al1 12 5 %MWCNT [最佳操作温度 5 0 3K时为 3 78mg·h-1·(g cat.) -1]的 1 3 8和 1 17倍 .在反应温度≤ 5 0 3K时产物中甲醇的选择性≥ 98% ;当反应温度 >5 0 3K时有可观量CH4的生成 ,其选择性随催化剂中Ni含量及反应温度上升而增加 .为兼获较高的CO转化率及相应甲醇选择性 ,催化剂的组成以Cu6Zn3 Al1 12 5 % ( 8%Ni/MWCNT)为佳 ,反应温度以~ 493K为宜 .结合催化体系的表征 (XRD ,TPR ,TPD)等结果 ,讨论了y %Ni/M    

7.  铁基氮掺杂碳纳米管制备及其电催化性能  
   李莉香  赵宏伟  许微微  张砚秋  安百钢  耿新《物理化学学报》,2015年第3期
   利用化学原位聚合法制备聚吡咯包覆碳纳米管,然后以硫酸亚铁铵盐为铁前驱体,采用液相沉淀法制备聚吡咯-碳纳米管-铁化合物复合材料(Fe-PPy-CNTs),通过对复合材料Fe-PPy-CNTs热处理,成功制备出铁基氮掺杂碳纳米管催化剂Fe NCNTs.X射线衍射分析表明,热处理使Fe-PPy-CNTs复合物中Fe3O4向Fe3N和Fe转化,700°C热处理制备的Fe NCNT700中铁主要是Fe3O4相,但也有Fe相.800和900°C热处理制备的催化剂Fe NCNT800和Fe NCNT900则明显有Fe3N和Fe形成.随着热处理温度升高,Fe NCNTs催化剂氮含量降低,其含氮官能团也由吡咯型氮向吡啶型和石墨型氮转化.电化学分析表明,含有Fe3N的Fe NCNT800和Fe NCNT900催化剂具有明显的氧还原催化活性,其中,Fe NCNT800因其具有高的比表面积、高的氮含量和高比例的有利于增强氧吸附能力和弱化O―O键的石墨氮官能团,而表现出优于Fe NCNT900氧还原催化活性及稳定性.    

8.  活性炭负载Pt-Ni双金属催化剂上甘油水溶液原位加氢反应性能  
   孔丹旎  江涛  张一颖  曹发海《高等学校化学学报》,2016年第6期
   采用KBH4液相还原法制备了系列活性炭( AC)负载的Pt-M( M=Fe, Ni, Co, Zn, Cu)双金属催化剂,考察了该系列催化剂对甘油水溶液原位加氢制备1,2-丙二醇反应的催化性能.结果表明,当Pt负载量(质量分数)为2.0%, Pt/Ni质量比为1:1时,在220℃和1.0 MPa氮气压力下反应8 h,2%Pt-2%Ni/AC催化剂上甘油转化率和1,2-丙二醇选择性分别达到98.7%和60.5%;且在5次重复使用过程中,催化剂保持较高的稳定性.采用氮气物理吸附-脱附实验、X 射线衍射( XRD)、透射电子显微镜( TEM)、选区电子衍射( SAED)及X射线光电子能谱( XPS)等对催化剂的结构和形貌进行了表征.结果表明,粒径约为2 nm的纳米颗粒在活性炭载体上均匀分散,纳米粒子中金属多以还原态形式存在, Ni原子进入Pt晶格中形成的Pt-Ni物种使Pt与Ni之间表现出强相互作用力.通过比较Pt/AC, Ni/AC与Pt-Ni/AC双金属催化剂的催化性能,推断Pt能够促进甘油水溶液重整而Ni有利于氢解反应, Pt-Ni金属间协同作用是Pt-Ni/AC催化剂对甘油原位加氢反应具有优良催化性能的重要原因.    

9.  (四甲基二硅撑)二(3-三甲硅基环戊二烯基)四羰基二铁及其相关化合物的合成及结构  
   孔垂华  徐善生  周秀中《高等学校化学学报》,1994年第11期
   1,2-二(三甲硅基环戊二烯基)四甲基二硅烷与Fe(CO)_5在二甲苯中于105~110℃反应除分离到少量标题化合物(Me_2SiSiMe_2)[η-(3-Me_3SiC_5H_3Fe(CO)]_2(μ-CO)_2(5)外,主要是生成了脱Me_3Si基的产物(Me_2SiSiMe_2)[η-C_5H_4Fe(CO)]_2(μ-CO)_2(1)及1的热重排异构体[Me_2SiC5H4-Fe(CO)_2]_2(2).将5的二甲苯溶液加热回流18h,则转化为其异构体[Me_2Si(Me_3SiC_5H_3)Fe(CO)_2]_2(6).脱硅基发生在由相应反应物制备5的过程中。且脱硅基是与反应物中(Me_2SiSiMe_2)桥的存在有关.5的晶体结构经X射线衍射测定属单斜晶系,P2_1/m空间群,晶体学数据:a=0.6780(1)nm,b=2.2303(9)nm,c=0.9988(1)nn,;β=98.96(1)°,V=1.4960nm~3.Z=2,D_c=1.36g/cm~3.    

10.  SiC/SiC复合材料的原位合成与表征  
   焦宇鸿  王芬  朱建锋《人工晶体学报》,2014年第1期
   采用常压烧结原位反应合成的方法制备了SiC/SiC复合材料,碳和硅是以滤纸和酚醛树脂为C源,采取滤纸表面涂覆Si粉树脂悬浮液的方法引入。采用XRD,SEM以及EDAX分别分析了材料的组成和微观机构,并重点分析了复合材料中SiC纳米线的生成与生长机理。结果表明,在温度为1430℃时,制备的SiC纳米线表面光滑,尺寸均一,长径比大于103,其生长机制为VS机制,由此开发了一种一步法制备SiC/SiC复合材料的新方法。    

11.  (四甲基二硅撑)二(3-三甲硅基环戊二烯基)四羰基二铁及其相关化合物的合成及结构  
   孔垂华 徐善生《高等学校化学学报》,1994年第15卷第11期
   1,2-二(三甲硅基环戊二烯基)四甲基二硅烷与Fe(CO)5在二甲苯中于105~110℃反应除分离到少量标题化合物(Me2SiSiMe2)[η-(3-Me3SiC5H3Fe(CO)]2(μ-CO)2(5)外,主要是生成了脱Me3Si基的产物(Me2SiSiMe2)[η-C5H4Fe(CO)]2(μ-CO)2(1)及1的热重排异构体[Me2SiC5H4-Fe(CO)2]2(2).将5的二甲苯溶液加热回流18h,则转化为其异构体[Me2Si(Me3SiC5H3)Fe(CO)2]2(6).脱硅基发生在由相应反应物制备5的过程中。且脱硅基是与反应物中(Me2SiSiMe2)桥的存在有关。5的晶体结构经X射线衍射测定属单斜晶系,P21/m空间群,晶体学数据:a=0.6780(1)nm,b=2.2303(9)nm,c=0.9988(1)nn,;β=98.96(1)°,V=1.4960nm3.Z=2,Dc=1.36g/cm3.    

12.  乙酰丙酸选择性加氢合成γ-戊内酯中高效和可循环使用的Ni3Fe NPs@C 双金属催化剂  
   王豪杰  陈春  张海民  汪国忠  赵惠军《催化学报》,2018年第39卷第10期
   生物质经催化转化合成燃料及化学品是当前研究的热点.目前,生物质的催化转化主要聚焦于纤维素、半纤维素和木质素的解聚及其下游产物合成.其中,乙酰丙酸(LA)作为纤维素解聚的主要产物之一,是一种极具竞争力的平台化合物和重要的生物质转化中间体.LA通过催化转化可以合成各类高附加值的化学品,例如,通过催化加氢LA可选择性合成γ-戊内酯(GVL).所合成的GVL用途广泛,可作为绿色溶剂、食品、燃料添加剂、(塑料、高分子、烃类或者其它高附加值化学品)前驱体等.目前,LA-to-GVL的研究主要着眼于非均相催化体系,包括负载型贵金属和非贵金属催化剂体.其中,贵金属催化剂主要有Ru,Au,Pd,Rh,Ir和Pt,虽然催化效率高,条件温和,但是成本高,难以实现工业化.此外对于广泛使用的Ru/C催化剂,存在金属-载体间相互作用不强.活性组分易流失、导致催化剂稳定性差等问题;而非贵金属则普遍存在催化活性不佳及反应条件苛刻等缺点.因此,开发高效、稳定、反应条件温和且具有工业化应用前景的非贵金属催化剂具有显著的研究意义,这也是当前的研究趋势.在特定温度下,金属离子与碳基底存在较强的相互作用.鉴于此,本文通过一步碳热还原法合成了活性炭负载的Ni3Fe双金属催化剂(Ni3Fe NPs@C).该催化剂在LA-to-GVL转化体系中展现了直接加氢(DH)和转移加氢(TH)双功能催化特性.首先,考察了其在DH体系中的反应特性:在130oC和2 MPa氢压反应条件下经2 h反应,LA转化率达到93.8%,GVL选择性为95.5%,GVL产率是相应的单金属Ni/C和Fe/C催化剂的6倍和40倍.此外,在TH催化反应体系中,在180oC,0.5 h和无外加氢源的反应条件下,以异丙醇为反应溶剂和供氢体,LA几乎完全转化为GVL,其反应效率同样相较于单金属Ni/C和Fe/C催化剂大幅度提高.所合成的Ni3Fe NPs@C双金属催化剂DH和TH催化性能优于绝大多数报道的LA加氢贵金属和非贵金属催化剂.而且,该催化剂具有良好的循环利用性能,经过四次循环,其结构和化学状态没有发生明显的改变,稳定性明显优于商业化的Ru/C催化剂.此外,通过系统分析其催化性能以及材料结构,明确了该催化剂在LA的DH和TH反应体系中的活性位点,并提出了可能的反应路径.该研究为其它类型的DH和TH反应体系以及生物质高效转化过程提供了新的催化剂设计思路.并且这种催化剂及其制备方法简单、绿色,易于工业化推广和应用.    

13.  乙酰丙酸选择性加氢合成γ-戊内酯中高效和可循环使用的Ni_3Fe NPs@C双金属催化剂(英文)  
   王豪杰  陈春  张海民  汪国忠  赵惠军《催化学报》,2018年第10期
   生物质经催化转化合成燃料及化学品是当前研究的热点.目前,生物质的催化转化主要聚焦于纤维素、半纤维素和木质素的解聚及其下游产物合成.其中,乙酰丙酸(LA)作为纤维素解聚的主要产物之一,是一种极具竞争力的平台化合物和重要的生物质转化中间体.LA通过催化转化可以合成各类高附加值的化学品,例如,通过催化加氢LA可选择性合成γ-戊内酯(GVL).所合成的GVL用途广泛,可作为绿色溶剂、食品、燃料添加剂、(塑料、高分子、烃类或者其它高附加值化学品)前驱体等.目前,LA-to-GVL的研究主要着眼于非均相催化体系,包括负载型贵金属和非贵金属催化剂体.其中,贵金属催化剂主要有Ru,Au,Pd,Rh,Ir和Pt,虽然催化效率高,条件温和,但是成本高,难以实现工业化.此外对于广泛使用的Ru/C催化剂,存在金属-载体间相互作用不强.活性组分易流失、导致催化剂稳定性差等问题;而非贵金属则普遍存在催化活性不佳及反应条件苛刻等缺点.因此,开发高效、稳定、反应条件温和且具有工业化应用前景的非贵金属催化剂具有显著的研究意义,这也是当前的研究趋势.在特定温度下,金属离子与碳基底存在较强的相互作用.鉴于此,本文通过一步碳热还原法合成了活性炭负载的Ni_3Fe双金属催化剂(Ni_3Fe NPs@C).该催化剂在LA-to-GVL转化体系中展现了直接加氢(DH)和转移加氢(TH)双功能催化特性.首先,考察了其在DH体系中的反应特性:在130℃和2 MPa氢压反应条件下经2 h反应,LA转化率达到93.8%,GVL选择性为95.5%,GVL产率是相应的单金属Ni/C和Fe/C催化剂的6倍和40倍.此外,在TH催化反应体系中,在180℃,0.5 h和无外加氢源的反应条件下,以异丙醇为反应溶剂和供氢体,LA几乎完全转化为GVL,其反应效率同样相较于单金属Ni/C和Fe/C催化剂大幅度提高.所合成的Ni_3Fe NPs@C双金属催化剂DH和TH催化性能优于绝大多数报道的LA加氢贵金属和非贵金属催化剂.而且,该催化剂具有良好的循环利用性能,经过四次循环,其结构和化学状态没有发生明显的改变,稳定性明显优于商业化的Ru/C催化剂.此外,通过系统分析其催化性能以及材料结构,明确了该催化剂在LA的DH和TH反应体系中的活性位点,并提出了可能的反应路径.该研究为其它类型的DH和TH反应体系以及生物质高效转化过程提供了新的催化剂设计思路.并且这种催化剂及其制备方法简单、绿色,易于工业化推广和应用.    

14.  Ni/CeO_2-SiO_2催化剂的制备、表征及其甲烷部分氧化制合成气性能(英文)  
   胡久彪  余长林  毕亚东  魏龙福  陈建钗  陈喜蓉《催化学报》,2014年第1期
   以硝酸亚铈(Ce(NO3)3·6H2O)和正硅酸四乙酯(C8H20O4Si)为前驱体,采用溶胶-凝胶法合成了系列具有大比表面积的xCeO2-(1.x)SiO2(x=0,0.25,0.50,0.75,1)复合氧化物载体,然后浸渍活性组分Ni制得用于甲烷部分氧化制合成气的Ni催化剂.运用N2物理吸附-脱附、X射线粉末衍射、扫描电镜、紫外-可见漫反射光谱、氢程序升温还原、氨程序升温脱附和热重等手段对所得催化剂的组织结构、还原性、表面酸性和积炭行为等进行了表征;同时考察了催化剂的组成、焙烧温度和反应时间等对催化剂在甲烷部分氧化制合成气中催化性能的影响.表征结果表明,该系列Ni/CeO2-SiO2催化剂具有大比表面积,CeO2晶粒较小,NiO的分散性好且易被还原,表面酸性弱,不容易积炭.当Ce/Si摩尔比为1:1,活性组分Ni的质量分数为10%,焙烧温度为700°C时,所制备的Ni/CeO2-SiO2催化剂表现出较好的稳定性、最高的CH4转化率(~84%)和对产物CO及H2的选择性(87%).    

15.  过渡金属对分子筛担载Pd催化剂上CO氧化性能影响  
   毕玉水  吕功煊《化学学报》,2004年第62卷第20期
   分别采用共浸和连续浸渍法制备了一系列添加过渡金属的Pd-M-Ox-NaZSM-5(M=Cr,Mn,Fe,Co,Ni,Cu,Zn,Mo,Zr等)负载型催化剂.以CO氧化为探针反应,考察了不同制备方法对CO氧化性能影响,结果表明共浸法制备的各催化剂其活性明显优于连续浸渍法.详细考察了反应温度、Fe含量、氢气预还原、空速以及水蒸气等对共浸Pd-Fe-Ox-NaZSM-5催化剂上CO氧化行为影响,并应用XRD和XPS等手段对催化剂体相结构和表面状态进行了表征.结果表明:加入Fe2O3可明显提高Pd/NaZSM-5催化剂活性,且催化CO氧化的转化率随反应温度及Fe含量增加而增加;空速增加以及H2预还原作用导致Pd-Fe-Ox-NaZSM-5活性有所降低;催化剂对水蒸气较为敏感.XRD测试结果表明催化剂中Pd组分处于较高分散状态,以红铁矿形式存在的Fe2O3的引入,促进了Pd物种在NaZSM-5载体上的分散.表面XPS分析证实Fe2O3与Pd物种间存在较强的相互协同作用,且催化剂表面Pd物种处于较高氧化状态.Pd的高分散及其与Fe2O3的相互协同作用是共浸催化剂具有高活性的关键因素.    

16.  自组装合成Fe-N-C-PANI有序介孔结构催化剂及其在酸性条件下的氧还原活性  
   康欢  李赏  刘畅  郭伟  潘牧《高等学校化学学报》,2017年第38卷第8期
   采用乙醇挥发自组装法, 以F127为模版, 甲阶酚醛树脂为碳源, 聚苯胺为配体, 加入硝酸铁和硅酸盐, 制备了有序多级孔的Fe-N-C-PANI催化剂.催化剂的成分和形貌表征结果表明, 在热处理温度为800 ℃时, 有序介孔的结构最清晰, 拥有整齐的孔道和最高的比表面积(1007 m2/g);XPS分析结果表明, 吡啶氮原子和石墨氮原子含量(摩尔分数)为3.86%.热处理温度升高过程中Fe(Ⅲ)被还原, 向单质Fe转化, 并促进了N的掺杂, 使碳化铁转化为Fe-Nx活性位点, 提高了催化剂的氧还原反应(ORR)催化活性, 热处理温度达到900 ℃时, 过多的单质铁使其氧还原活性下降.在酸性溶液中, Fe-N-C-PANI-800催化剂的起始电位可达0.89 V, 半波电势为0.81 V.有序介孔结构使催化剂更易石墨化, 提高了材料的稳定性.    

17.  Au/Fe2O3催化剂在CO低温氧化中的催化活性  被引次数:8
   索掌怀 尚坚《燃料化学学报》,1999年第27卷第5期
   制备了过渡金属氧化物分散的金催化剂,考察了该催化剂在CO低温氧化中的催化活性及其制备条件,如过渡金属氧化物的选择、沉淀剂、催化剂的预处理温度及处理时间、金含量、Cl- 、催化剂制备方法及催化剂前体等因素对催化活性的影响。最佳结果显示: 以K2CO3 为沉淀剂、采用共沉淀法制备的1 % Au/Fe2O3 催化剂,可使空气中含1% 的CO在257K的低温下完全转化成CO2 。    

18.  高比表面积有序介孔Ni/SiC催化CH4-CO2重整反应  
   詹海鹃  石晓燕  黄鑫  赵宁《燃料化学学报》,2019年第47卷第8期
   采用纳米浇铸法制备了高比表面积(345 m2/g)且孔径均一的有序介孔SiC材料(SiC-OM),以商用SiC(49 m2/g,SiC-C)材料为参比载体。采用等体积浸渍法分别制备了Ni/SiC-OM和Ni/SiC-C,并考察其在CH4-CO2重整反应中的催化性能。利用ICP、BET、XRD、H2-TPR、XPS、HRTEM、TG和Raman等手段对反应前后的两种催化剂进行表征。结果表明,在700℃、1.013×105 Pa和12 L/(h·g)的重整条件下,Ni/SiC-OM的平均积炭速率比Ni/SiC-C降低了一个数量级,这主要归因于强金属-载体相互作用和有序介孔骨架的"限域效应"作用。    

19.  水滑石基磁性Co/Al2O3催化剂在乙酰丙酸加氢制备γ-戊内酯反应中的应用  
   龙向东  孙鹏  李泽龙  郎睿  夏春谷  李福伟《催化学报》,2015年第9期
   γ-戊内酯广泛应用于食品添加剂、燃料添加剂、溶剂、汽油、柴油以及多种化工中间体的合成,由于其上游原料乙酰丙酸是重要的生物质基平台化合物已实现了工业化生产,因此发展其高效、可循环使用的催化合成新体系是近年来生物质催化转化的研究热点之一.目前使用的多相催化剂体系主要是浸渍法制备的负载型金属纳米颗粒催化剂,活性金属主要有Ru, Pd, Pt, Au, Cu, Ni等.由于乙酰丙酸制备γ-戊内酯反应是一个酸性的含水体系,在高温、高压条件下,使用浸渍法得到的催化剂特别是非贵金属催化剂容易发生活性金属的聚集、流失,从而使得催化剂重复使用的效果不佳.从非贵金属替代贵金属和提高催化剂稳定性这两点入手,本论文以水滑石为合成催化剂的单一前驱体,将非贵金属(Cu, Ni, Fe, Co)掺入到水滑石的结构骨架中,通过直接氢气焙烧还原制得了高负载量的负载型金属纳米颗粒多相催化剂.将制得的催化剂应用于乙酰丙酸加氢反应,其催化活性顺序为: Co>Ni>Cu>Fe.制备出了5种不同Co/Al比的Co基催化剂,其中4Co/Al2O3催化剂在H2(5 MPa)、180 oC条件下,显示出了类似贵金属钌催化剂的活性和选择性,乙酰丙酸在3 h内完全转化,γ-戊内酯的选择性高达99%.为了进一步了解催化剂的结构与其活性和稳定性之间的关系,我们采用X射线粉末衍射仪(XRD),氢气程序升温还原(H2-TPR), X射线光电子能谱(XPS),透射电子显微镜(TEM)等表征手段研究了催化剂的形貌和结构. TEM结果表明,以水滑石为前驱体制备的Co催化剂中负载的Co纳米颗粒的平均粒径在25–30 nm,而用浸渍法制备的相同负载量的Co催化剂的Co纳米颗粒粒径大于150 nm.相应的催化反应结果表明,前者的催化活性要远好于后者.水滑石前驱体的H2-TPR实验结果表明,随着Co/Al比增加,其还原峰向低温方向位移.这是由于Al含量的减少,导致金属Co离子周围键合的Al离子数量减少,从而使得Co与Al之间的作用力减弱, Co更加容易被还原.表现在还原温度上,即为还原温度降低,说明了Co纳米颗粒与载体之间具有一种强相互作用.结合TEM测试结果,正是这种强相互作用限制了Co纳米颗粒的长大,使其要远小于用浸渍法制得的Co纳米颗粒. HRTEM测试结果显示在4Co/Al2O3催化剂结构中, Co金属纳米颗粒与载体Al2O3之间存在一种核壳结构的关系, Co纳米颗粒被包埋于载体Al2O3中形成核壳结构.这种结构同样也保证了活性金属与载体之间较强的相互作用,有效地避免Co纳米颗粒在强水热、酸性条件下的聚集和流失,从而使该催化剂在循环使用四次时仍能保持优异的活性和选择性.我们进一步研究了该核壳结构形成的原因.发现催化剂在制备过程中如果先用空气高温焙烧,再用氢气还原,得到的催化剂中则没有明显的核壳结构,且Co纳米颗粒粒径在55 nm左右.相应的催化反应结果也要差于直接氢气焙烧还原得到的4Co/Al2O3催化剂.这也从侧面说明了以水滑石为前驱体制备负载型金属纳米颗粒催化剂时,其原位的限制效应在控制金属纳米颗粒的大小、稳定性方面的优越性.此外,由于该Co催化剂具有磁性特征,很容易通过磁性回收实现催化剂与反应液的分离,大大简化了催化剂的回收及产物分离过程.    

20.  高温高压下Fe-Ni-C系合成金刚石的研究  被引次数:1
   李和胜  李木森《高压物理学报》,2007年第21卷第4期
    以工业纯单质铁粉和单质镍粉为主要原料,采用粉末冶金方法制备了Fe-Ni-C系反应体系,在六面顶压机上进行了金刚石合成实验。Raman光谱和X射线衍射结果表明,采用这种方法获得的粒径为200~500 μm,呈六-八面体聚形的晶体为立方金刚石单晶。通过对常规力学性能的检测发现,金刚石的品位较高,超过SMD25级锯片级金刚石的要求。分析认为,高温高压下金刚石自Fe-Ni-C系形核是一个触媒不断溶解催化碳原子的过程。大量的实验结果可以证实,金刚石在Fe-Ni-C系长大所需的碳原子来自于在γ-(Fe,Ni)吸引作用下、从(Fe,Ni)3C中不断脱溶的碳。金属包覆膜在这一过程中不但起到了输送碳原子的作用,还以独特的方式促成了碳原子由sp2π杂化态向sp3杂化态的转变。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号