首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A bacterial biosensor method for the selective determination of a bioavailable organomercurial compound, methylmercury, is presented. A recombinant luminescent whole-cell bacterial strain responding to total mercury content in samples was used. The bacterial cells were freeze-dried and used as robust, reagent-like compounds, without batch-to-batch variations. In this bacteria-based sensing method, luciferase is used as a reporter, which requires no substrate additions, therefore allowing homogenous, real-time monitoring of the reporter gene expression. A noninducible, constitutively light-producing control bacterial strain was included in parallel for determining the overall cytotoxicity of the samples. The specificity of the total mercury sensor Escherichia coli MC1061 (pmerRBlux) bacterial resistance system toward methylmercury is due to a coexpressed specific enzyme, organomercurial lyase. This enzyme mediates the cleavage of the carbon–mercury bond of methylmercury to yield mercury ions, which induce the reporter genes and produce a self-luminescent cell. The selective analysis of methylmercury with the total mercury strain is achieved by specifically chelating the inorganic mercury species from the sample using an optimized concentration of EDTA as a chelating agent. After the treatment with the chelating agent, a cross-reactivity of 0.2% with ionic mercury was observed at nonphysiological ionic mercury concentrations (100 nM). The assay was optimized to be performed in 3 h but results can already be read after 1 h incubation. Total mercury strain E. coli MC1061 (pmerRBlux) has been shown to be highly sensitive and capable of determining methylmercury at a subnanomolar level in optimized assay conditions with a very high dynamic range of two decades. The limit of detection of 75 ng/l (300 pM) allows measurement of methylmercury even from natural samples.  相似文献   

2.
A procedure is described for the sequential determination of arsenite and arsenate in samples of natural waters. It is based on the extraction of arsenic(III) with ammonium sec-butyl dithiophosphate and measurement, after re-extraction into water, by graphitefurnace atomic absorption spectrometry. Reduction of arsenic(V) allows its subsequent determination. The method is applied to fresh and sea water samples. The detection limit is 6 ngl-1.  相似文献   

3.
The interaction of arsenic(V) and arsenic(III) oxyanions with metal cations was investigated by potentiometry under temperature and ionic strength conditions approaching those prevailing in natural waters. The selection includes the major metal cations and some other ions of high environmental relevance. Ionic pairs [M(AsVO4)]?, [M(HAsVO4)] and [M(H2AsIIIO3)]+ formation is suggested for all +2 metal cations, based on the potentiometric results. These ion-pairs between arsenic anions and other metal cations are hardly ever mentioned or taken into account when arsenic speciation in natural waters is considered. These results provide the basis for studying arsenic speciation in natural aquatic systems, on which environmental fate, bioavailability and toxicity of the element depend. Some extrapolations to the conditions of the natural waters are presented as well as some insights into the adsorption process onto hydrous oxides.  相似文献   

4.
The determination of arsenic in sea and freshwater by anodic stripping voltammetry (ASV) was revisited because of problems related to unstable peaks and inconveniently strong acidic conditions used by existing methods. Contrary to previous work it was found, that As(III) can be determined by ASV using a gold microwire electrode at any pH including the neutral pH typical for natural waters. As(V) on the other hand, requires acidification to pH 1, but this is still a much milder condition than used previously. This is the basis of a new method for the chemical speciation of arsenic in natural waters. The limits of detection are 0.2 nM As(III) at pH 8 and 0.3 nM combined arsenic (III + V) at pH 1 with a 30 s deposition time. These limits are lowered by extending the deposition time. The detection step at pH 8 was stripping chronopotentiometry (SC) as this was found to give a lower detection limit than ASV. Copper is co-determined simultaneously with arsenic. The method was applied successfully to the determination of arsenic as well as copper in samples from the Irish Sea, mineral water and tap water.  相似文献   

5.
A method for the determination of trace amounts of arsenic and tin in natural waters is described. Trace amounts of arsenic and tin were preconcentrated by coprecipitation with a Ni–ammonium pyrrolidine dithiocarbamate (APDC) complex. The coprecipitates obtained were directly analyzed by graphite-furnace atomic-absorption spectrometry (GFAAS) using the Ni–APDC complex solid-sampling technique. The coprecipitation conditions used for the trace amounts of arsenic and tin in natural water were investigated in detail. It was found that arsenic and tin at sub-ng mL–1 levels were both coprecipitated quantitatively by Ni(PDC)2 in the pH range 2–3. The concentration factors by coprecipitation reached approximately 40,000 when 2 mg nickel was added as a carrier element to 500 mL of the water sample. The proposed method has been applied to the determination of trace amounts of arsenic and tin in river water and seawater reference materials, and the detection limits for arsenic and tin, which were calculated from three times of the standard deviation of the procedural blanks, are 0.02 ng mL–1 and 0.04 ng mL–1, respectively, for 500-mL volumes of water sample.  相似文献   

6.
Escherichia coli O157:H7 remains a continuous public health threat, appearing in meats, water, fruit juices, milk, cheese, and vegetables, where its ingestion at concentrations of perhaps as low as 10 to 100 organisms can result in potent toxin exposure and severe damage to the lining of the intestine. Abdominal pain and diarrhea develop, which in the very young or elderly can progress towards hemolytic uremic syndrome and kidney failure. To assist in the detection of E. coli O157:H7, a recombinant bacteriophage reporter was developed that uses quorum sensing (luxI/luxR) signaling and luxCDABE-based bioluminescent bioreporter sensing to specifically and autonomously respond to O157:H7 serotype E. coli. The bacteriophage reporter, derived from phage PP01, was tested in artificially contaminated foodstuffs including apple juice, tap water, ground beef, and spinach leaf rinsates. In apple juice, detection of E. coli O157:H7 at original inoculums of 1 CFU mL−1 occurred within approximately 16 h after a 6-h pre-incubation, detection of 1 CFU mL−1 in tap water occurred within approximately 6.5 h after a 6-h pre-incubation, and detection in spinach leaf rinsates using a real-time Xenogen IVIS imaging system resulted in detection of 1 CFU mL−1 within approximately 4 h after a 2-h pre-incubation. Detection in ground beef was not successful, however, presumably due to the natural occurrence of quorum sensing autoinducer (N-3-(oxohexanoyl)-l-homoserine lactone; OHHL), which generated false-positive bioreporter signals in the ground beef samples.  相似文献   

7.
Phytotoxicity assessment of diclofenac and its phototransformation products   总被引:2,自引:0,他引:2  
The occurrence of pharmaceuticals in the environment is an emerging issue. Several studies observed that the non-steroidal anti-inflammatory drug diclofenac is ubiquitously present in most of the surveyed surface waters, worldwide. Phototransformation of diclofenac was reported from laboratory assays as well as in natural water systems, raising the question of possible adverse effects of the phototransformation products of diclofenac to aquatic organisms. In this study the phytotoxicity of diclofenac exposed to natural sunlight was evaluated using synchronized cultures of the unicellular chlorophyte Scenedesmus vacuolatus. Diclofenac dissolved in ultra-pure water at 50 mg L−1 was exposed to natural midsummer sunlight for a maximum of 145 h. Twice a day subsamples were taken for chromatography and parallel phytotoxicity assessment. Inhibition of algal reproduction of the initial diclofenac solution was in the mg L−1 range indicating no specific toxicity of diclofenac towards S. vacuolatus. Fast degradation of diclofenac was observed with half lives between 3.3 and 6.4 h during the first and the third day of exposure, respectively. Phytotoxicity increased after 3.5 h of exposure of diclofenac to sunlight and showed a maximum of sixfold enhanced toxicity after 53 h of exposure to sunlight. Several phototransformation products were found during the experiment. The time courses of the relative concentration of three transformation products significantly correlated with enhanced phytotoxicity during the experiment. This indicates a high toxicity potential of phototransformation products of diclofenac at concentration levels that may come close to environmental concentrations of residual diclofenac after degradation. We conclude that toxicity assessment of phototransformation products should be included in the risk assessment of pharmaceuticals in the environment.  相似文献   

8.
Traces amounts of arsenic and antimony in water samples were determined by gas chromatography with a photoionization detector after liquidnitrogen cold trapping of their hydrides. The sample solution was treated with sodium hydroborate (NaBH4) under weak-acid conditions for arsenic(III) and antimony(III) determination, and under strong-acid conditions for arsenic(III+V) and antimony(III+V) determination. Large amounts of carbon dioxide (CO2) and water vapor obscured determination of arsine and stibine. Better separation from interference could be achieved by removing CO2 and water vapor in two tubes containing sodium hydroxide pellets and calcium chloride, respectively. The detection limits of this method were 1.8 ng dm?3 for arsenic and 9.4 ng dm?3 for antimony in the case of 100-cm3 sample volumes. Therefore, it is suitable for determination of trace arsenic and antimony in natural waters.  相似文献   

9.
We describe a simple, effective, inexpensive and rapid method for the determination of trace amounts of total inorganic arsenic in water samples by means of a modified solid phase preconcentration procedure using an aluminium hydroxide gel sorbent and hydride generation atomic fluorescence spectrometry (HGAFS). This method avoids the traditional extraction procedures that are time- and solvent-consuming. The effects of quantity of adsorbent, solution pH, adsorption time and potentially interfering ions were studied. Under the optimal conditions, the detection limit is 3 ng?L?1, and the enrichment factor is 167. The calibration plot is linear in the range from 0.05 to 10 μg?L?1, with a correlation coefficient of 0.9992. The relative standard deviation (RSD) was less than 6.1 % (n?=?5) and recoveries in spiked environmental water were >100 %. The method was successfully applied to the determination of total inorganic arsenic in natural water samples.
Figure
The above figure showed effect of adsorption time on recoveries of total inorganic arsenic. The adsorption rate of total inorganic arsenic on is very fast and it takes only several minutes to reach adsorption balance. After reaching adsorption balance, recoveries of total inorganic arsenic is up to 95 %.  相似文献   

10.
Procedures are described for the determination of arsenic in sea water, potable waters and effluents. The sample is treated with sodium borohydride added at a controlled rate. The arsine evolved is absorbed in a solution of iodine and the resultant arsenate ion is determined photometrically by a molybdenum blue method. The time required for a complete analysis is about 90 min, but of this only 15 min is operator time. For sea water the range, standard deviation, and detection limit are 1–4 μgl-1, 1.4 % and O.14 μg l-1, respectively; for potable waters they are 0–800 μg l-1, about 1 % (at 20μg l-1 level) and 0.5μg l-1, respectively. Silver and copper cause serious interference at levels of 0.5 mgl-1, and nickel, cadmium and bismuth interfere at concentrations of a few tens of mg l-1; however, these elements can be removed either by preliminary extraction with a solution of dithizone in chloroform or by ion exchange. Arsenic present in organo-arsenic compounds is not directly determinable, but can be rendered reactive either by photolysis with ultraviolet radiation or by oxidation with permanganate or nitric—sulphuric acid mixture. Arsenic(V) can be determined separately from total inorganic arsenic after extracting arsenic(III) as its pyrrolidine dithiocarbamate into chloroform.  相似文献   

11.
Arsenic is precipitated as magnesium ammonium arsenate with magnesium ammonium phosphate as carrier. The precipitate is collected on a glass-fibre filter and arsenic is measured by energy-dispersive x-ray fluorescence spectrometry with a silver secondary target. With 200-ml water samples and 100-s counting times, the limit of detection is 0.7 μg As l?1. The method is applicable to all types of natural water including sea waters.  相似文献   

12.
Mercury-based screen-printed electrodes (SPE) combined with square-wave anodic stripping voltammetry (SWASV) techniques for the analysis of copper, cadmium, lead, and zinc in different water samples have been applied. The detection system has been implemented in a flow cell and different experimental conditions have been tested in view of its application for in-situ monitoring. In particular, an acetate buffer together with a low chloride concentration (0.025?M NaCl) provided best performance and reproducible results. Additionally, the flow system was validated for the first time in terms of limits of detection, linearity, repeatability and recovery. Limits of detection of 2.8?µg?L?1, 4.1?µg?L?1, and 7.5?µg?L?1 for cadmium, lead and copper respectively and repeatabilities lower than 10% (as RSD) were found. Good recoveries have been obtained for the three cations and in particular for copper, even in the presence of zinc. Finally, the method has shown its efficiency for the rapid screening of lead, cadmium and copper contained in both natural waters and wastewater samples.  相似文献   

13.
Neutron activation analysis (NAA) methods were employed for the determination of total arsenic, and water soluble As(III) and As(V) compounds in freshwater fish/shellfish and plant samples from Southern Thailand. Total arsenic concentrations varied from 0.05 to 425 mg kg−1. Water soluble arsenic species were separated by solvent extraction using ammonium pyrrolidinedithiocarbamate (APDC)/methylisobutylketone (MIBK) followed by NAA. The water soluble As(III) and As(V) levels varied from 0.07 to 26.4 and 0.03 to 22.9 mg kg−1, respectively. The As(III) and As(V) detection limits were 0.007 for fish/shellfish, 0.005 for As(III) and 0.006 mg kg−1 for As(V) in plants. This separation method allows for the determination of water soluble As(III) and As(V) using commonly available and inexpensive laboratory equipment and chemicals, which can be coupled to a variety of quantification techniques.  相似文献   

14.
Arsenic(III) and -(V) were separated by ion-exclusion chromatography, using 0.01 M orthophosphoric acid eluent. Both forms of arsenic can be monitored by UV detection at 200 nm, but sensitivity is poor. Amperometric detection with a platinum-wire electrode at an applied potential of + 1.00 V allows arsenic(III) to be determined down to 0.012 μM. Detector response was shown to be linear to 1.00 μM, at which concentration, ten replicate injections of arsenic(III) gave a relative standard deviation of 1.3%.In an application of the chromatographic procedure with amperometric detection to analysis of bottled mineral waters, arsenic(III) was measured by direct injection, and total inorganic arsenic was determined as arsenic(III) after reduction of arsenic(V) by sulphur dioxide  相似文献   

15.
There is a need for simple and inexpensive methods to quantify potentially harmful persistent pesticides often found in our water-ways and water distribution systems. This paper presents a simple, relatively inexpensive method for the detection of a group of commonly used pesticides (atrazine, simazine and hexazinone) in natural waters using large-volume direct injection high performance liquid chromatography (HPLC) utilizing a monolithic column and a single wavelength ultraviolet-visible light (UV-vis) detector. The best results for this system were obtained with a mobile phase made up of acetonitrile and water in a 30:70 ratio, a flow rate of 2.0 mL min−1, and a detector wavelength of 230 nm. Using this method, we achieved retention times of less than three minutes, and detection limits of 5.7 μg L−1 for atrazine, 4.7 μg L−1 for simazine and 4.0 μg L−1 for hexazinone. The performance of this method was validated with an inter-laboratory trial against a National Association of Testing Authorities (NATA) accredited liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method commonly used in commercial laboratories.  相似文献   

16.
Kaasalainen H  Stefánsson A 《Talanta》2011,85(4):1897-1903
Analytical methods have been developed to determine sulfur species concentrations in natural geothermal waters using Reagent-Free™ Ion Chromatography (RF™-IC), titrations and spectrophotometry. The sulfur species include SO42−, S2O32−, and ∑S2− with additional determination of SO32− and SxO62− that remains somewhat semiquantitative. The observed workable limits of detections were ≤0.5 μM depending on sample matrix and the analytical detection limits were 0.1 μM. Due to changes in sulfur species concentrations upon storage, on-site analyses of natural water samples were preferred. Alternatively, the samples may be stabilized on resin for later elution and analysis in the laboratory. The analytical method further allowed simultaneous determination of other anions including F, Cl, dissolved inorganic carbon (DIC) and NO3 without sample preservation or stabilization. The power of the newly developed methods relies in routine analysis of sulfur speciation of importance in natural waters using techniques and facilities available in most laboratories doing water sample analysis. The new methods were successfully applied for the determination of sulfur species concentrations in samples of natural and synthetic waters.  相似文献   

17.
Palytoxin (PLTX), a polyether marine toxin originally isolated from the zoanthid Palythoa toxica, is one of the most toxic non-protein substances known. Fatal poisonings have been linked to ingestion of PLTX-contaminated seafood, and effects in humans have been associated with dermal and inhalational exposure to PLTX containing organisms and waters. Additionally, PLTX co-occurrence with other well-characterized seafood toxins (e.g., ciguatoxins, saxitoxins, tetrodotoxin) has hindered direct associations of PLTX to seafood-borne illnesses. There are currently no validated methods for the quantitative detection of PLTX(s). As such, a well-characterized, robust, specific analytical technique is needed for the detection of PLTX(s) in source organisms, surrounding waters, and clinical samples. Surface plasmon resonance (SPR) biosensors are ideally suited for antibody characterization and quantitative immunoassay detection. Herein, we describe a newly developed SPR assay for PLTX. An anti-mouse substrate was used to characterize the kinetic values for a previously developed monoclonal anti-PLTX. The characterized antibody was then incorporated into a sensitive, rapid, and selective PLTX assay. Buffer type, flow rate, analyte-binding time, and regeneration conditions were optimized for the antibody–PLTX system. Cross-reactivity to potentially co-occurring seafood toxins was also evaluated. We show that this optimized assay is capable of measuring low- to sub-ng/mL PLTX levels in buffer and two seafood matrices (grouper and clam). Preliminary results indicate that this SPR biosensor assay allows for (1) rapid characterization of antibodies and (2) rapid, sensitive PLTX concentration determination in seafood matrices. Method development information contained herein may be broadly applied to future PLTX detection and/or antibody characterization efforts.  相似文献   

18.
The effect of seasonal temperature change on the release of methylated arsenic from macroalgae, phytoplankton and sediment porewaters has been investigated by a series of controlled laboratory experiments. The appearance of dissolved arsenic species in the overlying waters was monitored using a coupled hydride generation/GC AA analytical technique. The liberation of dissolved arsenic species by the macroalgae Ascophyllum nodosum was examined under estuarine conditions at 5 °C and 15 °C. At the lower temperature the release rates were 0.2 μg kg?1 h?1 (wet weight of material) for monomethylarsenic (MMA) and 0.5 μg kg?1 h?1 for dimethylarsenic (DMA), whereas at 15 °C the rates were 0.4 μg kg?1 h?1 and 3.2 μg kg?1h?1, respectively. Incubation experiments were also carried out at 15 °C using the diatom Skeletonema costatum. During the log growth phase, when chlorophyll a concentrations were in the range 1-5 μg dm?3, the rate of appearance of DMA in the water was ~3 ng dm?3 h?1. Sediment samples from the freshwater and seawater end-members of the Tamar Estuary, UK, were incubated under natural conditions at 5 °C and 15 °C. The freshwater sediments released DMA in preference to MMA; the concentrations of both species increased exponentially and reached a steady state in the overlying water after 250 h. Considerably more DMA was produced at 15 °C than at 5 °C, whilst the amount of MMA produced appeared to be insensitive to the temperature increase. In contrast, the seawater sediments always produced more MMA than DMA and the increase in temperature had little effect on the production of either MMA or DMA. The results of the laboratory experiments were compared with field observations in temperate estuaries, including the Tamar Estuary. The implications of changes of water temperature on the fate of arsenic in estuaries is discussed and modifications to the estuarine arsenic cycle are proposed.  相似文献   

19.
Phytofiltration involves the use of plants to remove toxic compounds from water. Arsenic is an element of considerable environmental and toxicological interest because of its potential deleterious effects upon human health. In this research, a laboratory-constructed hydroponic system was employed to characterize phytofiltration for the uptake of arsenic and macronutrients by two arsenic hyperaccumulators, Pteris cretica cv Mayii (Moonlight fern) and Pteris vittata (Chinese brake fern). Arsenic was shown to preferentially accumulate in the leaves and stems of P. cretica cv Mayii compared to roots. The amounts of the macronutrients calcium and phosphorous absorbed were compared for control plants (growth solution) and plants exposed to arsenic(III) (growth solution and arsenic(III)). Significant differences in the concentration levels of the macronutrients were observed in roots, stems, and leaves between the control and arsenic-exposed plants. The arsenic contents of entire P. vittata plants exposed to hydroponic solutions containing arsenic(III) and arsenic(V) were compared, and no significant difference was observed.  相似文献   

20.
A simple and robust on-line sequential insertion system coupled with hydride generation atomic absorption spectrometry (HG-AAS) was developed, for selective As(III) and total inorganic arsenic determination without pre-reduction step. The proposed manifold, which is employing an integrated reaction chamber/gas-liquid separator (RC-GLS), is characterized by the ability of the successful managing of variable sample volumes (up to 25 ml), in order to achieve high sensitivity. Arsine is able to be selectively generated either from inorganic As(III) or from total arsenic, using different concentrations of HCl and NaBH4 solutions. For 8 ml sample volume consumption, the sampling frequency is 40 h−1. The detection limit is cL = 0.1 and 0.06 μg l−1 for As(III) and total arsenic, respectively. The precision (relative standard deviation) at 2.0 μg l−1 (n = 10) level is sr = 2.9 and 3.1% for As(III) and total arsenic, respectively. The performance of the proposed method was evaluated by analyzing the certified reference material NIST CRM 1643d and spiked water samples with various concentration ratios of As(III) to As(V). The method was applied for arsenic speciation in natural waters samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号