首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近年来,单原子催化剂因其较高的催化活性和选择性等优点而受到了人们的广泛关注.我们综述了以C, Si, Ti, Al为基底的单原子催化剂的制备方法,并对以不同材料基底制备单原子催化剂的制备方法、形成机理及优势特点进行了比较.通过对单原子制备、表征方法及催化活性的概述,以期对制备单原子催化剂提供一定的借鉴和指导.研究表明,单原子催化剂的制备已从贵金属单原子催化剂向过渡金属单原子催化剂进行了转变.单原子催化剂的基底也不再仅仅局限于单一的形式.这些转变为单原子催化剂向传统催化领域迈进提供了可能.我们同时也对单原子催化剂在工业上的应用进行了介绍.  相似文献   

2.
单原子分散催化剂由于其独特的结构和性质,在催化研究中已展现出巨大的潜力,成为了催化研究的前沿领域.传统的催化剂制备方法(例如共沉积,浸渍法等)在单原子分散催化剂的制备中卓有成效,但不断涌现的新方法能够制备出传统方法不能制备的新型单原子分散催化剂.最近,光化学方法由于其步骤简单和制备条件温和的优点而引起了广泛关注.在之前的研究中我们揭示了光化学法制备单原子分散催化剂的分子机制.我们发现,紫外光照的作用在于将二氧化钛纳米片表面的乙二醇基激发生成乙二醇自由基,后者不仅有利于氯钯酸根中氯离子的脱除,还可通过Pd–O键将钯原子锚定在载体上,形成了独特的"钯-乙二醇-二氧化钛"的界面.根据对光化学法制备技术的理解,本文将光化学法拓展到其他二氧化钛体系,成功制备了基于(001)面暴露的锐钛矿纳米晶和商用二氧化钛P25的单原子分散钯催化剂.通过吸附和紫外光照,可以在室温下简单地制备单原子分散钯催化剂.扩展X射线吸收精细结构实验表明,紫外光照的作用是促进钯原子上氯离子的离去和更多Pd–O键的形成.与通过其它方法制备的催化剂相比,光化学法制备的两种Pd1/TiO2催化剂在苯乙烯的催化氢化反应中表现出更高的活性和稳定性.转化频率TOF为商用Pd/C催化剂的6倍.单原子分散催化剂为研究催化反应中复杂的界面效应提供了理想的模型体系.由于CO的催化氧化反应性能对金属活性中心的化学配位环境高度敏感,因此我们选择它作为模型反应以研究光化学法制备的单原子分散催化剂之间的差异.结果发现,两种载体制备的单原子分散钯催化剂都具有很好的催化CO氧化低温活性,373 K时CO转化率均可高达96%.其中,负载在(001)面暴露的锐钛矿纳米晶的催化剂在343 K时TOF高达6.7×10–3 s–1,比有文献报道的活性最高的Pd/La-修饰Al2O3催化剂在相同条件下高3.3倍,是目前Pd基催化剂在催化CO氧化反应中的活性最佳记录.这可能是由于二氧化钛的载体效应引起的.虽然两种催化剂的催化活性相当,但Pd/P25的表观活化能比Pd/TiO2(NC)高一倍左右.两种催化剂的金属都以单原子态分布,催化CO氧化反应的机制却可能完全不同.这说明单原子分散催化剂的性能与载体的表面性质密切相关.本文为单原子催化中载体的选择和原子尺度的界面调控提供了新的研究思路.  相似文献   

3.
单原子分散催化剂由于其独特的结构和性质,在催化研究中已展现出巨大的潜力,成为了催化研究的前沿领域.传统的催化剂制备方法(例如共沉积,浸渍法等)在单原子分散催化剂的制备中卓有成效,但不断涌现的新方法能够制备出传统方法不能制备的新型单原子分散催化剂.最近,光化学方法由于其步骤简单和制备条件温和的优点而引起了广泛关注.在之前的研究中我们揭示了光化学法制备单原子分散催化剂的分子机制.我们发现,紫外光照的作用在于将二氧化钛纳米片表面的乙二醇基激发生成乙二醇自由基,后者不仅有利于氯钯酸根中氯离子的脱除,还可通过Pd–O键将钯原子锚定在载体上,形成了独特的"钯-乙二醇-二氧化钛"的界面.根据对光化学法制备技术的理解,本文将光化学法拓展到其他二氧化钛体系,成功制备了基于(001)面暴露的锐钛矿纳米晶和商用二氧化钛P25的单原子分散钯催化剂.通过吸附和紫外光照,可以在室温下简单地制备单原子分散钯催化剂.扩展X射线吸收精细结构实验表明,紫外光照的作用是促进钯原子上氯离子的离去和更多Pd–O键的形成.与通过其它方法制备的催化剂相比,光化学法制备的两种Pd_1/TiO_2催化剂在苯乙烯的催化氢化反应中表现出更高的活性和稳定性.转化频率TOF为商用Pd/C催化剂的6倍.单原子分散催化剂为研究催化反应中复杂的界面效应提供了理想的模型体系.由于CO的催化氧化反应性能对金属活性中心的化学配位环境高度敏感,因此我们选择它作为模型反应以研究光化学法制备的单原子分散催化剂之间的差异.结果发现,两种载体制备的单原子分散钯催化剂都具有很好的催化CO氧化低温活性,373 K时CO转化率均可高达96%.其中,负载在(001)面暴露的锐钛矿纳米晶的催化剂在343 K时TOF高达6.7×10~(–3) s~(–1),比有文献报道的活性最高的Pd/La-修饰Al_2O_3催化剂在相同条件下高3.3倍,是目前Pd基催化剂在催化CO氧化反应中的活性最佳记录.这可能是由于二氧化钛的载体效应引起的.虽然两种催化剂的催化活性相当,但Pd/P25的表观活化能比Pd/TiO_2(NC)高一倍左右.两种催化剂的金属都以单原子态分布,催化CO氧化反应的机制却可能完全不同.这说明单原子分散催化剂的性能与载体的表面性质密切相关.本文为单原子催化中载体的选择和原子尺度的界面调控提供了新的研究思路.  相似文献   

4.
单原子催化剂具有配位数低、配位环境特殊、原子利用率极高和催化位点高度均一等优点,是沟通均相和异相催化剂之间的桥梁,有助于更好地认识催化反应的本质。本文综述了近年来国内外石墨烯基单原子催化剂的多种合成方法,包括原子层沉积法、浸渍-煅烧法、缺陷捕获法、配位锚定法和其他新颖方法的制备过程、合成原理和表征。在此基础上,本文对石墨烯基金属单原子催化剂在催化方面的性能进行阐述和分析,以期为单原子催化剂制备提供指导和参考。  相似文献   

5.
单原子催化的最新进展   总被引:1,自引:0,他引:1  
单原子催化剂由于其自身兼具均相催化剂的"孤立活性位点"和多相催化剂易于循环使用的特点,近年来受到了广泛关注.本综述概括了2015至2016年单原子催化领域的重要进展,重点介绍了新的催化剂制备方法、单原子金催化剂在CO氧化中的进展、单原子钯/铂催化的选择性加氢反应以及铂或非贵金属单原子催化剂在电化学中的应用等.在催化剂的合成方面,用传统的湿化学方法制备的单原子催化剂通常金属负载量较低,使得催化剂的常规表征比较困难.最近发展的一系列新型合成方法例如原子层沉积法、高温蒸汽转移法、光介还原法以及热解法等制备M?N?C等非贵金属催化剂等,尽管有不同程度的局限性,但均可以成功制备高负载量的单原子催化剂.单原子催化剂的载体得到了拓展,除传统的金属氧化物外,金属有机框架材料和二维材料等均被用于单原子催化剂的制备.在单原子催化剂的应用方面,金由于较高的电负性和与氧的弱相互作用能力,因而与氧化物载体作用较弱,不易形成单原子催化剂.但近期报道了成功制备的单原子金催化剂,在CO氧化反应、乙醇脱氢和二烯加氢反应中都有不错的进展.本文还介绍了铂和钯单原子(合金)催化剂在加氢反应中的优异活性及选择性,表明了单原子催化剂在选择性上的优势.将一种金属掺杂到另一种金属基底中制备的单原子合金催化剂也因其特异的性能备受关注.此外,对于化工生产中典型的均相催化反应,如氢甲酰化,单原子催化剂在无外加膦配体的情况下表现出高活性的同时还能很好地控制化学选择性,甚至达到令人满意的区域选择性,从实验上证明了单原子催化剂有望作为沟通均相催化和多相催化的桥梁.单原子催化剂在电催化和光催化中也得到了快速发展.铂单原子催化剂因其高原子利用率和高稳定性,在析氢反应和氧还原反应中有着良好的应用前景.另一方面,非贵金属特别是Co单原子催化剂在光电催化中因其优异的活性和巨大潜力得到了较深入的研究.除了上述进展,单原子催化领域还有许多基本问题需要继续深入研究,对单原子催化剂更加全面透彻的认识将为设计发展新型催化体系,扩展单原子催化领域提供指导和借鉴.  相似文献   

6.
单原子催化剂由于其自身兼具均相催化剂的"孤立活性位点"和多相催化剂易于循环使用的特点,近年来受到了广泛关注.本综述概括了2015至2016年单原子催化领域的重要进展,重点介绍了新的催化剂制备方法、单原子金催化剂在CO氧化中的进展、单原子钯/铂催化的选择性加氢反应以及铂或非贵金属单原子催化剂在电化学中的应用等.在催化剂的合成方面,用传统的湿化学方法制备的单原子催化剂通常金属负载量较低,使得催化剂的常规表征比较困难.最近发展的一系列新型合成方法例如原子层沉积法、高温蒸汽转移法、光介还原法以及热解法等制备M-N-C等非贵金属催化剂等,尽管有不同程度的局限性,但均可以成功制备高负载量的单原子催化剂.单原子催化剂的载体得到了拓展,除传统的金属氧化物外,金属有机框架材料和二维材料等均被用于单原子催化剂的制备.在单原子催化剂的应用方面,金由于较高的电负性和与氧的弱相互作用能力,因而与氧化物载体作用较弱,不易形成单原子催化剂.但近期报道了成功制备的单原子金催化剂,在CO氧化反应、乙醇脱氢和二烯加氢反应中都有不错的进展.本文还介绍了铂和钯单原子(合金)催化剂在加氢反应中的优异活性及选择性,表明了单原子催化剂在选择性上的优势.将一种金属掺杂到另一种金属基底中制备的单原子合金催化剂也因其特异的性能备受关注.此外,对于化工生产中典型的均相催化反应,如氢甲酰化,单原子催化剂在无外加膦配体的情况下表现出高活性的同时还能很好地控制化学选择性,甚至达到令人满意的区域选择性,从实验上证明了单原子催化剂有望作为沟通均相催化和多相催化的桥梁.单原子催化剂在电催化和光催化中也得到了快速发展.铂单原子催化剂因其高原子利用率和高稳定性,在析氢反应和氧还原反应中有着良好的应用前景.另一方面,非贵金属特别是Co单原子催化剂在光电催化中因其优异的活性和巨大潜力得到了较深入的研究.除了上述进展,单原子催化领域还有许多基本问题需要继续深入研究,对单原子催化剂更加全面透彻的认识将为设计发展新型催化体系,扩展单原子催化领域提供指导和借鉴.  相似文献   

7.
为有效提高负载型催化剂中贵金属的原子利用效率,贵金属单原子催化剂逐渐成为一个研究热点和前沿课题.我们针对单原子催化剂在催化氧化领域中的应用,综述了几种贵金属单原子催化剂的典型制备方法,包括原子层沉积法、湿法化学法、光化学辅助法、热解法等,并讨论了上述方法的优缺点.此外,对比传统贵金属负载型催化剂,我们重点讨论了贵金属基单原子催化剂在CO催化氧化、挥发性有机化合物(VOCs)催化氧化、催化机理等催化氧化过程中的最新研究进展,尤其是贵金属基单原子催化剂在低温低浓度催化氧化过程中表现出的优异催化活性、抗水性和抗毒性,表明该类催化剂具备极大的工业应用潜力.最后,进一步从大规模工业应用角度探讨了单原子催化剂目前面临的挑战和可能的解决办法,期望可以为应用于催化氧化过程的高效、稳定的单原子催化剂的设计提供思路.  相似文献   

8.
单原子催化剂作为一种原子尺度的催化剂,在制氢、CO氧化及光催化等领域均具有广阔的应用前景。大量实验结果和理论计算证实了金属单原子和载体之间的相互作用,及由两者之间电荷转移引起的电子结构改变是单原子催化剂具有高的选择性和催化活性的主要原因。本文着重综述了近年来共沉淀法、化学还原法及浸渍法所制备单原子催化剂的催化性能,并进行展望。  相似文献   

9.
酶催化与金属单原子催化结合,理论上可开发众多新的绿色化学合成反应,是催化科学的一个重要研究前沿方向.酶-金属单原子复合催化剂兼具酶和金属单原子催化剂的高效、高立体选择性等优点.目前已成功构建的单原子分散金属催化剂的载体一般为刚性的无机载体,利用柔性蛋白分子作为载体制备单原子分散金属催化剂的技术瓶颈问题在于蛋白分子具有柔性、构象易变的特点,并且氨基酸残基与金属原子之间的相互作用力较弱,蛋白分子表面的氨基酸残基难以与金属单原子稳定结合.针对这样一个关键技术瓶颈问题,我们建立了酶-金属单原子复合催化剂的光化学合成方法.本文研究酶-金属单原子复合催化剂在生物-化学一锅级联反应合成联苯类手性醇中的催化性能.联苯类手性醇是手性药物的重要中间体,通常通过多步化学法或生物-化学级联法制备.相比于多步化学法,利用生物-化学级联反应制备联苯类手性化合物具有反应条件温和、选择性高、环境友好等优点.采用光化学法合成脂肪酶-钯单原子复合催化剂(Pd1/CALB-Pluronic),通过球差矫正扫描透射电镜和扩展X射线吸收精细结构表征复合催化剂的形貌.首先研究了Pd1/...  相似文献   

10.
李灿 《催化学报》2016,(9):1443-1445
单原子催化剂(SAC)是多相催化领域一个新兴的研究热点,是指催化剂中活性组分完全以孤立的单个原子的形式存在,并通过与载体作用或与第二种金属形成合金得以稳定.相比于纳米/亚纳米催化剂,单原子催化剂具有诸多优势:(1)活性组分达到最大程度分散(100%),可有效提高金属(特别是贵金属)原子利用率;(2)活性位点的组成和结构单一,可避免因活性组分组成和结构不均匀导致的副反应,从而显著提高目标产物的选择性;(3)单原子催化剂兼具高活性、高选择性和可循环使用的优点,有望成为连接均相催化与非均相催化的桥梁.因此,单原子催化剂为在原子尺度上理解催化机理和构效关系提供了一个很好的平台.2011年,中国科学院大连化学物理研究所张涛院士团队首次合成了单原子铂催化剂Pt1/FeOx.该催化剂通过共沉淀法制备,在CO氧化以及PROX反应中展示出优异的催化性能,其TOF值为相应的纳米催化剂3倍之高,在此基础上,该团队随后发展了一系列贵金属单原子催化剂,例如Ir/FeOx,Pd/ZnO,Au/CeO2和Ag-Pd/SiO2.这些催化剂在水气变换反应、乙炔选择性加氢反应、芳香硝基化合物选择加氢等反应中表现出了优异的催化活性及选择性.尤其是在3-硝基苯乙烯选择性加氢反应中,单原子催化剂Pt1/FeOx的TOF值高达1500 h-1,是文献报道最优催化剂的20倍;产物3-氨基苯乙烯的选择性高达99%.在单原子催化剂概念提出的短短几年,它已经成为目前多相催化领域的研究热点,并且发展出许多新的单原子催化剂制备方法.然而,由于单个原子具有较高的表面能,因此目前制备的单原子催化剂负载量往往较低(<0.5 wt%).另一方面,目前单原子催化剂的研究对象主要为贵金属,而非贵金属单原子催化剂却鲜有报道.近日,张涛团队在非贵金属单原子催化剂领域取得新的进展.他们成功制备出了负载量高达3.6 wt%的Co-N-C单原子催化剂,并结合密度泛函理论(DFT)和X-射线吸收精细结构(XAFS)技术首次解析出Co-N-C催化位点的精确结构.Co(Fe)-N-C是一类在电催化领域受到广泛关注的材料,在氧还原反应,析氢反应以及CO2电还原反应中均有良好的催化性能,被认为是一种最有希望取代商业Pt/C电极的非贵金属催化剂.然而,由于其组成较为复杂,人们对其活性中心的认识存在诸多争议.Co(Fe)-N-C催化剂通常采用高温焙烧法制备,即将金属前驱体,含N,C配体以及碳载体在600-9000℃高温下焙烧,这往往导致催化剂中同时含有不同尺寸的Co(0),CoOx以及CoM,也含有常规表征手段难以发现的Co(Fe)单原子.张涛团队利用Mg(OH)2作为牺牲载体,制备出了完全单原子分散的Co-N-C催化剂(图1(a)).作者通过原子分辨的高角环形暗场-扫描透射电镜(HAADF-STEM),XAFS和DFT计算,首次证明Co-N-C催化活性中心的结构为CON4C8-1-20z.在这种模型中,Co中心在径向方向与4个N配位,轴向有2个弱吸附的氧气分子吸附在Co原子上(图1(b)).与之前报道的贵金属催化剂显著不同的是,在Co-N-C单原子催化剂中,Co含量高达3.6 %.值得称道的是,这种Co-N-C单原子催化剂在芳硝基化合物选择加氢制备偶氮化合物的反应中的催化活性和选择性可媲美贵金属催化剂.使用Co-N-C催化剂,在温和条件下即可实现从芳香硝基化合物一锅法绿色合成偶氮化合物,并且该催化剂具有优异的底物普适性,即使底物含有-C=C,-I,-Br等基团时,也可高效生成相应的偶氮苯.这项工作的另外一个意义在于获得了非常均一的Co-N-C活性位组成和结构,这为利用多种表征手段精确解析结构提供了一个很好的切入点.某种意义上讲,之前文献中报道的含有多种Co物种的Co-N-C催化剂,其活性中心的认定需要重新审视.事实上,Co的配合物作为分子催化剂已经广泛应用于均相催化中;而这项工作中的Co单原子通过与N,C配位而稳定,活性中心类似于均相催化剂中的Co配合物,但却形成了真正的多相催化剂.因此我们可以预测,许多过渡金属均相催化剂有可能通过该工作中的单原子制备策略转化为多相催化剂,从而使单原子催化剂真正成为均相催化和多相催化的桥梁.  相似文献   

11.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

12.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   

13.
近年来,单原子催化剂因具有多相催化剂的结构稳定、易分离和均相催化剂的“孤立位点”的潜在优点而受到了人们的广泛关注。因此本文着重对比说明了单原子催化剂多种制备方法的形成机制以及制备过程的优缺点并结合相应反应对其催化活性、催化机理进行介绍。通过对单原子催化剂的制备研究现状的概述,以期在加快其工业化进程起到积极的促进作用。  相似文献   

14.
单原子催化剂(SAC)是多相催化领域一个新兴的研究热点,是指催化剂中活性组分完全以孤立的单个原子的形式存在,并通过与载体作用或与第二种金属形成合金得以稳定.相比于纳米/亚纳米催化剂,单原子催化剂具有诸多优势:(1)活性组分达到最大程度分散(100%),可有效提高金属(特别是贵金属)原子利用率;(2)活性位点的组成和结构单一,可避免因活性组分组成和结构不均匀导致的副反应,从而显著提高目标产物的选择性;(3)单原子催化剂兼具高活性、高选择性和可循环使用的优点,有望成为连接均相催化与非均相催化的桥梁.因此,单原子催化剂为在原子尺度上理解催化机理和构效关系提供了一个很好的平台.2011年,中国科学院大连化学物理研究所张涛院士团队首次合成了单原子铂催化剂Pt1/FeOx.该催化剂通过共沉淀法制备,在CO氧化以及PROX反应中展示出优异的催化性能,其TOF值为相应的纳米催化剂3倍之高.在此基础上,该团队随后发展了一系列贵金属单原子催化剂,例如Ir/Fe Ox,Pd/Zn O,Au/Ce O2和Ag-Pd/Si O2.这些催化剂在水气变换反应、乙炔选择性加氢反应、芳香硝基化合物选择加氢等反应中表现出了优异的催化活性及选择性.尤其是在3-硝基苯乙烯选择性加氢反应中,单原子催化剂Pt1/Fe Ox的TOF值高达1500 h–1,是文献报道最优催化剂的20倍;产物3-氨基苯乙烯的选择性高达99%.在单原子催化剂概念提出的短短几年,它已经成为目前多相催化领域的研究热点,并且发展出许多新的单原子催化剂制备方法.然而,由于单个原子具有较高的表面能,因此目前制备的单原子催化剂负载量往往较低(0.5 wt%).另一方面,目前单原子催化剂的研究对象主要为贵金属,而非贵金属单原子催化剂却鲜有报道.近日,张涛团队在非贵金属单原子催化剂领域取得新的进展.他们成功制备出了负载量高达3.6 wt%的Co-N-C单原子催化剂,并结合密度泛函理论(DFT)和X-射线吸收精细结构(XAFS)技术首次解析出Co-N-C催化位点的精确结构.Co(Fe)-N-C是一类在电催化领域受到广泛关注的材料,在氧还原反应,析氢反应以及CO2电还原反应中均有良好的催化性能,被认为是一种最有希望取代商业Pt/C电极的非贵金属催化剂.然而,由于其组成较为复杂,人们对其活性中心的认识存在诸多争议.Co(Fe)-N-C催化剂通常采用高温焙烧法制备,即将金属前驱体,含N,C配体以及碳载体在600–900 oC高温下焙烧,这往往导致催化剂中同时含有不同尺寸的Co(0),Co Ox以及Co Nx,也含有常规表征手段难以发现的Co(Fe)单原子.张涛团队利用Mg(OH)2作为牺牲载体,制备出了完全单原子分散的Co-N-C催化剂(图1(a)).作者通过原子分辨的高角环形暗场-扫描透射电镜(HAADF-STEM),XAFS和DFT计算,首次证明Co-N-C催化活性中心的结构为Co N4C8-1-2O2.在这种模型中,Co中心在径向方向与4个N配位,轴向有2个弱吸附的氧气分子吸附在Co原子上(图1(b)).与之前报道的贵金属催化剂显著不同的是,在Co-N-C单原子催化剂中,Co含量高达3.6%.值得称道的是,这种Co-N-C单原子催化剂在芳硝基化合物选择加氢制备偶氮化合物的反应中的催化活性和选择性可媲美贵金属催化剂.使用Co-N-C催化剂,在温和条件下即可实现从芳香硝基化合物一锅法绿色合成偶氮化合物,并且该催化剂具有优异的底物普适性,即使底物含有–C=C,–I,–Br等基团时,也可高效生成相应的偶氮苯.这项工作的另外一个意义在于获得了非常均一的Co-N-C活性位组成和结构,这为利用多种表征手段精确解析结构提供了一个很好的切入点.某种意义上讲,之前文献中报道的含有多种Co物种的Co-N-C催化剂,其活性中心的认定需要重新审视.事实上,Co的配合物作为分子催化剂已经广泛应用于均相催化中;而这项工作中的Co单原子通过与N,C配位而稳定,活性中心类似于均相催化剂中的Co配合物,但却形成了真正的多相催化剂.因此我们可以预测,许多过渡金属均相催化剂有可能通过该工作中的单原子制备策略转化为多相催化剂,从而使单原子催化剂真正成为均相催化和多相催化的桥梁.  相似文献   

15.
单原子催化剂兼具均相催化剂的活性中心和多相催化剂结构稳定易分离的特点,是实现统一的"大"催化理论非常重要的突破口。由于其优越的催化性能在工业催化中具有巨大的应用潜力。基于"单原子催化"概念提出以来国内外单原子催化剂的研究进展,以不同的活性组分进行分类对单原子催化剂进行归纳总结。系统地介绍了单原子催化剂的制备方法以及应用研究进展,并展望了单原子催化剂的发展前景,以期对于进一步构筑具有特定结构和催化功能的单原子催化剂的研究起到积极的促进作用。  相似文献   

16.
单原子催化剂兼具均相催化剂的活性中心和多相催化剂结构稳定易分离的特点,是实现统一的"大"催化理论非常重要的突破口。由于其优越的催化性能在工业催化中具有巨大的应用潜力。基于"单原子催化"概念提出以来国内外单原子催化剂的研究进展,以不同的活性组分进行分类对单原子催化剂进行归纳总结。系统地介绍了单原子催化剂的制备方法以及应用研究进展,并展望了单原子催化剂的发展前景,以期对于进一步构筑具有特定结构和催化功能的单原子催化剂的研究起到积极的促进作用。  相似文献   

17.
原子捕获法是在高温条件下制备高热稳定单原子催化剂的有效方法之一. 但该方法制备的单原子催化剂通常面临着催化活性低、 反应适用范围窄的问题. 因此, 拓展这类单原子催化剂的应用是亟待解决的难点. 本文采用高温捕获法制备的铱(Ir)单原子催化剂在氮氧化物分解反应中的催化活性较低, 但是在继续负载纳米粒子后, 单原子与纳米粒子之间表现出显著的协同催化作用. X射线光电子能谱(XPS)和CO吸附的原位漫反射红外光谱(CO-DRIFTs)表征结合反应动力学分析揭示了反应的活性中心是金属态的Ir纳米粒子. 虽然氧化态的Ir单原子不能直接活化N2O分子, 但是可以改变Ir纳米粒子的电子结构和吸附性能. 氧气程序升温脱附(O2-TPD)实验证实, 单原子的存在可以促进O2从Ir纳米粒子上脱附, 从而提高催化剂的反应活性.  相似文献   

18.
利用电催化技术开发新型能源,是用来替代传统能源的一种新策略,化石燃料的大量使用从而导致相关的环境问题将会得到良好解决。对于这些技术的推广,设计并制备出高效稳定的电催化剂至关重要。单原子催化剂(SACs)在载体上具有原子分布的活性位点,是催化领域的新兴材料,具有美好的应用前景,现已成为电催化领域的研究热点。在此综述中,详细阐述了单原子电催化剂的一般载体、制备方法及其先进表征方法。同时系统总结了单原子电催化剂在能量转化和环境保护(CO2还原、水裂解)方面的应用。基于各种单原子催化剂研究的最新进展,我们简单阐述了催化机制。最后,讨论了单原子催化剂在电催化方向发展的挑战和前景,我们希望为单原子电催化剂的合成、设计和应用提供经验,更好的促进在电催化能量转换方面的发展。  相似文献   

19.
近年来, 单原子催化剂因其最大化的金属原子利用效率和高催化性能, 已成为能量存储和转化领域中的研究热点. 单原子催化剂的高活性主要来源于其低配位结构、 量子尺寸效应和原子与载体之间的强相互作用. 因此, 如何根据构-效关系开发通用且简单的制备高效单原子催化剂的方法具有重要的意义. 从实际应用的角度而言, 湿化学法因具有工艺简单和易于大规模生产的特性, 被认为是一种实现工业化制备单原子催化剂的方法, 现已开发了一系列制备负载型单原子催化剂的策略. 本文从独特的抑制反应物前驱体物质形核的角度出发, 总结了冷冻合成方法对形核的抑制机制, 进一步针对不同方面的应用, 探讨了单原子材料的催化机理, 并对其未来的发展进行了展望.  相似文献   

20.
单原子催化剂(SACs)兼具均相与多相催化剂的双重优势, 表现出最大化的原子利用率、 超高的本征活性与选择性以及易与产物分离的特点, 受到人们的广泛关注. 然而, 由于单个原子较高的表面能以及不稳定性, 设计与制备单原子催化剂仍是一大挑战. 本文综合评述了近年来单原子催化剂的稳定化策略、 高载量催化剂的制备方法以及批量制备技术等方面的关键研究进展, 并简要分析了单原子催化剂未来发展所面临的问题与挑战, 最后对单原子催化的发展方向进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号