首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 184 毫秒
1.
Lei WANG  Fei YU  Jie MA 《物理化学学报》2017,33(7):1338-1353
电容去离子(CDI)是一种通过静电力作用将离子从水中去除的技术,电极是整个装置中为最为核心的部件,石墨烯因具有优异的导电性和巨大的比表面积等优势成为当前CDI电极材料的研究热点之一。目前对于CDI石墨烯电极的研究主要集中于石墨烯电极的合成,然而有关CDI性能与石墨烯电极制作工艺及电极材料自身结构之间的关系,缺少相关综述。本文系统介绍了CDI的基本原理与性能指标,综述了石墨烯电极材料的研究进展与电极制作工艺,重点分析、归纳和总结了石墨烯材料的特性(孔隙结构、导电性、亲疏水性)对CDI性能的影响,最后对CDI中石墨烯电极材料今后的发展进行了总结和展望。  相似文献   

2.
超级电容器是目前研究较多的新型储能元件,其大的比电容、高的循环稳定性以及快速的充放电过程等优良特性,使其在电能储存及转化方面得到广泛应用。超级电容器的电极材料是它的技术核心。石墨烯作为一种新型的纳米材料,具有良好的导电性和较大的比表面积,可作为超级电容器的电极材料。利用其他导电物质对石墨烯进行改性和复合,可以在保持其本身独特优点的同时提高作为电极材料的导电率、循环稳定性等其他性能。本文从半导体/石墨烯复合材料、金属及金属氧化物/石墨烯复合材料、石墨烯/导电聚合物复合材料3个方面综述了复合改性后的石墨烯在超级电容器电极材料方面的研究进展。通过对各复合物电极材料的制备方法和性能的对比分析,指出石墨烯基复合物作为超级电容器的电极材料的未来研究内容是开发低成本、高比容量和高循环稳定性的复合物。  相似文献   

3.
发展氧气还原反应(ORR)的二电子高效电催化剂一直是燃料电池领域的研究热点,但针对具有二电子还原特征且可应用于水处理领域电极材料的研究还处在起步阶段。本综述介绍了近年来二电子还原特征的贵金属电极材料及其在电催化处理水中污染物的研究进展。在Fe~(2+)存在下,Pd基电极材料催化氧气还原合成H_2O_2,间接催化氧化水中有机污染物,实现有机物的矿化降解和水质的净化;Pd基电极催化还原水中有机污染物、无机盐等,将其转化为低毒性、易处理产物并彻底去除;Pd基催化电极的高效电子传导性能增强了水中重金属离子的氧化/还原转化,实现重金属去除。本综述展望了纳米电极材料在水处理应用的机遇与发展方向。  相似文献   

4.
石墨烯基催化剂的设计合成与电催化应用   总被引:2,自引:1,他引:1  
为了解决能源匮乏和环境污染的问题,研究人员正致力于寻找清洁可持续的新能源。 其中,氧气还原、氧气析出、析氢反应等是紧密联系新型清洁能源获取和存贮的重要电化学反应。 为了提高其能量转化效率,电催化剂(如碳载铂Pt/C)被广泛地用于降低其反应活化能、提高能量转化效率。 近年来,石墨烯作为一种具有高比表面积和优异导电性的二维碳材料受到了广泛关注。 通过表面杂原子掺杂、缺陷调控和引入催化活性组分等方式,获得了催化性能与贵金属催化剂相媲美,且低价格和高稳定性的非贵金属石墨烯基催化材料。 针对氧气还原、氧气析出和析氢反应在燃料电池、金属-空气电池和电催化水分解中的应用,本文概括综述了通过表/界面结构性质调控提高石墨烯电催化性能和稳定性,获得具有双功能或复合催化性能的石墨烯基催化剂的最新研究进展。 最后总结和展望了亟待解决的问题及未来的发展趋势。  相似文献   

5.
制备了羧基化石墨烯基聚吡咯复合物(CG/ppy)修饰电极,用循环伏安法和交流阻抗法研究了修饰电极的电化学行为,并对修饰电极进行了恒流充放电以及循环稳定性测试。 实验结果表明,CG/ppy显著提高了玻碳电极在电解液中的电流响应,降低了玻碳电极在电解液中的电阻,修饰电极的比电容可达584 F/g,且经过1000次循环后比电容仍保持初始值的81%。 首次将羧基化石墨烯基聚吡咯应用于电化学领域,证实了CG/ppy修饰电极在该领域中有潜在的应用价值。  相似文献   

6.
石墨烯是一种单原子层厚度的石墨材料,具有独特的二维结构和优异的电学、力学以及热学性能。同时它也是一种具有良好应用前景的锂离子电池电极材料。电极材料的微观结构对其性能有很大影响,利用石墨烯获得具有特殊形貌和微观结构的电极材料,能有效改善材料的各项电化学性能。本文综述了石墨烯及其复合材料在锂离子电池中的应用研究进展。在负极复合材料中,石墨烯不仅可以缓冲材料在充放电过程中的体积效应,还可以形成导电网络提升复合材料的导电性能,提高材料的倍率性能和循环寿命。通过优化复合材料的微观结构,例如夹层结构或石墨烯片层包覆结构,可进一步提高材料的电化学性能。在正极复合材料中,石墨烯形成的连续三维导电网络可有效提高复合材料的电子及离子传输能力。此外,相比于传统导电添加剂,石墨烯导电剂的优势在于能用较少的添加量,达到更加优异的电化学性能。最后对石墨烯复合材料的研究前景进行了展望。  相似文献   

7.
用于生物电化学系统的石墨烯电极新进展   总被引:1,自引:0,他引:1  
可持续社会的发展需要成本低, 并从废物或废水中提取能源或将能源转化为产品的环境友好技术. 近年兴起的生物电化学系统(BESs)利用微生物催化不同电化学反应, 是将废物或废水中能量转化为电能等多种产品的发展前景广阔的新技术. 当有关反应的吉布斯自由能小于零, 系统输出电能, 此时的BESs即为微生物燃料电池(MFCs); 相反, 若反应的吉布斯自由能为正值, 此时的BESs被称为微生物电解电池(MECs). 随着研究工作的不断深入和拓展, BESs的电极性能已成为制约其应用的瓶颈. 石墨烯以其独特的结构和优异的材料性能在BESs领域, 特别是MFCs中得以应用. 本文参考了最新的文献资料, 综述了石墨烯应用于BESs的发展现状, 包括应用于MFCs的石墨烯电极、掺杂石墨烯电极、担载石墨烯电极, 对其在MECs中可能的应用, 以及未来发展趋势予以展望.  相似文献   

8.
氧化石墨烯薄片的边缘含有大量的含氧功能团(如羧基等),这些官能团可以有效地与金属离子作用而成为晶体的成核位点,从而使得氧化石墨烯具备模板功能而用于仿生合成。论文综述了氧化石墨烯用作模板剂在仿生合成有机/无机杂化材料方面的应用研究进展,介绍了其基本原理,阐述了不同类型杂化材料的制备方法,并展望了石墨烯基有机/无机杂化材料的发展新趋势。  相似文献   

9.
石墨烯基纤维电容器的可控制备及应用   总被引:1,自引:1,他引:0  
聂肖威  陈南  李静  曲良体 《应用化学》2016,33(11):1234-1244
超级电容器又名电化学电容器,是一种绿色储能器件。 超级电容器的研究,从根本上讲是寻找比表面积大且可以被充分利用的电极材料。 石墨烯作为sp2杂化碳质材料的基元单位,具有独特的二维结构和优异的物化特性,使得其在超级电容器领域具有巨大的应用潜力,其中石墨烯纤维超级电容器受到了研究工作者越来越广泛的关注。 本文通过对一维石墨烯纤维的自组装以及与制备材料的共组装来作为超级电容器的电极材料,对其可控制备进行了系统的归纳和总结,可控构建独特的电极材料,使其性能得以优化,组装出高性能的超级电容器,并对相关领域的发展趋势做了展望。  相似文献   

10.
石墨烯-聚苯胺杂化超级电容器电极材料   总被引:1,自引:0,他引:1  
聚苯胺是一类具有超高比电容的导电高分子材料, 利用其与石墨烯的协同效应, 改善各自的固有缺点, 可以制得高性能的超级电容器. 本文综述了石墨烯-聚苯胺杂化电极材料的制备方法和石墨烯表面性质对电极材料电化学性能的影响, 讨论了优化杂化电极的结构与性能.  相似文献   

11.
《Electroanalysis》2017,29(3):652-661
The modifications of electrodes using graphene and graphene composites in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) have been widely applied for enhancing the electrochemical catalytic activity and performance of MFCs and MECs. Graphene as one of advanced materials has shown outstanding features for promoting practical applications of MFCs. This review summarizes the modification methods and characterization methods of graphene and related graphene composites on electrode surfaces in MFCs and MECs. The performance improvements of MFCs and MECs by various graphene related composites have been reviewed, which will provide an efficient guide for selecting suitable graphene material to modify electrodes in MFCs and MECs for improving their performance.  相似文献   

12.
Microbial fuel cells (MFCs) convert electrochemical energy into electrical energy immediately and have a big potential usage for the same time wastewater treatment and energy recovery via electro-active microorganisms. However, MFCs must be efficiently optimized due to its limitations such as high cost and low power production. Finding new materials to increase the cell performance and reduce cost for MFC anodes is mandatory. In the first step of this study, different inoculation sludges such as anaerobic gum industry wastewater, anaerobic brewery wastewater and anaerobic phosphate were tested, and MFC that was set up with anaerobic gum industry wastewater inoculation sludge exhibited the highest performance. In the second step of this study, various wastewaters such as chocolate industry, gum industry and slaughterhouse industry were investigated for anode bacteria sources. Several electrochemical techniques have been employed to elucidate how wastewaters affect the MFCs’ performance. Among all the mentioned wastewaters, the best performance was achieved by the MFCs fed with slaughterhouse wastewater; this device produced a maximum power density of 267 mW·m?2.  相似文献   

13.
Facile fabrication of novel three‐dimensional anode materials to increase the bacterial loading capacity and improve substrate transport in microbial fuel cells (MFCs) is of great interest and importance. Herein, a novel graphene‐containing foam (GCF) was fabricated easily by freeze‐drying and pyrolysis of a graphene oxide–agarose gel. Owing to the involvement of graphene and stainless‐steel mesh in the GCF, the GCF shows high electrical conductivity, enabling the GCF to be a conductive electrode for MFC applications. With the aid of agarose, the GCF electrode possesses a supermacroporous structure with pore sizes ranging from 100–200 μm and a high surface area, which greatly increase the bacterial loading capacity. Cell viability measurements indicate that the GCF possesses excellent biocompatibility. The MFC, equipped with a 0.4 mm‐thick GCF anode, shows a maximum area power density of 786 mW m?2, which is 4.1 times that of a MFC equipped with a commercial carbon cloth anode. The simple fabrication route in combination with the outstanding electrochemical performance of the GCF indicates a promising anode for MFC applications.  相似文献   

14.
Anode electrodes play a key role in generating electricity from microbial fuel cells (MFCs) because they directly affect microbial activities. This communication reports the preparation of nitrogen-doped carbon nanotubes with a bamboo-like nanostructure (Bamboo-NCNTs) by catalytic pyrolysis of ethylene diamine and application of the Bamboo-NCNTs as anode-modifying materials in MFCs. The Bamboo-NCNTs significantly improved performance of an MFC in current production and power output, and reduced internal resistance of the anode compared with conventional CNTs-modified and unmodified anodes. The improved performance could be attributed to the increased active sites induced by multiple joint structures and enhanced biocompatibility originated from nitrogen dopant.  相似文献   

15.
锂硫电池因其超高的理论能量密度以及硫资源丰富、成本低廉、无毒的优点,被认为是极具发展潜力与应用前景的新一代储能设备。然而,硫正极导电性差、体积膨胀以及穿梭效应严重等问题严重制约了其商业化应用。石墨烯具有高比表面积、高导电性和高柔韧性,并且易于进行表面化学修饰及组装,是一种理想的硫载体材料。本文主要综述了近年来三维石墨烯、表面化学修饰的石墨烯、石墨烯基复合材料以及石墨烯基柔性材料在锂硫电池正极中的研究现状,并展望了石墨烯作为硫载体在锂硫电池正极中的发展趋势。  相似文献   

16.
F Zhang  H Cao  D Yue  J Zhang  M Qu 《Inorganic chemistry》2012,51(17):9544-9551
Here, we report a three-layer-structured hybrid nanostructure consisting of transition metal oxide TiO(2) nanoparticles sandwiched between carbonaceous polymer polyaniline (PANI) and graphene nanosheets (termed as PTG), which, by simultaneously hindering the agglomeration of TiO(2) nanoparticles and enhancing the conductivity of PTG electrode, enables fast discharge and charge. It was demonstrated that the PTG exhibited improved electrochemical performance compared to pure TiO(2). As a result, PTG nanocomposite is a promising anode material for highly efficient lithium ion batteries (LIBs) with fast charge/discharge rate and high enhanced cycling performance [discharge capacity of 149.8 mAh/g accompanying Coulombic efficiency of 99.19% at a current density of 5C (1000 mA/g) after 100 cycles] compared to pure TiO(2). We can conclude that the concept of applying three-layer-structured graphene-based nanocomposite to electrode in LIBs may open a new area of research for the development of practical transition-metal oxide graphene-based electrodes which will be important to the progress of the LIBs science and technology.  相似文献   

17.
A green and facile approach was demonstrated to prepare graphene nanosheets/ZnO (GNS/ZnO) composites for supercapacitor materials. Glucose, as a reducing agent, and exfoliated graphite oxide (GO), as precursor, were used to synthesize GNS, then ZnO directly grew onto conducting graphene nanosheets as electrode materials. The small ZnO particles successfully anchored onto graphene sheets as spacers to keep the neighboring sheets separate. The electrochemical performances of these electrodes were analyzed by cyclic voltammetry, electrochemical impedance spectrometry and chronopotentiometry. Results showed that the GNS/ZnO composites displayed superior capacitive performance with large capacitance (62.2 F/g), excellent cyclic performance, and maximum power density (8.1 kW/kg) as compared with pure graphene electrodes. Our investigation highlight the importance of anchoring of small ZnO particles on graphene sheets for maximum utilization of electrochemically active ZnO and graphene for energy storage application in supercapacitors.  相似文献   

18.
Supercapacitors store electrical energy by ion adsorption at the interface of the electrode‐electrolyte (electric double layer capacitance, EDLC) or through faradaic process involving direct transfer of electrons via oxidation/reduction reactions at one electrode to the other (pseudocapacitance). The present minireview describes the recent developments and progress of carbon‐transition metal oxides (C‐TMO) hybrid materials that show great promise as an efficient electrode towards supercapacitors among various material types. The review describes the synthetic methods and electrode preparation techniques along with the changes in the physical and chemical properties of each component in the hybrid materials. The critical factors in deriving both EDLC and pseudocapacitance storage mechanisms are also identified in the hope of pointing to the successful hybrid design principles. For example, a robust carbon‐metal oxide interaction was identified as most important in facilitating the charge transfer process and activating high energy storage mechanism, and thus methodologies to establish a strong carbon‐metal oxide contact are discussed. Finally, this article concludes with suggestions for the future development of the fabrication of high‐performance C‐TMO hybrid supercapacitor electrodes.  相似文献   

19.
For the purpose of reducing the cost and improving the performance of cathodes in microbial fuel cells (MFCs), we prepared Pt/C and Pt-M/C (M = Ni, Co, Fe) electrodes, and characterized them by SEM, XRD and CV. The modified electrodes were used as the cathodes in double-chambered MFCs fed with synthetic medium and molasses sewage respectively. We have found that Pt-M/C catalysts had a better catalytic activity for oxygen reduction than Pt/C in the following order: Pt-Fe/C > Pt-Co/C > Pt-Ni/C > Pt/C. The maximum power density of the MFCs with Pt-M/C cathode was improved by 18–31% compared with the MFC with Pt/C cathode because of the decrease of activation loss in the cathode. This study shows that Pt-M/C catalysts can improve power generation of MFCs without affecting the COD removal and it is proposed that Pt-Fe functions best among the three Pt-M alloys as an efficient and cost-effective catalyst of MFCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号