首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new molybdenum complex (C4H12N2)2[(MoV2O4)(MoVIO4)(C2O4)2]·2H2O, was solvothermally synthesized and characterized by single-crystal X-ray diffraction. The structure of the compound consists of oxalate acid-coordinated mixed-valent [MoV2O4][MoVIO4] helical chains and protonated piperazine cations. The helical chains are built up from the [MoV2O4] units and [MoVIO4] tetrahedral. The central axis about helical chain is a 2-fold screw axis. The compound crystallizes in the space group P21/n of monoclinic system with a = 11.396(2) Å, b = 14.107(3) Å, c = 15.805(3) Å, β = 102.09(3)°, V = 2484.6(9) Å3, Z = 4. Other characterizations by elemental analysis, IR, and thermal analysis for this compound are also given.  相似文献   

2.
《Solid State Sciences》2007,9(11):1012-1019
Two novel inorganic–organic hybrid compounds composed of Keggin tungstocobaltate framework and cobalt(II)–N coordination complexes, K[Co(phen)2(H2O)]2[HCoW12O40]·2H2O (1) (phen = 1,10-phenanthroline) and [Co(2,2′-bipy)3]1.5{[Co(2,2′-bipy)2(H2O)][HCoW12O40]·0.5H2O (2) (bipy = bipyridine), have been synthesized under hydrothermal conditions by directly using Keggin POMs as starting materials, which were characterized by elemental analyses, IR, TG analyses and X-ray single crystal diffraction. Crystal data for compound 1: C48H41Co3KN8O44W12, triclinic, space group P-1, a = 10.918(5) Å, b = 13.401(5) Å, c = 13.693(5) Å, α = 69.291(5)°, β = 71.568(5)°, γ = 78.421(5)°, V = 1768.9(12) Å3, Z = 1; for compound 2: C130H104Co7N26O83W24, orthorhombic, space group, C2/c, a = 46.839(9) Å, b = 14.347(3) Å, c = 26.147(5) Å, α = β = γ = 90°, V = 17,570(6) Å3, Z = 4. Compound 1 exhibits a pseudo-1D chainlike structure, in which potassium ions act as linkages of Keggin unit doubly grafted by [Co(phen)2(H2O)] complex. Compound 2 represents a [Co(2,2′-bipy)2(H2O)]2+ mono-grafted Keggin tungstocobaltate derivative with 1.5[Co(2,2′-bipy)3]2+ countercations. The cyclic voltammetric behavior of 1-CPE is similar to the parent 3-CPE, but the cyclic voltammetric behavior of CoII shows a little difference. Variable-temperature magnetic susceptibility measurement of compound 1 demonstrates the presence of antiferromagnetic interactions.  相似文献   

3.
《Solid State Sciences》2007,9(5):370-375
A new two-dimensional lead(II) vanadate, Ba3PbV4O14 has been synthesized by standard solid state techniques using BaCO3, PbO, and V2O5 as reagents. The structure of Ba3PbV4O14 was determined by single-crystal X-ray diffraction. Ba3PbV4O14 crystallizes in the triclinic space group P-1 (no. 2), with a = 7.2997(15) (Å), b = 7.2932(15) (Å), c = 13.379(3) (Å), α = 93.68(3)°, β = 99.68(3)°, γ = 91.49(3)°, V = 700.2(2) 3) and Z = 2. Ba3PbV4O14 exhibits a novel two-dimensional layered structure consisting of corner shared VO4 tetrahedra that are linked by edge shared PbO7 polyhedra, in which the Ba2+ cations occupy the interlayer region. The Pb2+ cations are in asymmetric coordination environments attributable to its lone pair. Infrared, Raman, and UV–vis diffuse reflectance spectroscopy, thermogravimetric analysis, and dipole moment calculations are also presented.  相似文献   

4.
BaSi2O2N2 is a promising host lattice for rare-earth doped luminescent materials in phosphor-converted (pc)-LEDs. Applying a combined approach, its orthorhombic average structure (space group Cmcm (no. 63), a = 14.3902(3) Å, b = 5.3433(1) Å, c = 4.83256(7) Å and V = 371.58(2) Å3, Z = 4) has been elucidated by electron diffraction and structure solution from X-ray and neutron powder diffraction data with subsequent Rietveld refinement (wRp = 0.0491 for X-ray data). The structure contains layers of highly condensed SiON3 tetrahedra with O terminally bound to Si. The Ba2+ ions are situated between the layers and are surrounded by a cuboid of O atoms capped by two N atoms. In the structure, there is only one Ba site and one Si site, respectively, which is in accordance with a single sharp 29Si NMR signal observed at ?52.8 ppm typical for SiON3 tetrahedra in MSi2O2N2 type oxonitridosilicates. Lattice energy calculations support the results of the structure determination.  相似文献   

5.
The novel branched chain-type nitridosilicates Ce5Si3N9 and La5Si3N9 have been synthesized in a radio-frequency furnace starting from the respective metals and silicon diimide Si(NH)2 at 1625 °C for La5Si3N9 and 1650 °C for Ce5Si3N9, respectively. The structure of Ce5Si3N9 has been determined by single-crystal X-ray diffraction (Ce5Si3N9, Cmca (no. 64), a = 10.567(2) Å, b = 11.329(2) Å, c = 15.865(3) Å, V = 1899.3 Å3, Z = 8, R1 = 0.0391, 1480 independent reflections, 90 refined parameters). The structure of isotypic La5Si3N9 has been refined by the Rietveld method, starting from single-crystal data of Ce5Si3N9 (La5Si3N9, Cmca (no. 64), a = 10.647(4) Å, b = 11.414(4) Å, c = 16.030(5) Å, V = 1948.1 Å3, Z = 8, RP = 0.0348, RF2 = 0.0533). Both compounds are built up of alternating Q2- and Q3-type corner sharing SiN4 tetrahedra with additional corner sharing Q1-units attached to the Q3-tetrahedra pointing alternately in opposing directions. These zipper-like chains are intertwined in both directions perpendicular to the chain itself to form a three-dimensionally interlocked structure with the rare-earth ions situated between the chains. Magnetic measurements resulted in a ferromagnetic ground state with a magnetic moment in agreement with Ce3+.  相似文献   

6.
Single crystals of a new phosphate AgCr2(PO4)(P2O7) have been prepared by the flux method and its structural and the infrared spectrum have been investigated. This compound crystallizes in the monoclinic system with the space group C2/c and the parameters are, a = 11.493 (3) Å, b = 8.486 (3) Å, c = 8.791 (2) Å, β = 114.56 (2)°, V = 779.8 (3) Å3and Z = 4. Its structure consists of CrO6 octahedra sharing corners with P2O7 units to form undulating chains extending infinitely along the [110] direction. These chains are connected by the phosphate tetrahedra giving rise to a 3D framework with six-sided tunnels parallel to the [101] direction, where the Ag+ ions are located. The infrared spectrum of this compound was interpreted on the basis of P2O74? and PO43? vibrations. The appearance of νsP–O–P in the spectrum suggests a bent P–O–P bridge for the P2O74? ions in the compound, which is in agreement with the X-ray data. The electrical measurements allow us to obtain the activation energy of (1.36 eV) and the conductivity measurements suggest that the charge carriers through the structure are the silver captions.  相似文献   

7.
Compound Cu2(H2O)2{O3PCH2N(C2H4)2NCH2PO3} (1) has a pillared layered structure in which the organic groups of N,N′-piperazinebis(methylenephosphonate) are sandwiched between the inorganic layers. Compared with other copper phosphonates with layered or pillared layered structures, the inorganic layer in 1 is unique in that each {CPO3} tetrahedron is corner-shared with three {CuO4N} square pyramids through three oxygen donors. Ferromagnetic interactions are mediated between the metal centers. Crystal data: Pbca, a=10.0830(16) Å, b=9.4517(15) Å, c=13.218(2) Å, V=1259.7(3) Å3, Z=4.  相似文献   

8.
《Solid State Sciences》2001,3(1-2):121-132
The structures of the tetramethylammonium dichromate, [(CH3)4N]2Cr2O7 and trichromate, [(CH3)4N]2Cr3O10, were determined from single-crystal X-ray diffraction data. These compounds crystallize in the orthorhombic system (space group Pnma, with Z=4 and a=17.192(1) Å, b=8.55(1) Å, c=10.637(1) Å), for the dichromate and in the monoclinic system (space group P21/n, with Z=4 and a=11.366(2) Å, b=8.493(2) Å, c=20.187(4) Å, β=103.98(3)° for the trichromate. The structures consist of discrete dichromate anions (Cr2O7)2– or trichromate anions (Cr3O10)2–, respectively, stabilized by quaternary ammonium [(CH3)4N]+. Phase transitions in [(CH3)4N]2Cr2O7 have been evidenced by differential scanning calorimetry as well as a new allotropic variety of [(CH3)4N]2Cr2O7 which was characterized by X-ray powder diffraction. It crystallizes in an orthorhombic system with the unit cell parameters a=24.49(1) Å, b=8.85(1) Å, c=8.705(8) Å.  相似文献   

9.
We have extended our research interest on titanium oxyphosphates (MII(TiO)2(PO4)2, with MII = Mg, Fe, Co, Ni, Cu, Zn) to vanadium oxyphosphates MII(VIVO)2(PO4)2 (MII = Co, Ni). For each compound two phases, named α and β according to synthesis conditions, have been stabilized at room temperature, then characterized. The four crystal structures M(VO)2(PO4)2 (α and β for M = Co, Ni) have been determined in monoclinic P21/c space group using X-ray single crystals diffraction data. Structure of the α phase is derived from the Li(TiO)(PO4) (orthorhombic Pnma) and LiNi0.50(TiO)2(PO4)2 (monoclinic P21/c) types, with cell parameters: a = 6.310(1) Å, b = 7.273(1) Å, c = 7.432(1) Å, β = 90.43(1)° for M = Co, and a = 6.297(2) Å, b = 7.230(2) Å, c = 7.421(2) Å, β = 90.36(2)° for M = Ni. Structure of the β phase is derived from the Ni(TiO)2(PO4)2-type (monoclinic P21/c) with cell parameters: a = 7.2742(2) Å, b = 7.2802(2) Å, c = 7.4550(2) Å, β = 120.171(2)° for M = Co, and a = 7.2691(2) Å, b = 7.2366(2) Å, c = 7.4453(2) Å, β = 120.231(2)° for M = Ni. All these structures consist of a three dimensional (3D) framework built up of infinite chains of tilted corner-sharing [VO6] octahedra, cross-linked by corner-sharing [PO4] tetrahedra. The M2+ ion (M = Co, Ni) is located in a triangular based antiprism which shares faces with two [VO6] octahedra. Structural filiation is discussed based on a common structural unit, a sheet where divalent cations M2+ (M = Co, Ni) are inserted. A thermal study of the α ? β transition is also presented.  相似文献   

10.
《Solid State Sciences》2007,9(8):686-692
Hydrothermal reactions of 2-quinolinephosphonic acid (1) and CuSO4 or CdSO4 result in two new compounds with formula Cu(2-C9H6NPO3) (2) and Cd(2-C9H6NPO3)(H2O) (3). Compound 2 has a layer structure in which dimers of edge-sharing {CuO4N} square-pyramids are linked by {CPO3} tetrahedra through corner sharing. Compound 3 shows a new type of layer structure where chains of corner sharing {CdO5N} octahedra are connected by {CPO3} tetrahedra into an inorganic layer. The quinoline groups fill in the inter-layer spaces in both cases. Crystal data for 1: monoclinic, space group P21/c, a = 10.270(2) Å, b = 13.566(3) Å, c = 6.9818(16) Å, β = 101.916(4)°, V = 951.8(4) Å3, Z = 4. For 2: monoclinic, space group P21/c, a = 13.976(3) Å, b = 7.9398(18) Å, c = 7.8687(18) Å, β = 101.150(5)°, V = 856.7(3) Å3, Z = 4. For 3: monoclinic, space group P21/c, a = 17.164(4) Å, b = 5.4870(12) Å, c = 10.850(2) Å, β = 101.557(4)°, V = 1001.1(4) Å3, Z = 4. The magnetic measurement on 2 reveals a dominant antiferromagnetic exchange coupling between the Cu(II) centers. A quasi-reversible electrochemical reaction is observed for complex 2 immobilized on the surface of GC electrode, corresponding to the redox couple Cu2+/Cu+. The fluorescent properties of 13 are also investigated.  相似文献   

11.
An inorganic compound formulated as K5NH4[TeMo6O24].Te(OH)6.6H2O (1) has been isolated by conventional solution method and structurally characterized by single-crystal X-ray diffraction methods, scanning electron microscopy (SEM), IR, UV–vis spectra, and cyclic voltammetry measurements. This compound crystallizes in the monoclinic system, space group C2/c with unit a = 18.6841(1) Å, b = 10.0513(1) Å, c = 21.1065(1) Å, β = 116.495(1)°, V = 3547.49(4) Å3, Z = 4, R = 0.033 and wR (F2) = 0.087 for 3432 unique observed reflexions [I > 2σ(I)]. The crystal structure of (1) is built up from an Anderson clusters connected through hydrogen-bonding interactions into a three-dimensional supramolecular network.  相似文献   

12.
《Solid State Sciences》2007,9(9):804-811
Hydrothermal combination of CuSO4, MoO3, and 4-phenylpyridine (4-phpyr) in a 1:4:4.5 ratio under basic conditions afforded purple crystals of {[Cu(4-phpyr)4]2(Mo8O26)·4-phpyr} (1), which were analyzed by spectroscopy and single crystal X-ray diffraction. The asymmetric octamolybdate clusters in 1 adopt an intermediate structural variant between the known α and δ isomeric forms, with four octahedral and three tetrahedral molybdenum coordination spheres, along with one molybdenum atom in a highly distorted square pyramidal environment. Paddle-wheel shaped [Cu(4-phpyr)4]2+ cations link adjacent {α/δ-Mo8O26}4− clusters into a 2-D layered rhomboid grid coordination polymer. Uncoordinated 4-phpyr molecules lie in incipient voids in the interlamellar regions. The structure of 1 illustrates the utility of sterically bulky coordination complexes in the stabilization of intermediate conformations during energetically facile polyoxometallate isomer interconversion. Crystallographic data: triclinic, P1, a = 13.717(3) Å, b = 13.728(3) Å, c = 14.809(3) Å, α = 109.251(4)°, β = 107.670(4)°, γ = 92.005(4)°, V = 2480.0(9) Å3, R1 = 0.0637, wR2 = 0.1054.  相似文献   

13.
The structures of tin(II)-oxalate, tin(IV)Na–EDTA and tin(IV)Na8-inositol hexaphosphate were investigated using XRD analysis. Samples were identified using the Mössbauer study, thermal analysis and FTIR spectrometry. The Mössbauer study determined two different oxidation states of tin atoms, and consequently two different tin surroundings in the end products. The tin oxalate was found to be orthorhombic with space group Pnma, a=9.2066(3) Å, b=9.7590(1) Å, c=13.1848(5) Å, V=1184.62 Å3 and Z=8. SnNa–EDTA was found to be monoclinic with space group P21/c1, a=10.7544(3) Å, b=10.1455(3) Å, c=16.5130(6) Å, β=98.59(2)°, V=1781.50(4) Å3 and Z=4. Sn(C6H6Na8O24P6) was found to be amorphous.  相似文献   

14.
Two new oxynitride double perovskites of composition Sr2FeMoO6?xNx (x=0.3, 1.0) have been synthesized by annealing precursor powders obtained by citrate techniques in flowing ammonia at 750 °C and 650 °C, respectively. The polycrystalline samples have been characterized by chemical analysis, x-ray and neutron diffraction (NPD), Mössbauer spectroscopy and magnetic measurements. They exhibit a tetragonal structure with a=5.5959(1) Å, c=7.9024(2) Å, V=247.46(2) Å3 for Sr2FeMoO5.7N0.3; and a=5.6202(2) Å, c=7.9102(4) Å, V=249.85(2) Å3 for Sr2FeMoO5N; space group I4/m, Z=2. The nitridation process seems to extraordinarily improve the long-range Fe/Mo ordering, achieving 95% at moderate temperatures of 750 °C. The analysis of high resolution NPD data, based on the contrast existing between the scattering lengths of O and N, shows that both atoms are located at (O,N)2 anion substructure corresponding to the basal ab plane of the perovskite structure, whereas the O1 site is fully occupied by oxygen atoms. The evolution of the 〈Fe–O〉 and 〈Mo–O〉 distances suggests a shift towards a configuration close to Fe4+(3d4, S=2):Mo5+(4d1, S=1/2). The magnetic susceptibility shows a ferrimagnetic transition with a reduced saturation magnetization compared to Sr2FeMoO6, due to the different nature of the magnetic double exchange interactions through Fe–N–Mo–N–Fe paths in contrast to the stronger Fe–O–Mo–O–Fe interactions. Also, the effect observed by low-temperature NPD seems to reduce the ordered Fe moments and enhance the Mo moments, in agreement with the evolution of the oxidation states, thus decreasing the saturation magnetization.  相似文献   

15.
Crystal of a new neodymium oxyborate fluoride Nd6Li(BO3)3O4F2 was grown by the flux method. Its structure, determined by single crystal x-ray diffraction, belongs to the space group C2/c with cell parameters of a = 12.0629(2) Å, b = 6.94650(10) Å, c = 16.0528(3) Å, β = 104.5360(10)°. In the structure, Nd atoms coordinate to oxygen or fluorine atoms to yeild 7 or 8 coordinated Nd(O,F)n polyhedra. Those polyhedra are edge-shared to form a double layer of (Nd12O23F4)14? fluorite blocks. The blocks are linked by oxygen atoms of planar BO3 groups in the c direction into a 3-dimensional network. Another novel element in the structure is that Li coordinates to 6 oxygen atoms from three BO3 groups forming a propeller like arrangement, and theoretical calculation shows that such arrangement should give 3/4 that of BO3 contribution to second harmonic effect. The crystal shows deep violet color with typical Nd3+ optical absorption and a UV transmission cut-off of 260 nm.  相似文献   

16.
《Solid State Sciences》2007,9(3-4):322-328
Electrochemical measurements demonstrate that magnesium surfaces can be protected by alkyl carboxylate. In a nearly neutral pH solution of sodium decanoate, the reduced corrosion rate and a passivation behaviour are attributed to the formation of Mg(C10H19O2)2(H2O)3 (Mg(C10)2) at the magnesium surface whereas heptanoate Mg(C7H13O2)2(H2O)3 (Mg(C7)2) is not efficient in such media. The crystal structures of the two metal carboxylates Mg(C7)2 and Mg(C10)2 are determined by X-ray diffraction. Single crystal data: Mg(C7)2, P21/a, a = 9.130(5) Å, b = 8.152(5) Å, c = 24.195(5) Å, β = 91.476(5)°, V = 1800.3(15) Å3, Dx = 1.242 g cm−3, Z = 4. Synchrotron powder data: Mg(C10)2, P21/a, a = 9.070(3) Å, b = 8.165(1) Å, c = 32.124(1) Å, β = 98.39(1)°, V = 2353.85(8) Å3, Dx = 1.188 g cm−3, Z = 4. Their layered structures are quite similar and differ mainly by the length of the hydrophobic chains. They consist of two planes of O-octahedra centred by Mg atoms, parallel to (001). The distorted octahedra are constituted by three oxygen atoms from carboxylate groups and by three oxygen atoms coming from water molecules. The layers are connected by hydrogen bonds. The carboxylate chains are located perpendicularly and on both sides of these planes. One carboxylate chain is bridging the Mg atom along [010] while the other is monodendate. The presence of structural water is confirmed by thermal analyses.  相似文献   

17.
Single crystals of two new barium rhenate compositions, Ba16Re6O37 and Ba10Re3O16(OH)3, and of one new polymorph, orthorhombic Ba5Re2O12, were grown out of a barium hydroxide flux in sealed silver tubes. Ba16Re6O37 and Ba10Re3O16(OH)3 crystallize into the monoclinic C2/m system, with a = 20.577(4) Å, b = 5.8897(10) Å, c = 15.438 (3) Å, β = 92.255(10) ° and a = 1938342(9) Å, b = 5.8172(3) Å, c = 10.2925(5) Å, β = 91.7460(10) °, respectively. The orthorhombic polymorph of Ba5Re2O12 crystallizes in the space group Pnma, with a = 19.6728(10) Å, b = 5.8491(3) Å and c = 10.4648(5) Å. All the three crystal structures are related and consist of a framework of BaOx polyhedra (where x varies from six to twelve) with interpenetrating layers of ReO6 octahedra.  相似文献   

18.
A new complex of oxovanadium(IV), V2O2[(HB(pz)3)2(pyrro)2 (1) and a dimer-dithio carboxyl compound (C5H8NS2)2 (2) have been synthesized by the reaction of VOSO4·nH2O with NaHB(pz)3 and pyrrolidine dithio carboxylic acid ammonium salt. They were characterized by element analysis, IR spectra, UV–vis spectra and X-ray diffraction. Structural analyses of 1 and 2 gave the following parameters: 1, triclinic, P-1, a = 7.732(4) Å, b = 14.285(8) Å, c = 17.802(9) Å, α = 101.314(8)°, β = 92.682(9)°, γ = 92.228(9)°, V = 1923.6(18) Å3, and Z = 4; 2, monoclinic, C2/c, a = 13.857(2) Å, b = 10.4213(18) Å, c = 9.436(2) Å, β = 97.099(2), V = 1352.1(4) Å3, and Z = 4. In complex 1, vanadium atom adopts a distorted tetragonal bipyramid structure, which is typical for oxovanadium(IV) complexes. Compound 2 is a dimer-dithio carboxyl compound with S–S bond. In addition, thermal analysis was performed for analyzing the stabilization of the complexes.  相似文献   

19.
A family of microporous lanthanide silicates, K8Ln3Si12O32NO3·H2O (denoted LnSiO-CJ3, Ln = Eu, Tb, Gd, Sm), was synthesized under mild hydrothermal conditions at 503 K. The X-ray powder diffraction patterns of these compounds reveal that they are isostructural. The structure of EuSiO-CJ3 was determined by single-crystal X-ray diffraction analysis. It crystallizes in triclinic space group P-1 (No. 2) with a = 11.599(2) Å, b = 12.225(2) Å, c = 13.829(3) Å, α = 112.99(3)°, β = 92.05(3)°, γ = 90.57(3)°. The structure is based on [Si3O8]n4n? layers with 6-, 8-, 12-rings that are connected by EuO6 octahedra to form a 3-D framework with 8-ring channels along the [001] direction. Charge neutrality is achieved by the K+ and NO3? ions located in the channels. The framework of EuSiO-CJ3 shows good thermal stability, which can be stable up to 1273 K. Ion-exchange capacity of EuSiO-CJ3 was investigated by the exchange of NO3? ions with halide ions (F?, Cl?, Br?). The peaks in the emission spectra of LnSiO-CJ3 (Ln = Eu, Tb) belong to the characteristic transitions of Ln3+ (Ln = Eu, Tb) respectively. The lifetime measurements of LnSiO-CJ3 (Ln = Eu, Tb) suggest the presence of three Ln3+ (Ln = Eu, Tb) environments, which are consistent with the crystallographic results.  相似文献   

20.
Two indium-based metal-organic framework have been hydrothermally synthesized by using 1,2,4,5-benzenetetracarboxylate (pyromellitate) or 3,3′,4,4′-benzophenonetetracarboxylate as linkers. Their structures have been characterized by means of single-crystal X-ray diffraction analysis and reveal closely related networks consisting of identical infinite chains of indium-centered trans-connected octahedra, linked to each other through the tetradentate carboxylate linkers. The structure of the indium pyromellitate (MIL-60) delimits a 3D frameworks with one-dimensional 4.0 × 2.7 Å2 channels running along [001] encapsulating water. The second compound (MIL-119) is built up from the compact stacking of the 3,3′,4,4′-benzophenonetetracarboxylate molecules connected to four distinct inorganic chains. In the latter, water species are found to be trapped between two indium hydroxide chains or in terminal positions, bonded to the indium cations. Strong hydrogen interactions are observed between these types of water molecules. Both compounds do not exhibit any significant porosity.Crystal data: In2(OH)2[C10O8H2]·2H2O (MIL-60): monoclinic, C2/m, a = 7.1854(7) Å, b = 17.1940(17) Å, c = 6.5167(7) Å, β = 100.639(2)°, V = 791.27(14) Å3, Z = 2. In2(OH)2(H2O)[C17O9H6]·H2O (MIL-119), monoclinic, P21/c, a = 14.2530(11) Å, b = 14.4024(10) Å, c = 11.7027(9) Å, β = 93.018(2)°, V = 2399.0(3) Å3, Z = 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号