首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H2,CO,CH4多元爆炸性混合气体支链爆炸阻尼效应   总被引:8,自引:0,他引:8  
对多元爆炸性混合气体爆炸的阻尼效应,进行了比较系统的研究,实验表明:“惰性气体”N2,CO2与水蒸汽对多元混合气体支链爆炸具有一定的抑制作用;甲烷与石油液化气对含H2易爆混合气体支链爆炸具有明显的阻尼效应.这对指导支链燃烧与支链爆炸的实践,关于工业尾气与废气的安全回收,有关爆炸性混合气体的置换技术的改进,以及工业与矿井混合气体爆炸事故的预防,具有重要的现实意义与理论价值.  相似文献   

2.
H2、CO、CH4混合气体爆炸极限的多元回归分析   总被引:2,自引:0,他引:2  
H2,CO,CH4是化工生产中常遇到的混合气体,若与空气混合,一定条件下就构成多元爆炸性混合气体,浓度爆炸极限是一个关键性数据。对于多元可燃性混合气体,主要采用Le Chatelier经验方程或对其进行改进后的公式进行估算,但Chatelier经验方程只适用于烃类的混合气体与空气的混合物,对于含氢的多元爆炸性混合气体,预测误差很大。本文对大量的浓度爆炸极限数据进行了多元线性回归分析,建立了爆炸极限预测模型,对于指导多元混合气体支链燃烧与爆炸的理论研究和实践,具有一定的参考价值。  相似文献   

3.
胡锐  吴小华  胡耀元 《化学学报》2010,68(7):623-632
对H2,CO,CH4多元体系支链爆炸的爆炸特性与形态进行了系统的研究.探索了浓度爆炸极限、爆炸形态与波形及其影响因素;测定了爆炸危险度、火焰蔓延极限、最小点火能等爆炸特性参数;根据爆炸形态与波形的不同,提出了爆炸形态与波形的新区划理念,在爆炸极限内,可进一步区划为上下限冷焰区、上下限爆燃区、爆轰区、下爆燃向爆轰转化区等6个爆炸形态区,并探讨了不同爆炸形态压力波的发展机制,对进一步研究相关的多元支链爆炸体系,促进多元支链爆炸理论的发展,具有一定的理论价值.实验测得的爆炸危险度、火焰蔓延极限、最小点火能等特性参数,与引进‘关键组分'的概念,对预防混合气体支链爆炸事故的发生,指导防爆电气设备与阻火器设计,修订相关工业的安全指标,指导支链燃烧与支链爆炸的实践,具有积极的现实意义.  相似文献   

4.
Energetic materials such as a mixture of guanidine nitrate (GN)/basic copper nitrate (BCN) are used as gas generators in automotive airbag systems. However, at the time of the airbag inflation, the gas generators release toxic combustion gases such as CO, NH3, and NOx. In this study, we investigated the combustion and thermal decomposition behaviors of GN/BCN mixture, focusing primarily on their exhaust gas composition. As a result, when the exhaust gas of the combustion under constant pressure in an inert gas stream was analyzed using a detection tube, the amount of NOx (mainly NO) yielded greater decrease with increasing atmospheric pressure as compared to the amounts of CO and NH3. Thus, provided GN/BCN is ignited in a closed container, a large amount of NOx is presumed to have been released during the initial stage of combustion, which yielded comparatively low pressure. Results of the thermogravimetry–differential scanning calorimetry–Fourier transform infrared spectroscopy (TG/DSC/FTIR) indicated that the GN/BCN mixture caused endothermic decomposition at 170 °C and exothermic decomposition at 208 °C, which was accompanied by 66% mass loss. The decomposition gases, CO2, N2O, and H2O, were detected via FTIR spectrum. Because N2O was not detected in the combustion gas, it was suggested that the detected N2O was generated at a low temperature and decomposed in high-temperature combustion.  相似文献   

5.
Most H2 eliminations from cations in the gas phase are formally 1,1- or 1,2- processes. Larger ring size H2 eliminations are rare and little studied. Thus, whether the 6-center, 1,4- elimination CH3CH=N+HCH3-->CH2=CHN+H=CH2+H2 is concerted and synchronous, as indicated by isotope effects and predicted by conservation of orbital symmetry, is a significant question. This reaction is characterized here by application of QCI and B3LYP theories. CH bond-breaking and H-H bond-making in this reaction are found by theory to be highly synchronized, consistent with previously established isotope effects and in contrast to "forbidden" 1,2-eliminations from organic cations in the gas phase. This reaction is made feasible by its conservation of orbital symmetry, the energy supplied by formation of the H-H bond, and a favorable geometry of the ion for eliminating H2.  相似文献   

6.
H-transfers by 4-, 5-, and 6-membered ring transition states to the pi-bonded methylene of CH3CH2CH2NH+=CH2 (1) are characterized by theory and compared with the corresponding transfers in cation radicals. Four-membered ring H-transfers converting 1 to CH3CH2CH=N+HCH3 (2) and CH3N+H=CH2 to CH2=NH+CH3 are high-energy processes involving rotation of the source and destination RHC= groups (R = H or C2H5) to near bisection by skeletal planes; migrating hydrogens move near these planes. The H-transfer 1 --> CH3C+HCH2NHCH3 (3) has a higher energy transition-state than 1 --> 2, in marked contrast to the corresponding relative energies of 4- and 5-membered ring H-transfers in cation-radicals. Six-membered ring H-transfer-dissociation (1 --> CH2=CH2 + CH2=N+HCH3) is a closed shell analog of the McLafferty rearrangement. It has a lower energy transition-state than either 1 --> 2 or 1 --> 3, but is still a much higher energy process than 6-membered ring H-transfers in aliphatic cation radicals. In contrast to the stepwise McLafferty rearrangement in cation radicals, H-transfer and CC bond breaking are highly synchronous in 1 --> CH3N+H=CH2 + CH2=CH2. H-transfers in propene elimination from 1 are ion-neutral complex-mediated: 1--> [CH3CH2CH2+ ---NH=CH2] --> [CH3C+HCH3 NH=CH2] --> CH3CH = CH2 + CH2=NH2+. Intrinsic reaction coordinate tracing demonstrated that a slight preference for H-transfer from the methyl containing the carbon from which CH2=NH is cleaved is due to CH2=NH passing nearer this methyl than the other on its way to abstracting H, i.e., some memory of the initial orientation of the partners accompanies this reaction.  相似文献   

7.
The complexes Ru2(CO)6(μ-H)(O=C(CH=CHPh)C(H)=CPh) (5), Ru3(CO)8-(O=C(CH=CHPh)C(H)=CPh)2 (6), and Ru3(CO)7(O=C(CH=CPh)C(H)=CPh)-(O=C(CH2-CH2Ph)C(H)=CPh) (7) were obtained in the reaction of Ru3(CO)12 with dibenzylideneacetone PhCH=CHCOCH=CHPh. The structures of complexes 5 and 6 were established by NMR and IR spectroscopy and elemental analysis. The structure of complex 7 was established by X-ray diffraction. The structural and spectroscopic features of the complexes, as well as their possible formation and interconversion pathways are discussed.  相似文献   

8.
Combining experimental knowledge with molecular simulations, we investigated the adsorption and separation properties of double-walled carbon nanotubes (DWNTs) against flue/synthetic gas mixture components (e.g. CO(2), CO, N(2), H(2), O(2), and CH(4)) at 300 K. Except molecular H(2), all studied nonpolar adsorbates assemble into single-file chain structures inside DWNTs at operating pressures below 1 MPa. Molecular wires of adsorbed molecules are stabilized by the strong solid-fluid potential generated from the cylindrical carbon walls. CO(2) assembly is formed at very low operating pressures in comparison to all other studied nonpolar adsorbates. The adsorption lock-and-key mechanism results from perfect fitting of rod-shaped CO(2) molecules into the cylindrical carbon pores. The enthalpy of CO(2) adsorption in DWNTs is very high and reaches 50 kJ mol(-1) at 300 K and low pore concentrations. In contrast, adsorption enthalpy at zero coverage is significantly lower for all other studied nonpolar adsorbates, for instance: 35 kJ mol(-1) for CH(4), and 14 kJ mol(-1) for H(2). Applying the ideal adsorption solution theory, we predicted that the internal pores of DWNTs have unusual ability to differentiate CO(2) molecules from other flue/synthetic gas mixture components (e.g. CO, N(2), H(2), O(2), and CH(4)) at ambient operating conditions. Computed equilibrium selectivity for equimolar CO(2)-X binary mixtures (where X: CO, N(2), H(2), O(2), and CH(4)) is very high at low mixture pressures. With an increase in binary mixture pressure, we predicted a decrease in equilibrium separation factor because of the competitive adsorption of the X binary mixture component. We showed that at 300 K and equimolar mixture pressures up to 1 MPa, the CO(2)-X equilibrium separation factor is higher than 10 for all studied binary mixtures, indicating strong preference for CO(2) adsorption. The overall selective properties of DWNTs seem to be superior, which may be beneficial for potential industrial applications of these novel carbon nanostructures.  相似文献   

9.
The complex Rh(acac)(CO)[P(tBu)(CH2CH=CH2)2] (1) proved to be an efficient precatalyst for the regioselective hydrogenation of quinoline (Q) to 1,2,3,4-tetrahydroquinoline (THQ) under mild reaction conditions (125 °C and 4 atm H2). A kinetic study of this reaction led to the rate law:
$$ r \, = \{ K_{1} k_{2} /(1 \, + \, K_{1} {\text{H}}_{ 2} )\} [{\text{Rh}}][{\text{H}}_{ 2} ]^{2} $$
which becomes
$$ r \, = \, K_{1} k_{2} [{\text{Rh}}][{\text{H}}_{ 2} ]^{2} $$
at hydrogen pressures below 4 atm. The active catalytic species is the cationic complex {Rh(Q)2(CO)[P(tBu)(CH2CH=CH2)2]}+ (2). The mechanism involves the partial hydrogenation of one coordinated Q of (2) to yield a complex containing a 1,2-dihydroquinoline (DHQ) ligand, {Rh(DHQ)(Q)(CO)[P(tBu)(CH2CH=CH2)2]}+ (3), followed by hydrogenation of the DHQ ligand to give THQ and a coordinatively unsaturated species {Rh(Q)(CO)[P(tBu)(CH2CH=CH2)2]}+ (4); this reaction is considered to be the rate-determining step. Coordination of a new Q molecule to (4) regenerates the active species (2) and restarts the catalytic cycle.
  相似文献   

10.
Mer-[Mo(CO)3(p-C5H4N-CN)3] was prepared by UV-irradiation of a THF solution of Mo(CO)6 and para-cyanopyridine under heating. The complex was characterized by FT-IR, MS, 1H and 13C NMR and showed catalytic activity for olefin hydroformylation (1-hexene, cyclohexene and 2,3-dimethyl-2-butene as model olefins; 600 psi synthesis gas (pCO/pH2 = 1); 100 °C; 24 h; toluene). An examination of the complex catalyzed hydroformylation of a real naphtha cut (El Palito refinery, Venezuela), under the same conditions, also showed activity in the conversion to oxygenated products.  相似文献   

11.
The electrochemical behavior of Ni cermet electrode with CeO2 ? x additive in contact with YSZ electrode was studied by means of impedance spectroscopy in H2, H2O, CO2, CO, He, and Ar gas media of various composition within the temperature range of 700 to 950°C. Near the equilibrium potential, the electrochemical impedance spectra of the studied electrodes indicate to three stages of electrode reaction. The polarization conductivity of the low-frequency stage of electrode reaction (σlf) is characterized with the following regularities: (a) temperature dependence of σlf has a positive slope in Arrhenius coordinates; (b) σlf increases upon replacement of gas mixture with lower mutual diffusion coefficient by mixture with higher mutual diffusion coefficient, while polarization conductivity values of other stages remain practically invariable; (c) concentration relationships of 1/σlfrecorded for constant activity of oxygen in the gas phase are linear in the 1/σlf vs. 1/P CO 2 (P CO) coordinates; (d) no low-frequency stage of the electrode reaction is observed upon electrochemical inflow (outflow) of the gas reagents (reaction products) to (from) the test electrodes (current passing through closely pressed specimens and central specimen impedance measurement); and (e) no change in the gas flow rate affects σlf value. The observed regularities were explained by assuming the gas diffusion nature of the low-frequency stage of the electrode reaction. The gas diffusion layer thickness was estimated.  相似文献   

12.
We demonstrate that low-pressure glow discharges in He–O2 gas mixture are effective in removing carbonaceous surface layers from coked catalysts. These discharges contain a number of reactive species including O, O3, and O2*, and all these could contribute in the decoking process. However, an evolving understanding is that the O atoms in the discharge have a predominant role in this. A working hypothesis is that the O atoms react with the coke to form CO, CO2 and other carbon complexes. Online measurements using emission spectra from O, H, and CO in the discharges are compared for the cases of He–O2 and Ar–O2 gas mixtures. Under the reported experimental conditions the estimated reactivity of the He–O2 discharges is considerably higher compared with discharges in the Ar–O2 gas mixture. Raman spectroscopy is used to confirm the removal of the coke from the surface of Pt/Alumina catalyst.  相似文献   

13.
This work represents the results of oxygen redistribution studies at quantitative and isotopic levels in synthesis and thermal treatment of ZrO - (0 to 35 mol %) Y2O3 solid solution crystals. The crystals were grown by directed melt crystallization method in a cold container using direct high-frequency heating. The crystal oxygen content and isotopic composition data was collected with respect to stabilizer concentration and technological conditions of synthesis. The temperature and frequency relationships of crystal electroconductivity were also studied. Some strength and tribological characteristics of the given materials were represented. The solid state formation by directional melt crystallization was shown to involve oxygen isotopic exchange interaction between the melt, growing crystal, and gas phase.  相似文献   

14.
The new alkoxysilyl-functionalized alkynes [HC≡CCH2N(H)C(=O)N(H)(CH2)3Si(OEt)3] and [HC≡C(C6H4)–N(H)C(=O)N(H)(CH2)3Si(OEt)3] have been synthesized using literature methods. These have been reacted with Fe3(CO)12, Ru3(CO)12 and Co2(CO)8. With the iron carbonyl only decomposition was observed: with Ru3(CO)12 splitting of the alkynes into their parent components and formation of the complexes (μ-H)Ru3(CO)9[HC=N(CH2)3Si(OEt)3], (μ-H)Ru3(CO)9[C–C(C6H4)NH2] and (μ-H)2Ru3(CO)9[HC–CCH3] occurred. Finally, with Co2(CO)8 formation of complexes Co2(CO)6(HC2R) R=(C6H4)NH2, CH2NH(CO)NH(CH2)3Si(OEt)3, (C6H4)NH(CO)NH(CH2)3Si(OEt)3 containing the intact alkynes could be obtained.  相似文献   

15.
In order to study the effect of water and CH4 concentration on gas explosion, a 20L spherical explosive device was used to carry out a water-containing gas explosion experiment, and the explosion simulation was carried out with CHEMKIN-PRO, the mechanism of water on gas explosion was analyzed from the perspective of free radicals and energy. The results showed that the upper limit of gas explosion, maximum explosion pressure and temperature decreased significantly with the increase of water content. The higher the concentration of CH4, the more obvious the inhibitory effect of water on gas explosion pressure, and the optimal explosion concentration of CH4 decreased with the increase of water content. As the water content and CH4 concentration increase, the residual CH4 content increases after the explosion, the O2 content decreases, and the CO content produced increases. When the CH4 concentration is lower than the optimal concentration, water promotes the formation of CO2 to a certain extent; when the CH4 concentration is higher than the optimal explosive concentration, the CO2 content decreases with the increase of water content. Overall, water inhibits methane explosion, the addition of water on the one hand reduces the concentration of active free radicals H, O, OH, on the other hand, it interferes with the generation of gas explosion energy and consumes the kinetic energy of the gas explosion flame shock wave through heat absorption, thus inhibiting the intensity of gas explosion.  相似文献   

16.
The purpose of this work was to indirect label IgG with fac-[188Re(CO)3(H2O)3]+ and to check the radiochemical behavior of the labeled product. The compound of (bis(2-pyridylmethyl)-amino)-acetic acid (L2H) was synthesized and labeled with fac-[188Re(CO)3(H2O)3]+. The labeling yield of 188Re(CO)3–L2H was more than 90%. The effects of protein concentration, reaction time, pH and reaction temperature of labeling of IgG with 188Re(CO)3–L2H were investigated. The conjugation conditions were optimized. The labeled product was analyzed by size exclusion HPLC and TLC. The stability of 188Re(CO)3–L2H–IgG in vitro was high. The results of this study may be useful for [188Re(CO)3(H2O)3]+ labeling of protein for radioimmunotherapy.  相似文献   

17.
In this work, a computational study is performed to evaluate the adsorption-based separation of CO(2) from flue gas (mixtures of CO(2) and N(2)) and natural gas (mixtures of CO(2) and CH(4)) using microporous metal organic framework Cu-TDPAT as a sorbent material. The results show that electrostatic interactions can greatly enhance the separation efficiency of this MOF for gas mixtures of different components. Furthermore, the study also suggests that Cu-TDPAT is a promising material for the separation of CO(2) from N(2) and CH(4), and its macroscopic separation behavior can be elucidated on a molecular level to give insight into the underlying mechanisms. On the basis of the single-component CO(2), N(2), and CH(4) isotherms, binary mixture adsorption (CO(2)/N(2) and CO(2)/CH(4)) and ternary mixture adsorption (CO(2)/N(2)/CH(4)) were predicted using the ideal adsorbed solution theory (IAST). The effect of H(2)O vapor on the CO(2) adsorption selectivity and capacity was also examined. The applicability of IAST to this system was validated by performing GCMC simulations for both single-component and mixture adsorption processes.  相似文献   

18.
It is demonstrated by ESR measurements that O 2 (CO + O2) radical anions result from CO + O2 adsorption on the oxidized surface of CeO2. These radical anions are stabilized in the coordination sphere of Ce4+ cations located in isolated and associated anionic vacancies. This reaction shows an activation behavior determined by CO adsorption. The variation of O 2 (CO + O2) concentration with CO adsorption temperature suggests that surface carbonates and carboxylates participate in this reaction. In the (0.5– 10.0)%CeO2/ZrO2 system, O 2 forms on supported CeO2 and is stabilized on Ce4+ and Zr4+ cations. The stability of O 2 -Ce4+ complexes is lower on supported CeO2 than on unsupported CeO2, indicating a strong interaction between the cerium cations and the support.__________Translated from Kinetika i Kataliz, Vol. 46, No. 3, 2005, pp. 423–429.Original Russian Text Copyright © 2005 by Il’ichev, Kuli-zade, Korchak.  相似文献   

19.
The time curves of full polarization resistance of Ni cermet electrode modified with CeO2 − δ additive were studied by means of impedance spectroscopy in binary gas mixtures x% H2 + (100 − x)% H2O, 10% CO + 90% CO2 and multicomponent gas mixtures H2 + CO2 + H2O + CO + Ar of various composition at the temperature of 900°C. The Ni cermet electrode degradation rate in binary gas mixtures H2 + H2O was shown to increase sharply at the partial water pressure over 45%. The Ni cermet electrode degradation rate in the mixture of 10% CO + 90% CO2 was significantly lower than that in 10% H2 + 90% H2O. The major changes in the electrode characteristics upon long exposure in working conditions were accounted for by changes in the high-frequency partial polarization resistance. In the course of long testing, the electrode microstructure was not significantly changed. In the presence of hydrogen-containing components (H2 and H2O), the carbon-containing components (CO and CO2) were shown to make an insignificant contribution to the current generation processes in Ni cermet electrode. It was suggested that strong degradation of Ni cermet electrode was caused by poisoning its reaction sites with strongly linked adsorption forms of water (hydroxyls) at the positive charge of electrode.  相似文献   

20.
Chemical, derivatographic, IR spectral, and X-ray diffraction analyses were used to study thermal transformations in the system CO(NH2)2-H3PO4 and in the same system with addition of KNO3, CsNO3, LiNO3 · 3H2O, and NH4NO3 salts in the temperature range 20–600°C. The influence of the chosen nitrate compounds on the process of reorganization of the constituent ingredients, evolution of nitrogen into the gas phase, yield of the solid residue, and preservation of nitrogen and phosphorus was revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号