首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
接枝和交联对纳米Si02改性NR/PP共混型热塑弹性体的影响   总被引:2,自引:0,他引:2  
动态硫化制备纳米二氧化硅(SiO2)改性天然橡胶,聚丙烯共混型热塑性弹性体(NR/PPTPE).研究了马来酸酐,苯乙烯,过氧化二异丙苯(MAH/St/DCP)多单体“就地”熔融接枝、交联对TPE力学性能、耐溶剂性能和耐热变形性能的影响,并用SEM分析了TPE的断面形貌.结果表明:纳米SiO2和MAH/St/DCP的最佳质量分数分别为0.03和0.0375/0.0188/0.00375时,MAH/St/DCP接枝、交联改性NR/PP/纳米SiO:TPE的力学性能、耐溶剂性能和耐热变形性能最佳.MAH/St/DCP“就地”接枝、交联通过细化交联NR分散相、改善交联NR分散的均匀性和增加两相之间的共交联,使NR与PP两相界面结合强度明显提高,NR/PPTPE的综合性能得到明显的改善.  相似文献   

2.
接枝和交联对纳米SiO_2改性NR/PP共混型热塑弹性体的影响   总被引:9,自引:0,他引:9  
动态硫化制备纳米二氧化硅(SiO2)改性天然橡胶/聚丙烯共混型热塑性弹性体(NR/PP TPE).研究了马来酸酐/苯乙烯/过氧化二异丙苯(MAH/St/DCP)多单体“就地”熔融接枝、交联对TPE力学性能、耐溶剂性能和耐热变形性能的影响,并用SEM分析了TPE的断面形貌.结果表明:纳米SiO2和MAH/St/DCP的最佳质量分数分别为0.03和0.0375/0.0188/0.00375时,MAH/St/DCP接枝、交联改性NR/PP/纳米SiO2TPE的力学性能、耐溶剂性能和耐热变形性能最佳.MAH/St/DCP“就地”接枝、交联通过细化交联NR分散相、改善交联NR分散的均匀性和增加两相之间的共交联,使NR与PP两相界面结合强度明显提高,NR/PP TPE的综合性能得到明显的改善.  相似文献   

3.
累托石粘土/热塑性聚氨酯弹性体纳米复合材料的研究   总被引:15,自引:0,他引:15  
采用十二烷基季铵盐合成了一种有机累托石 (ORECA) ,并分别采用不同填充量 2 ,5 ,8份的累托石(REC)及ORECA 与热塑性聚氨酯弹性体 (TPUR)通过熔融共混制备出了粘土 /热塑性聚氨酯弹性体纳米复合材料 ;以红外光谱 (FTIR)、广角X 射线衍射分析 (XRD)、扫描电镜 (SEM)及Molau实验方法研究了REC及ORECA 在TPUR中的分散性 ,研究了复合材料的力学性能 .结果表明 ,ORECA 在质量分数小于 5份时可以和聚氨酯弹性体达到纳米复合 ,复合材料的拉伸强度提高 4 2 % ;撕裂强度在所加份数范围内呈现递增趋势 ,8份时撕裂强度提高 4 9% .  相似文献   

4.
将具有纳米尺度的全交联型羧基丁腈粉末橡胶(CNBR)与聚丙烯(PP)及用甲基丙烯酸环氧丙酯(GMA)官能化的聚丙烯(PP—g—GMA)进行反应共混,制备了一种新型CNBR/PP热塑性弹性体,用原子力显微镜(AFM)和透射电子显微镜(TEM)研究了CNBR/PP热塑性弹性体的形态,加入PP—g—GMA增容剂后,CNBR分散相的粒子尺寸显著降低,分布也趋于均,与未增容体系相比,增容体系的拉仲强度和断裂仲长率均有大幅度的改善,如CNBR含量为75%时,拉仲强度提高了94%,断裂仲长率增加了136%,用差示扫描量热法(DSC)研究了热塑性弹性体中聚丙烯的结晶行为,在增容体系中,共混前后聚丙烯的结晶温度提高了10℃,表明橡胶粒子或两相界面处形成的反应产物起到了类似成核剂的作用。  相似文献   

5.
热塑性弹性体;混杂纳米复合材料;丁苯三嵌段共聚物/改性纳米层状白泥复合弹性体的力学性能  相似文献   

6.
研究了氯化聚乙烯(CPE)增容PVC/POE热塑性弹性体的结构与性能,通过对比使用增容剂CPE前后体系的力学性能,确证CPE对PVC/POE体系具有良好的增容效果。用DSC,SEM对热塑性弹性体的结构特性进行了研究,采用动态硫化的方法,提高了热塑性弹性体的性能。  相似文献   

7.
热塑性弹性体;蒙脱土;纳米复合材料;动态硫化  相似文献   

8.
徐丽  游长江  谢青 《广州化学》2008,33(1):54-58
综述了当前环氧树脂增韧增强改性的研究现状,详细介绍了弹性体增韧环氧树脂、无机纳米粒子改性环氧树脂、粘土改性环氧树脂、纳米SiO2改性环氧树脂以及弹性体/无机纳米粒子协同增韧增强环氧树脂的机理和实验方法。并对其实验结果进行了分析比较。  相似文献   

9.
张辉  常小刚 《广州化学》2012,37(3):50-59
综述了三元乙丙橡胶/聚丙烯(EPDM/PP)热塑性弹性体的发展历程、市场情况以及EPDM/PP热塑性弹性体的结构、性能及其影响因素。EPDM/PP热塑性弹性体由EPDM和PP通过动态硫化技术制备而成,在室温下具有橡胶的高弹性,在加工温度下具有塑料的流动性。在性能上,EPDM/PP热塑性弹性体受加工设备、共混工艺、配合体系的综合影响。  相似文献   

10.
Zheng L  Chen H  Chen J  Feng Z  Gao S  Zhou J 《色谱》2011,29(12):1173-1178
建立了一种简单、准确的测定热塑性弹性体中16种多环芳烃(PAHs)的气相色谱-质谱(GC-MS)方法。考察了样品制备、萃取溶剂、萃取方法、时间以及温度对厂家制备的阳性热塑性弹性体样品中PAHs提取效率的影响,确定了萃取条件和方法。样品经甲苯超声萃取、浓缩后用环己烷溶解、二甲亚砜液液萃取净化后采用GC-MS进行分析,内标法定量。通过对不同材质阳性热塑性弹性体样品的加标回收、精密度试验等对建立的方法进行评价,16种PAHs的平均回收率为70%~117%,精密度为0.2%~10.8%。该方法适合于热塑性弹性体中PAHs的测定。  相似文献   

11.
Melt blending was employed to prepare thermoplastic elastomer (TPE) of reclaimed rubber (RR) and high density polyethylene (HDPE). Mechanical properties of TPE samples were improved in different methods including dynamic vulcanization and reactive blending (reactive compatibilization) during melt mixing in an internal Haake mixer. The physical and mechanical properties of the TPE blends were investigated by the dynamic mechanical analysis (DMA) and tensile tests. The thermal behavior was characterized by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The phase morphology of the blends was studied by scanning electron microscopy (SEM). Experimental results showed that, both static and dynamic mechanical properties of reactively-compatibilized and dynamically-vulcanized samples improved significantly compared with the virgin samples. The effect of dynamic-vulcanization and reactivecompatibilization on the mechanical properties revealed that the Young’s modulus and storage modulus increased with both improvement methods. SEM results showed that, dynamic-vulcanization and reactivecompatibilization methods improved the distribution of RR particles in HDPE matrix. Although both methods improved the thermal and mechanical properties of the HDPE/RR blends, dynamic-vulcanization was more effective and promising approach due to the higher properties of HDPE/RR blends prepared by this method.  相似文献   

12.
Palm based fly ash (PFA) is a solid waste of palm oil processing industry which contains silica components. These components are typically used to improve the mechanical properties of rubber-based products. This research aims to study the effect of the PFA as a filler on the morphology and properties of thermoplastic vulcanizate (TPV) based on a mixture of natural rubber (NR) and polypropylene (PP). TPV samples were prepared using the internal mixer at a mass ratio of NR/PP 70/30. Maleated polypropylene (MA-g-PP) 5% mass was added as a compatibilizer, filler content was varied from 15 to 45 per hundred rubber (phr). Paraffin and palm oil were added as a plasticizer with contents of 5 to 50 phr. Other additives include ZnO 5 phr, stearic acid 2 phr, trimethylquinone 1 phr, mercaptodibenzo-thiozyldisulfide 0.6 phr and 3 phr sulfur. The results showed that the use of PFA provides good tensile strength properties, a relatively homogeneous morphology, and low water absorption rate. The use of paraffin plasticizer produces a higher tensile strength compared to palm oil, but the elongation at break which produced the contrary. The best morphology and tensile properties of TPV (NR/PP 70/30) are on PFA and paraffin contents of 30 phr and 25 phr, respectively.  相似文献   

13.
In order to develop applications for the abundant waste rubber powder, chlorinated waste rubber (Cl-WR) was prepared by a water based chlorination method using chlorine as chlorinating agent. In this paper, Cl-WR was used as an elastic filler and blended with poly(vinyl chloride) (PVC) matrix to develop a new thermoplastic elastomer PVC/Cl-WR. The mechanical properties, hydrophilicity, swelling resistance, morphology and thermal properties of PVC/Cl-WR were characterized and compared with those of PVC/waste rubber powder (PVC/WR) blends. The results indicated that the mechanical properties, hydrophilicity, swelling resistance and thermal properties of the PVC/Cl-WR blends showed noticeable improvements over PVC/WR blends due to the improved polarity of Cl-WR. Also, the excellent miscibility and compatibility of Cl-WR with PVC was demonstrated by scanning electron microscope (SEM) images of the resulting blends.  相似文献   

14.
A new fluorosilicone thermoplastic vulcanizate (TPV) composed of poly(vinylidene fluoride) (PVDF), silicone rubber (SR), and fluororubber (FKM) was successfully prepared through dynamic vulcanization. The morphological structure of the TPVs had core‐shell elastomer particles dispersed in a continuous PVDF matrix. Furthermore, the cross‐linking of core‐shell structure was controlled by adopting different curing agent. The effect of cross‐linking–controlled core‐shell structure on the morphology, crystallization behavior, stress relaxation test, solvent‐resistant properties of the obtained TPVs were investigated. It was found that the shell cross‐link had a significant influence on the crystallinity of the PVDF phase. The core‐shell bicross‐linked TPV was found to provide the lowest rate of relaxation. An obvious stress softening phenomenon was observed in the uniaxial loading‐unloading cycles in tension. The bicross‐linked TPV had good solvent resistant properties. The tensile strength of the bicross‐linked TPV was still 12 MPa even after immersed in butyl acetate for 48 hours.  相似文献   

15.
This paper provides some new insights into the mechanism of interaction and modifications in thermoplastic composites based on low density polyethylene (LDPE), ground tire rubber (GTR) and non-polar elastomer. The composites were prepared using a co-rotating twin-screw extruder at variable LDPE/GTR ratio and constant elastomer content. Two types of commercial elastomer were applied: styrene-butadiene-styrene (SBS) block copolymers (Kraton®) with different topologies (linear/branched) and partially cross-linked butyl rubbers (Kalar®) with different Mooney viscosities. Processing characteristics, static mechanical properties (tensile strength, elongation at break, hardness), dynamic mechanical properties, thermal properties and morphology of the resulting thermoplastic composites were investigated. Microstructure analysis shows that modification of LDPE/GTR composites with non-polar elastomers caused encapsulation of GTR particles within the elastomer phase. This phenomenon has significant influence on macro-behavior of thermoplastic composites based on LDPE/GTR blends. The results indicate that SBS copolymer improves interfacial interactions between GTR and LDPE, which enhances mechanical and thermal properties of the composites. On the other hand, cross-linked butyl rubber showed partial compatibility with LDPE and low compatibility with GTR particles.  相似文献   

16.
Within this paper, the generation of tailor-made thermoplastic two-phase polymers by means of reactive compounding is described. New strategies for the preparation of heterophasic polypropylenes and thermoplastic vulcanizates (TPV) are presented. Process design, blend components, formulation parameters, and resulting mechanical, thermal and rheological blend properties will be discussed in detail.  相似文献   

17.
High‐performance thermoplastic vulcanizates (TPVs) are the new generation of TPVs that provide superior heat and oil aging behavior. TPVs based on hydrogenated acrylonitrile butadiene rubber and polyamide 12 (PA12) have been first developed by the dynamic vulcanization process, in which selective cross‐linking of the elastomer phase during melt mixing with the thermoplastic phase (PA12) was carried out simultaneously. In this present investigation, hydrogenated acrylonitrile butadiene rubber (HNBR)/PA12 and partially hydrogenated carboxylated acrylonitrile butadiene rubber (XHNBR)/PA12 with blend ratio of 50:50, 60:40, and 70:30 wt% were prepared at 185°C at a rotor speed of 80 rpm for 5 min. Di‐(2‐tert‐butyl peroxy isopropyl) benzene was chosen as the suitable cross‐linking peroxide to pursue the dynamic vulcanization. TPV based on 50:50 HNBR/PA12 and XHNBR/PA12 show better physico‐mechanical properties, rheological behavior, thermal stability, dynamic mechanical analysis, and creep behavior among all the TPVs. Morphology study reveals that dispersed phase morphology has been formed with an average dimension of the rubber particles in the range of 0.8–1.5 µm. For aging test, TPVs were exposed to air and ASTM oil 3, respectively. Air aging tests were carried out in hot air oven for 72 hr at 125°C, while the oil aging tests were carried out after immersion of the samples into the oils in an aging oven. After aging, there is only slight deterioration in the physico‐mechanical properties of the TPVs. In case of 50:50 blends of HNBR/PA12 and XHNBR/PA12, the retention of the properties upon after aging was found excellent. These TPVs are designed to find potential application in automotive sector especially for under‐hood‐application, where high‐temperature resistance as well as high oil resistance is of prime importance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
As the most successful commercialized thermoplastic vulcanizates (TPVs), polypropylene (PP)/ethylene propylene rubber (EPDM) TPVs exhibit poor oil resistance. In this work, we prepared PP/EPDM/butadiene acrylonitrile rubber (NBR) ternary TPVs with good oil resistance using core‐shell dynamic vulcanization. According to the theoretical analysis of the spreading coefficient and the transmission electron microscopy results, the rubber phases exhibited a special core‐shell structure, in which the cross‐linkedNBR‐core was encapsulated by the EPDM‐shell. The core‐shell structure effectively improved the interfacial compatibility between PP and NBR phase as the EPDM‐shell could avoid the direct contact of them, thus improving the mechanical properties of the TPVs. For example, the PP/EPDM/NBR (40/30/30) ternary TPV showed enhanced tensile strength of 12.57 MPa, compared with 10.71 MPa of PP/EPDM (40/60) TPV and 11.11 MPa of PP/NBR (40/60) TPV, respectively. Moreover, the oil resistance of the TPVs was also improved. Compared with PP/EPDM TPV, the change rates in mass, volume, tensile strength and elongation at break of PP/EPDM/NBR TPV after oil immersion decreased by 42.18%, 48.69%, 52.68% and 28.77%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号