首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
An ultrafast bioanalytical method using monolithic column high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) was evaluated for the simultaneous determination of a drug discovery compound and its metabolite in plasma. Baseline separation of the two compounds was achieved with run times of 24 or 30 s under isocratic or gradient conditions, respectively. The monolithic column HPLC/MS/MS system offers shorter chromatographic run times by increasing flow rate without sacrificing separation power for the drug candidate and its biotransformation product (metabolite). In this work, the necessity for adequate chromatographic resolution was demonstrated because the quantitative determination of the drug-related metabolism product was otherwise hampered by interference from the dosed drug compound. The chromatographic performance of a monolithic silica rod column as a function of HPLC flow rates was investigated with a mixture of the drug component and its synthetic metabolite. The assay reliability of the monolithic column HPLC/MS/MS system was checked for matrix ionization suppression using the post-column infusion technique. The proposed methods were successfully applied to the analysis of study rat plasma samples for the simultaneous quantitation of both the dosed drug and its metabolite. The analytical results obtained by the proposed monolithic column methods and the 'standard' silica particle-packed HPLC column method were in good agreement, within 10% error.  相似文献   

2.
A high-performance liquid chromatography (HPLC) system using a porous graphitic carbon (PGC) stationary phase interfaced with an electrospray ionization (ESI) source and a tandem mass spectrometer (MS/MS) for the analysis of cytarabine (ara-C) in mouse plasma samples has been developed in support of a pharmacodynamic study. The graphitized carbon column was adopted for the separation of ara-C and endogenous peaks from mouse plasma samples under the reversed-phase phase mode in liquid chromatography. The retention characteristics of the PGC column and the ionization efficiencies of all analytes based on the experimental factors such as the composition of mobile phases were investigated. The potential of ionization suppression resulting from the endogenous biological matrices on the PGC column during HPLC/ESI-MS/MS was investigated using post-column infusion. The concentrations of ara-C in mouse plasma obtained by using PGC-HPLC/MS/MS and ion-pairing HPLC/MS/MS were found to be in good agreement in terms of analytical accuracy.  相似文献   

3.
A method using zirconia-based column high-performance liquid chromatography (HPLC) interfaced with an atmospheric pressure photoionization (APPI) source and a tandem mass spectrometer (MS/MS) was developed for the quantitative determination of new chemical entities in rat plasma in support of pharmacokinetics studies. The ionization suppression resulting from endogenous components of the biological matrices on the quantitative zirconia-based column HPLC/APPI-MS/MS method was investigated using the post-column infusion technique. The analytical results for 'rapid rat pharmacokinetics' for 12 drug discovery compounds, obtained by both silica-based phase (S-phase) and zirconia-based phase (Z-phase) chromatographic separation, are in good agreement in terms of accuracy. The application of a Z-phase column for high-temperature fast HPLC/MS/MS methods was explored to reduce the analysis time from 3 min to 30 s for column temperatures of 25-110 degrees C, respectively. The chromatographic retention times and peak responses of all analytes were found to be reproducible under high-temperature conditions following 100 continuous injections, with %CV less than 0.4 and 5, respectively.  相似文献   

4.
A reversed-phase high-performance liquid chromatography (rp-HPLC) system interfaced with an electrospray ionization (ESI) source coupled to tandem mass spectrometry (MS/MS) was developed and validated for the determination of cyclophosphamide (CP), ifosfamide (IF), daunorubicin (DNR), doxorubicin (DXR), and epirubicin (EPI) in human urine. The analysis of samples containing multiple analytes with a dissimilar range of polarities was carried out using a conventional reversed-phase chromatographic BDS Hypersil C8 column. The analytical run was 15 min. The triple quadrupole mass spectrometer was operated in positive ion mode and multiple reaction monitoring (MRM) was used for drug quantification. The method was validated over a concentration range of 0.2 to 4.0 microg.L(-1) for CP, IF, DXR, EPI and 0.15-2.0 microg.L(-1) for DNR in human urine. The lower limit of quantification (LLOQ) was 0.2 microg.L(-1) for CP, IF, EPI and was set at 0.3 and 0.15 microg.L(-1) for DXR and DNR, respectively. The relative standard deviations (RSD%) were <11.2% for inter- and intra-day precisions. The overall accuracy was also within 114.7% for all analytes at the concentrations of the quality control samples. The potential of ionization suppression resulting from the endogenous biological material on the rp-HPLC/MS/MS method was evaluated and measured. The feasibility of the proposed HPLC/ESI-MS/MS procedure was demonstrated by analyzing urine samples from pharmacy technicians and nurses working in hospitals or personnel employed in drug-manufacturing plants.  相似文献   

5.
Here we describe a technique to obtain all the N-linked oligosaccharide structures from a single reversed-phase (RP) HPLC run using on-line tandem MS in both positive and negative ion modes with polarity switching. Oligosaccharides labeled with 2-aminobenzamide (2AB) were used because they generated good ionization efficiency in both ion polarities. In the positive ion mode, protonated oligosaccharide ions lose sugar residues sequentially from the nonreducing end with each round of MS fragmentation, revealing the oligosaccharide sequence from greatly simplified tandem MS spectra. In the negative ion mode, diagnostic ions, including those from cross-ring cleavages, are readily observed in the MS2 spectra of deprotonated oligosaccharide ions, providing detailed structural information, such as branch composition and linkage positions. Both positive and negative ion modes can be programmed into the same LC/MS experiment through polarity switching of the MS instrument. The gas-phase oligosaccharide nonreducing end (GONE) sequencing data, in combination with the diagnostic ions generated in negative ion tandem MS, allow both sequence and structural information to be obtained for all eluting species during a single RP-HPLC chromatographic run. This technique generates oligosaccharide analyses at high speed and sensitivity, and reveals structural features that can be difficult to obtain by traditional methods.  相似文献   

6.
Ultra‐performance hydrophilic interaction liquid chromatography (UPHILIC) interfaced with the electrospray ionization (ESI) source of a tandem mass spectrometer (MS/MS) was developed for the simultaneous determination of everolimus in mouse plasma samples. UPHILIC was performed on a sub‐2 µm bare silica particle packing with the column pressure under traditional high‐performance liquid chromatography (HPLC) to allow fast separation of pharmaceutical compounds within a chromatographic analysis time of 1 min. This UPHILIC technology is comparable with reversed‐phase ultra‐performance liquid chromatography (RPUPLC) in terms of chromatographic efficiency but demands neither expensive ultra‐high‐pressure instrumentation nor new laboratory protocols. With the ESI source, multiple reaction monitoring (MRM) of the ammoniated adduct ions of the analyte was used for tandem mass spectrometric detection. The retention mechanism profiles of the test compounds under HILIC conditions were explored. The influences of experimental factors such as the compositions of mobile phases on the chromatographic performance and the ionization efficiency of the test compounds in positive ion mode were investigated. A UPHILIC/MS/MS approach following a protein precipitation procedure was applied for the quantitative determination of everolimus at the low ng/mL region in support of a pharmacodynamic study. The analytical results obtained by the UPHILIC/MS/MS approach were fond to be in good agreement with those obtained by the RPUPLC/MS/MS method in terms of assay sample throughput, sensitivity and accuracy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Hydrophilic interaction liquid chromatography (HILIC) interfaced with atmospheric pressure ionization (API) sources and a tandem mass spectrometer (MS/MS) was developed for the simultaneous determination of dasatinib, imatinib and nilotinib in mouse plasma samples. The retention profiles of all analytes on several silica stationary phases under HILIC conditions were explored. The influences of experimental factors such as the compositions of mobile phases on the chromatographic performance and the ionization efficiency of all analytes in positive ion mode were investigated. The applicability of the proposed HILIC/MS/MS approach following a protein precipitation procedure for the quantitative determination of dasatinib, imatinib and nilotinib at low nano‐mole levels was examined with respect to assay specificity and linearity. The analytical results obtained by various HILIC/MS/MS approaches were found to be in good agreement with those obtained by reversed‐phase liquid chromatography/tandem mass spectrometry (RPLC/MS/MS) methods in terms of assay sample throughputs, sensitivity and accuracy. Furthermore, the potential of matrix ionization suppression on the proposed HILIC/MS/MS systems was investigated using the post‐column infusion technique. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
An automated high-throughput HPLC/MS/MS method was developed for the quantitative determination of pantoprazole in human plasma. Only 100 microL plasma was placed in 2.2 mL 96 deep-well plates, and both pantoprazole and omeprazole (IS) were extracted from human plasma by liquid-liquid extraction, using diethyl ether-dichloromethane (70:30, v/v) as the organic solvent. Robotic liquid-handling workstations were used for all liquid transfer and solution preparation steps and resulted in a short sample preparation time. After vortexing, centrifugation, and freezing, the supernatant organic solvent was evaporated and reconstituted in a small volume of reconstitution solution. Sample analysis was performed by utilizing the combination of RP-HPLC/MS/MS, with positive-ion electrospray ionization and multiple reaction monitoring detection. The chromatographic run time was set at 1.8 min with a flow rate of 0.6 mL/min on a Nucleosil octylsilyl (C8) analytical column. The method was proven to be sensitive, specific, accurate, and precise for the determination of pantoprazole in human plasma. The method was applied to a bioequivalence study after per os administration of a 40 mg pantoprazole gastric retentive tablet.  相似文献   

9.
A hydrophilic interaction chromatographic (HILIC) system interfaced with atmospheric pressure ionization (API) sources and a tandem mass spectrometer (MS/MS) was developed for the simultaneous determination of nicotinic acid (NiAc) and its metabolites in dog plasma in support of a pharmacokinetic study. A silica column was adapted for separation of NiAc and its two metabolites, nicotinamide (NiNH2) and nicotinuric acid (NiUAc), under HILIC conditions. The influence of experimental factors such as the composition of mobile phase on ionization efficiency and chromatographic performance of all analytes was investigated. The feasibility of the proposed HILIC/MS/MS methods was explored by comparing the plasma levels of NiAc, NiNH2, and NiUAc in dog obtained by using either electrospray ionization or atmospheric pressure chemical ionization interfaces in positive ion mode. The methods were partially validated in terms of inter-day accuracy and precision, extraction recovery, benchtop and freeze/thaw stability. Further, the potential of ionization suppression resulting from endogenous components of the biological matrixes on the HILIC/API-MS/MS methods were investigated using the post-column infusion technique.  相似文献   

10.
A sensitive, specific and efficient high‐performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) assay for the simultaneous determination of total vincristine and actinomycin‐D concentrations in human plasma and an assay for the determination of unbound vincristine are presented. Electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and heated electrospray ionization (H‐ESI) were tested as ionization interfaces. For reasons of robustness ESI was chosen followed by tandem mass spectrometry (ESI‐MS/MS). For the plasma assay a 30 µL aliquot was protein precipitated with acetonitrile/methanol (50:50, v/v) containing the internal standard vinorelbine and 10 µL volumes were injected onto the HPLC system. To determine unbound vincristine, ultrafiltrate was produced from plasma using 30 kDa centrifugal filter units. The plasma ultrafiltrate was mixed with methanol (50:50, v/v), internal standard vinorelbine was added and 20 µL aliquots were injected onto the HPLC system. Separation was achieved on a 50 × 2.1 mm i.d. Xbridge C18 column using 1 mM ammonium acetate/acetonitrile (30:70, v/v) adjusted to pH 10.5 with ammonia, run in a gradient with methanol at a flow rate of 0.4 mL/min. HPLC run time was 6 min. The assay quantifies in plasma vincristine from 0.25 to 100 ng/mL and actinomycin‐D from 0.5 to 250 ng/mL using plasma sample volumes of only 30 µL. Vincristine in plasma ultrafiltrate can be quantified from 1 to 100 ng/mL. Validation results demonstrate that vincristine and actinomycin‐D can be accurately and precisely quantified in human plasma and plasma ultrafiltrate with the presented methods. The assays are now in use to support clinical pharmacological studies in children treated with vincristine and actinomycin‐D. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Iralukast (CGP 45715A) is a potent peptido-leukotriene antagonist that is active in various in vitro and animal models for the treatment of asthma. An analytical challenge was to develop a sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method with a lower limit of quantitation (LLOQ) of 10 pg/mL for the analysis of iralukast when administered at low doses during clinical trials. Several issues had to be addressed in order to devise a LC/MS/MS assay for the above compound. First, iralukast appeared to be light sensitive and unstable at room temperature under acidic conditions. Second, a LLOQ of 10 pg/mL was needed to support several clinical trials. Third, positive electrospray ionization of iralukast did not yield the necessary sensitivity required for studies in humans. Consequently, LC/MS/MS conditions were optimized for the negative ion mode of detection. Fourth, sample preparation steps proved to be critical to reduce the possibility of microbore HPLC column (50 mm x 1.0 mm i.d.) obstruction, chromatographic deterioration, and matrix-mediated electrospray ion suppression. While our validated method addressed the above challenges, its major drawback was limited sample throughput capability. Nonetheless, plasma concentration-time profiles for patients with moderate asthma after oral administration of 200, 500, 1000, and 5000 microgram/kg/day of iralukast were successfully obtained.  相似文献   

12.
In order to study the cellular distribution and kinetics of a new anticancer substance, 23-hydroxybetulinic acid, a simple, reproductive and sensitive high-performance liquid chromatography/mass spectrometric (HPLC/MS) method was developed to quantify its trace concentration in cell suspension and cell culture medium. This method involved a liquid-liquid extraction with diethyl ether and a subsequent analysis performed on a Shimadzu LCMS 2010A system which contained an electrospray ionization interface. Separation was achieved by HPLC on a Zorbax Extend-C18 column with gradient elution using a mix of acetonitrile and water containing triethylamine and acetate-triethylamine as the mobile phase. A total analytical run was achieved within 6.5 min and the calibration curve was linear over a wide concentration range of 1.0-1000.0 nM for both cell suspension and culture medium. Intra- and inter-batch accuracy and precision were acceptable for both matrices. The described assay method was successfully applied to cellular pharmacokinetic studies in a human colon adenocarcinoma cell line (Caco-2) and its application of measuring the cellular concentrations of 23-hydroxybetunilic acid could be extended to different cultured cell lines.  相似文献   

13.
A sensitive and simple liquid chromatography–tandem mass spectrometric (HPLC‐MS/MS) method for the determination of corilagin in rat plasma has been developed. Samples were prepared with protein precipitation method and analyzed with a triple quadrupole tandem mass spectrometer. We employed negative electrospray ionization as the ionization source and the analytes were detected in multiple reaction monitoring mode. Separation was achieved on a C8 column eluted with mobile phase consisting of methanol–0.1% formic acid in a gradient mode at the flow rate of 0.3 mL/min. The total run time was 7.0 min.This method was proved to have good linearity in the concentration range of 2.5–1000.0 ng/mL. The lower limit of quantification of corilagin was 2.5 ng/mL. The intra‐ and inter‐day relative standard deviationa across three validation runs for four concentration levels were both <9.8%. The relative error was within ±6.0%. This assay offers advantages in terms of expediency and suitability for the analysis of corilagin in rat plasma. The practical utility of this new HPLC‐MS/MS method was confirmed in pilot plasma concentration studies in rats following oral administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Ion suppression is a well-known phenomenon in electrospray ionization (ESI) mass spectrometry. These suppression effects have been shown to adversely affect the accuracy and precision of quantitative bioanalytical methods using ion spray. Such suppression effects have not been as well defined in atmospheric pressure chemical ionization (APCI) and there is some debate whether these effects actually occur in the ionization process using APCI. Here an example is described where clear ion suppression was observed during studies on a model compound and three metabolites using APCI liquid chromatography/tandem mass spectrometry (LC/MS/MS).  相似文献   

15.
A new analytical approach, based on derivatization with 2,2,2-trichloroethyl chloroformate and gas chromatography/mass spectrometry (GC/MS), was investigated for qualitative and quantitative analyses of a large range of amphetamine-related drugs and ephedrines in plasma, urine and hair samples. Sample preparation involved alkaline extraction of analytes from biological samples using Extrelut columns, after addition of the internal standard 3,4-methylenedioxypropylamphetamine (MDPA), and subsequent derivatization to produce 2,2,2-trichloroethylcarbamates. GC/MS analyses, in splitless mode using a slightly polar 30-m capillary column, were performed with quadrupole or ion trap instruments. MS acquisition modes were electron ionization (EI) in full-scan or selected ion monitoring (SIM) modes (quadrupole), and full-scan MS or MS/MS modes with chemical ionization (CI) conditions (ion trap). EI spectra of 2,2,2-trichloroethylcarbamates showed variably abundant molecular ions as well as abundant diagnostic fragment ions, both characterized by ion clusters reflecting the isotope distribution of three chlorine atoms in the derivatized molecules. CI spectra showed abundant protonated molecules. Quantitative studies using EI SIM conditions gave recoveries in the range 74-89%, linear response over ranges of 10-2000 ng/mL (plasma and urine) and 0.20-20 ng/mg (hair), with corresponding limits of detection in the ranges 2-5 ng/mL and 0.1-0.2 ng/mg. Potential applications (following full method validation) include clinical and forensic toxicology, as well as doping control.  相似文献   

16.
An ion-pairing high-performance liquid chromatographic (IP-HPLC) system interfaced with an atmospheric pressure chemical ionization (APCI) source and a tandem mass spectrometer (MS/MS) with minimal sample preparation was developed for the determination of cytarabine (ara-C), a very hydrophilic anticancer drug, in mouse plasma. A conventional reversed-phase chromatographic column in combination with two ion-pairing reagents was adapted for retention and separation of ara-C from the endogenous interferences in mouse plasma. The effects of the experimental conditions such as the fraction of ion-pairing reagents and organic solvents in the mobile phase on the chromatographic performance and the ionization efficiency of ara-C were investigated. The potential of ionization suppression resulting from the endogenous biological materials on the IP-HPLC/MS/MS method was evaluated using the post-column infusion technique. Furthermore, the feasibility of the proposed IP-HPLC/MS/MS procedure for analysis of ara-C in the mouse plasma was demonstrated by comparison with those obtained by the porous graphite carbon column (PGC) HPLC/MS/MS method.  相似文献   

17.
An approach is described with turbulent flow on-line extraction liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for GLP quantitative bioanalysis of a drug candidate. Two systems were built in-house with standard laboratory parts and equipments. One system consisted of one gradient HPLC pump, one isocratic pump, one ten-port valve, two turbulent flow columns, one analytical column, one autosampler and one mass spectrometer. Using this system, an injection-to-injection cycle time of 0.8 min was achieved. By adding an additional valve, another analytical column and an isocratic pump, the injection-to-injection cycle time decreased to 0.4 min. Validation results from the two systems showed that precision and accuracy were acceptable for GLP quantitative analyses. The system was utilized to support sample bioanalysis of a drug candidate in a first-time in-human clinical trial.  相似文献   

18.
Atmospheric pressure chemical ionization (APCI) was primarily applied as the ion source for liquid chromatography-mass spectrometry (LC–MS). While APCI started to be used in gas chromatography-mass spectrometry (GC–MS) in 1970s, GC-APCI-MS was not widely used until recently. As a soft ionization technique, APCI provides highly diagnostic molecular ions, which is favored for the wide-scope screening. With the capability of tandem mass spectrometry (MS/MS), GC-APCI-MS methods with high sensitivity and selectivity have been developed and applied in the analysis of persistent organic pollutants (POPs) in environment and biological samples at trace levels. The present review introduces the history of the APCI source, with emphasis on mechanisms of ionization processes under the positive and negative ionization modes. Comparison between GC-APCI-MS and GC–MS with traditional electron ionization (EI) and chemical ionization (CI) are provided and discussed for selectivity, sensitivity and stability for the analyses of POPs. Previous studies found that the GC-APCI-MS methods provided limits of detection (LODs) around 10–100 times lower than other methods. An overview of GC-APCI-MS applications is given with the discussions on the advantages and drawbacks of various analytical methods applied for the analyses of POPs.  相似文献   

19.
In this paper, the influence of several operational parameters on a well established multiresidue LC-MS/MS method has been studied in relation to the analysis of 150 pesticides commonly present in vegetable samples. The operational parameters investigated are: (i) the influence of different modifiers (0.1% formic acid; 5 mM ammonium formiate; 5 mM ammonium acetate in aqueous phase) - both on the retention time and on the analytical response of the studied compounds; (ii) the effect of the analytical column's temperature on the retention time and on the analytical response of the pesticides investigated; (iii) the effects of co-elution in mixture containing 150 pesticides and, additionally, (iv) the carrying out of a study about the common transitions obtained by LC-MS/MS. Various common transitions were found among the 150 pesticides, but there were only two problematic cases, the pairs diuron-fluometuron and prometryn-terbutryn, which have common scanned transitions and have very close retention times. The use of ammonium salts as modifier instead of formic acid reports enhancement or suppression of the response depending on the pesticides. No great influence on the retention time or on the response of the pesticides and commodities studied was observed with relation to the column temperature. Two different columns: an HPLC (5 μm particle size) and an UHPLC analytical column (1.8 μm particle size) have been used. As was expected, shorter run times and lower peak width was achieved with the UHPLC column.In this paper, the effect of the compounds on each other in the MS analysis when the number of co-eluting compounds is quite high is also described. Mainly small suppression or enhancement co-elution effect was observed, but some particular pesticides presented high sensitivity (>±60% effect) when they elute together with others. This is an important factor and it has to be taken into account when performing multiresidue pesticide analysis.  相似文献   

20.
The feasibility of using a monolithic column as the analytical column in conjunction with high-flow direct-injection liquid chromatography/tandem mass spectrometry (LC/MS/MS) to increase productivity for quantitative bioanalysis has been investigated using plasma samples containing a drug and its epimer metabolite. Since the chosen drug and its epimer metabolite have the same selected reaction monitoring (SRM) transitions, chromatographic baseline separation of these two compounds was required. The results obtained from this monolithic column system were directly compared with the results obtained from a previously validated assay using a conventional C18 column as the analytical column. Both systems have the same sample preparation, mobile phases and MS conditions. The eluting flow rate for the monolithic column system was 3.2 mL/min (with 4:1 splitting) and for the C18 column system was 1.2 mL/min (with 3:1 splitting). The monolithic column system had a run time of 5 min and the conventional C18 column system had a run time of 10 min. The methods on the two systems were found to be equivalent in terms of accuracy, precision, sensitivity and chromatographic separation. Without sacrificing the chromatographic separation, sensitivity, accuracy and precision of the method, the reduced run time of the monolithic column method increased the sample throughput by a factor of two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号