首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(N,N‐diethylacrylamide)‐based microspheres were prepared by ammonium persulfate (APS)‐initiated and poly(vinylpyrrolidone) (PVP)‐stabilized dispersion polymerization. The effects of various polymerization parameters, including concentration of N,N′‐methylenebisacrylamide (MBAAm) crosslinker, monomer, initiator, stabilizer and polymerization temperature on their properties were elucidated. The hydrogel microspheres were described in terms of their size and size distribution and morphological and temperature‐induced swelling properties. While scanning electron microscopy was used to characterize the morphology of the microspheres, the temperature sensitivity of the microspheres was demonstrated by dynamic light scattering. The hydrodynamic particle diameter decreased sharply as the temperature reached a critical temperature ~ 30 °C. A decrease in the particle size was observed with increasing concentration of both the APS initiator and the PVP stabilizer. The microspheres crosslinked with 2–15 wt % of MBAAm had a fairly narrow size distribution. It was found that the higher the content of the crosslinking agent, the lower the swelling ratio. High concentration of the crosslinker gave unstable dispersions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6263–6271, 2008  相似文献   

2.
Photoinitiated dispersion polymerization of methyl methacrylate was carried out in a mixture of ethanol and water as dispersion medium in the presence of poly(N‐vinylpyrrolidone) (PVP) as the steric stabilizer and Darocur 1173 as photoinitiator. 93.7% of conversion was achieved within 30 min of UV irradiation at room temperature, and microspheres with 0.94 μm number–average diameter and 1.04 polydispersity index (PDI) were obtained. X‐ray photoelectron spectroscope (XPS) analysis revealed that only parts of surface of the microspheres were covered by PVP. The particle size decreased from 2.34 to 0.98 μm as the concentration of PVP stabilizer increased from 2 to 15%. Extra stabilizer (higher than 15%) has no effect on the particle size and distribution. Increasing medium polarity or decreasing monomer and photoinitiator concentration resulted in a decrease in the particle size. Solvency of reaction medium toward stabilizer, which affects the adsorption of stabilizer on the particle surface, was shown to be crucial for controlling particle size and uniformity because of the high reaction rate in photoinitiated dispersion polymerization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1329–1338, 2008  相似文献   

3.
Poly(N‐isopropylacrylamide) (PNIPAAm)‐based microspheres were prepared by precipitation and dispersion polymerization. The effects of several reaction parameters, such as the type and concentration of the crosslinker (N,N′‐methylenebisacrylamide or ethylene dimethacrylate), medium polarity, concentration of the monomer and initiator, and polymerization temperature, on the properties were examined. The hydrogel microspheres were characterized in terms of their chemical structure, size and size distribution, and morphological and temperature‐induced swelling properties. A decrease in the particle size was observed with increasing polarity of the reaction medium or increasing concentration of poly(N‐vinylpyrrolidone) as a stabilizer in the dispersion polymerization. The higher the content was of the crosslinking agent, the lower the swelling ratio was. Too much crosslinker gave unstable dispersions. Although the solvency of the precipitation polymerization mixture controlled the PNIPAAm microsphere size in the range of 0.2–1 μm, a micrometer range was obtained in the Shellvis 50 and Kraton G 1650 stabilized dispersion polymerizations of N‐isopropylacrylamide in toluene/heptane. Typically, the particles had fairly narrow size distributions. Copolymerization with the functional glycidyl methacrylate monomer afforded microspheres with reactive oxirane groups. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 968–982, 2006  相似文献   

4.
The facile and efficient one‐pot synthesis of monodisperse, highly crosslinked, and “living” functional copolymer microspheres by the ambient temperature iniferter‐induced “living” radical precipitation polymerization (ILRPP) is described for the first time. The simple introduction of iniferter‐induced “living” radical polymerization (ILRP) mechanism into precipitation polymerization system, together with the use of ethanol solvent, allows the direct generation of such uniform functional copolymer microspheres. The polymerization parameters (including monomer loading, iniferter concentration, molar ratio of crosslinker to monovinyl comonomer, and polymerization time and scale) showed much influence on the morphologies of the resulting copolymer microspheres, thus permitting the convenient tailoring of the particle sizes by easily tuning the reaction conditions. In particular, monodisperse poly(4‐vinylpyridine‐co‐ethylene glycol dimethacrylate) microspheres were prepared by the ambient temperature ILRPP even at a high monomer loading of 18 vol %. The general applicability of the ambient temperature ILRPP was confirmed by the preparation of uniform copolymer microspheres with incorporated glycidyl methacrylate. Moreover, the “livingness” of the resulting polymer microspheres was verified by their direct grafting of hydrophilic polymer brushes via surface‐initiated ILRP. Furthermore, a “grafting from” particle growth mechanism was proposed for ILRPP, which is considerably different from the “grafting to” particle growth mechanism in the traditional precipitation polymerization. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
Crosslinked poly(2‐hydroxyethyl methacrylate)‐based magnetic microspheres were prepared in a simple one‐step procedure by dispersion polymerization in the presence of several kinds of iron oxides. Cellulose acetate butyrate and dibenzoyl peroxide were used as steric stabilizer and polymerization initiator, respectively, and ethylene dimethacrylate was a crosslinking agent. The resulting product was characterized in terms of particle size, particle size distribution, iron(III) content, and magnetic properties. In the presence of needle‐like maghemite in the polymerization mixture and under suitable conditions, magnetic microspheres with relatively narrow size distribution were formed. An increase in the particle size and, at the same time, a decrease in molecular weight of uncrosslinked polymers resulted, as the continuous phase became richer in 2‐methylpropan‐1‐ol. Coercive force of needle‐like maghemite‐containing particles was higher than that of cubic magnetite‐loaded microspheres. Coercive force increased with the decreasing iron content in the particles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1161–1171, 2000  相似文献   

6.
Precipitation polymerization of styrene (St) was carried out with pentaerythritol tetraacrylate (PETEA) to produce monodisperse crosslinked microspheres. A much safer ethanol replaced acetonitrile as a solvent in precipitation polymerization of monodisperse crosslinked poly(St‐co‐PETEA) microspheres. Monodisperse crosslinked microspheres with high monomer conversion were achieved within 4 hr. Uniform and well‐separated monodisperse were obtained in ethanol when PETEA concentration varied from 30 vol% to 90 vol% and the particle diameter decreased from 0.75 to 0.58 µm. The particle yield increased from 36.51 to 64.38% by increase in the initiator loading from 1 to 8 wt%. No coagulum occurred between particles when the polymerization time varied from 2 to 10 hr. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Monodisperse polystyrene microspheres with diameters of 200–500 nm were prepared by dispersion polymerization with microwave irradiation with poly(N‐vinylpyrrolidone) as a steric stabilizer and 2,2′‐azobisisobutyronitrile as a radical initiator in an ethanol/water medium. The morphology, size, and size distribution of the polystyrene microspheres were characterized with transmission electron microscopy and photon correlation spectroscopy, and the formed films of the polystyrene dispersions were characterized with atomic force microscopy. The effects of the monomer concentration, stabilizer concentration, and initiator concentration on the size and size distribution of the polystyrene microspheres were investigated. The polystyrene microspheres prepared by dispersion polymerization with microwave irradiation were smaller, more uniform, and steadier than those obtained with conventional heating. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2368‐2376, 2005  相似文献   

8.
Styrene has been grafted from crosslinked poly(divinylbenzene) core microspheres by both reversible addition fragmentation chain transfer (RAFT) polymerization and conventional free radical polymerization. The core microspheres were prepared by precipitation polymerization. Crosslinked poly(DVB) core microspheres containing double bonds on the particle surface can be used directly to graft polymers from the surface by RAFT without prior modification of the core microspheres. The RAFT agent 1‐phenylethyl dithiobenzoate (PEDB) was used: Particle sizes increased from 2 μm up to 3.06 μm, and the particle weight increased by up to 6.5%. PEDB controls the particle weight gain, the particle volume, and the molecular weight of the soluble polymer. PEDB was also used to synthesize core poly(DVB) RAFT microspheres that contain residual RAFT end groups on the surface and within the particle. Styrene was subsequently grafted from the surface of these core poly(DVB) RAFT microspheres. The generated microspheres were characterized by 1H‐NMR spectroscopy, focused ion beam (FIB) milling, Coulter particle sizing, and size exclusion chromatography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5067–5076, 2004  相似文献   

9.
Dispersion polymerization was applied to the controlled/living free‐radical polymerization of styrene with a reversible addition–fragmentation chain transfer (RAFT) polymerization agent in the presence of poly(N‐vinylpyrrolidone) and 2,2′‐azobisisobutyronitrile in an ethanol medium. The effects of the polymerization temperature and the postaddition of RAFT on the polymerization kinetics, molecular weight, polydispersity index (PDI), particle size, and particle size distribution were investigated. The polymerization was strongly dependent on both the temperature and postaddition of RAFT, and typical living behavior was observed when a low PDI was obtained with a linearly increased molecular weight. The rate of polymerization, molecular weight, and PDI, as well as the final particle size, decreased with an increased amount of the RAFT agent in comparison with those of traditional dispersion polymerization. Thus, the results suggest that the RAFT agent plays an important role in the dispersion polymerization of styrene, not only reducing the PDI from 3.34 to 1.28 but also producing monodisperse polystyrene microspheres. This appears to be the first instance in which a living character has been demonstrated in a RAFT‐mediated dispersion polymerization of styrene while the colloidal stability is maintained in comparison with conventional dispersion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 348–360, 2007  相似文献   

10.
Facile strategy was developed for the fabrication of the monodisperse superparamagnetic pH‐sensitive single‐layer chitosan (CS) hollow microspheres with controllable structure. The carboxyl group‐functionalized polystyrene microspheres prepared by soap‐free emulsion polymerization were used as the templates. After the Fe3O4 nanoparticles were in situ formed onto the surface of the templates, the single‐layer CS was self‐assembled and cross‐linked with glutaraldehyde subsequently. Then, the magnetic single‐layer CS hollow microspheres were obtained after the templates were removed. It was found that the feeding ratio of the monomer acrylic acid in the soap‐free emulsion polymerization had played an important role on the particle size and surface carboxyl group content of the templates, which determined the particle size and shell thickness of the magnetic single‐layer CS hollow microspheres in the proposed strategy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
Super water absorbent polymer hydrogels were synthesized by frontal polymerization. These materials were obtained by copolymerizing N‐isopropyl acrylamide (NIPAAm) and 3‐sulfopropyl acrylate potassium salt (SPAK) in the presence of N,N′‐methylene‐bis‐acrylamide as a crosslinker. It was found that their swelling behavior in water can be easily tuned by using either the appropriate monomer ratio or the amount of the crosslinker used. Namely, the swelling ratio was found to range from about 1000% for the NIPAAm homopolymer in the presence of 5.0 mol % of crosslinker, up to 35,000% for the sample containing 87.5 mol % of SPAK and 1.0 mol % of crosslinker. The affinity toward water was also confirmed by contact angle analysis. Moreover, the obtained hydrogels exhibit a thermoresponsive behavior, with a lower critical solution temperature of about 28–30 °C. This value is close to that of poly(NIPAAm) but with a swelling capability that dramatically increases as the amount of SPAK increases. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
Polystyrene template microspheres of 1.4 ± 0.1 μm were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2‐methoxy ethanol. These template particles were then swelled at room temperature in a single step with emulsion that was prepared in sodium dodecyl sulfate aqueous solution from a swelling solvent (dibutyl phthalate) containing the initiator (benzoyl peroxide) and monomer(s) (chlormethylstyrene, divinylbenzene, or ethylene dimethacrylate). Composite uniform particles composed of the template polystyrene and noncrosslinked or crosslinked polychloromethylstyrene were prepared by polymerizing the monomer(s) within the swelled particles at 73 °C. Crosslinked uniform polychloromethylstyrene particles of higher surface area were formed by dissolving the template polystyrene polymer of the composite particles. The influence of various reaction parameters, such as dibuthyl phthalate concentration, chloromethylstyrene concentration, crosslinker type and concentration, and so forth on the molecular weight, size, size distribution, shape, morphology, surface area, and decomposition temperature of the particles was investigated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1342–1352, 2002  相似文献   

13.
Polymeric microspheres have been used in a broad range of applications from chromatographic separation techniques to analysis of air flow over aerodynamic surfaces. The preparation of microspheres from many polymer families has consequently been extensively studied using a variety of synthetic approaches. Although there are a myriad of polymeric microsphere synthesis methods, free‐radical initiated emulsion polymerization is one of the most common techniques. In this work, poly(styrene‐co‐methyl methacrylate) microspheres were synthesized via surfactant‐free emulsion polymerization. The effects of co‐monomer composition and addition time on particle size distribution, particle formation, and particle morphology were investigated. Particles were characterized using dynamic light scattering and scanning electron microscopy to gain further insight into particle size and size distributions. Reaction kinetics were analyzed through consideration of characterization results. A particle formation mechanism for poly(styrene‐co‐methyl methacrylate) microspheres was proposed based on characterization results and known reaction kinetics. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2249–2259  相似文献   

14.
Polystyrene template microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2‐methoxy ethanol. Spherical and hemispherical polystyrene/poly(glycidyl methacrylate) microspheres of narrow size distribution were prepared by a single‐step swelling of the polystyrene template microspheres with the swelling solvent monomer glycidyl methacylate, followed by polymerization of the monomer within the swollen template microspheres at 73 °C. Uniform polystyrene/poly(glycidyl methacylate‐ethylene glycol dimethacrylate) polyepoxide composite microspheres were synthesized similarly, substituting glycidyl methacylate for glycidyl methacylate and ethylene glycol dimethacrylate. Uniform crosslinked poly(glycidyl methacylate‐ethylene glycol dimethacrylate) polyepoxide microspheres have been prepared by dissolution of the PS template polymer of the former composite microspheres. Particles with different properties, for example size, size distribution, shape, surface morphology, surface area, and so forth, were prepared by changing various parameters belonging to the swelling and/or polymerization steps, for example, volume of the swelling monomer/s and/or the swelling solvent dibutyl phthalate. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4612–4622, 2007  相似文献   

15.
Magnetic poly(N‐propargylacrylamide) (PPRAAm) microspheres were prepared by the precipitation polymerization of N‐propargylacrylamide (PRAAm) in a toluene/propan‐2‐ol medium in the presence of magnetic nanoparticles (oleic acid‐coated Fe3O4). The effects of several polymerization parameters, including the polarity of the medium, polymerization temperature, the concentration of monomer, and the amount of magnetite (Fe3O4) in the polymerization feed, were examined. The microspheres were characterized in terms of their morphology, size, particle‐size distribution, and iron content using transmission and scanning electron microscopies (TEM and SEM) and atomic absorption spectroscopy (AAS). A medium polarity was identified in which magnetic particles with a narrow size distribution were formed. As expected, oleic acid‐coated Fe3O4 nanoparticles contributed to the stabilization of the polymerized magnetic microspheres. Alkyne groups in magnetic PPRAAm microspheres were detected by infrared spectroscopy. Magnetic PPRAAm microspheres were successfully used as the anchor to enable a “click” reaction with an azido‐end‐functionalized model peptide (radiolabeled azidopentanoyl‐GGGRGDSGGGY(125I)‐NH2) and 4‐azidophenylalanine using a Cu(I)‐catalyzed 1,3‐dipolar azide‐alkyne cycloaddition reaction in water. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

16.
Precipitation polymerization of styrene (St)–divinylbenzene (DVB) has been carried out using acetonitrile/1‐propanol mixture as the reaction media and 2,2′‐azobisisobutyronitrile (AIBN) as initiator. Monodisperse micron‐sized poly(St‐co‐DVB) microspheres with clean and smooth surface were synthesized in the absence of any stabilizing agent such as surfactants or steric stabilizers. The effects of various polymerization parameters such as 1‐propanol fraction in the reaction media, initiator and total monomer concentration, DVB content, polymerization time and polymerization temperature on the morphology, particle size and size distribution were investigated. It was found that smoothly shaped stable particles were obtained when less than 70 vol% of 1‐propanol was used in the media. The particle size increased with the AIBN concentration, whereas the change of uniformity was less obvious. Monodisperse microspheres were obtained when the total monomers loading ranged from 0.5 to 3 vol%. The particle diameter ranged from 2.73 to 1.87 µm with an increasing DVB content and the uniformity was enhanced. In addition, the yield of microspheres increased with the increasing total monomer, initiator, and DVB concentration and polymerization time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The particle size distributions of poly(vinyl pivalate) (PVPi) produced from low‐temperature suspension polymerization of vinyl pivalate (VPi) with 2,2′‐azobis(4‐methoxy‐2,4‐dimethylvaleronitrile) (AMDMVN) as an initiator have been studied. By controlling various synthesis parameters, near‐monodisperse PVPi microspheres from 100 to 400 μm were obtained that are expected to be precursors of near‐monodisperse syndiotactic poly(vinyl alcohol) (PVA) microspheres for biomedical embolic applications. The mean particle diameter follows the relationship: the volume average diameter, DvadY0.26[VPi]0.52[AMDMVN]?0.25[PVA]0.40T?8.35Rpm?0.67, where Y, [VPi], [AMDMVN], [PVA], T, and Rpm are the fractional conversion, concentrations of VPi, AMDMVN, and suspending agent, polymerization temperature, and agitation speed during the polymerization of VPi, respectively. The polydispersity of the particle size distribution of PVPi decreased with decreasing conversion, [AMDMVN], T, and Rpm and with increasing [VPi]. In the case of [PVA], optimization of the suspension stability led to a narrow particle size distribution. Ultrahigh‐molecular‐weights PVPi and PVA (number‐average degrees of polymerization of PVPi (25,000–32,000) and PVA (14,000–17,500), of high syndiotactic diad content (63%), and of high ultimate conversion of VPi into PVPi (85–95%) were obtained by suspension polymerization at 10 °C, followed by saponification. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 789–800, 2005  相似文献   

18.
以醇水混合液为分散介质,偶氮二异丁腈为引发剂,聚乙烯吡咯烷酮为稳定剂,二乙烯基苯为交联剂,采用分散聚合法一步制备了粒径约为1μm的单分散交联聚苯乙烯微球;采用扫描电镜和激光粒度仪等分析微球表面形貌及粒径分布,研究了滴加交联剂开始时间、交联剂浓度、引发剂浓度等对微球形貌和分散性能的影响.结果表明,在实验进行4h时加入交联剂,且交联剂滴加持续时间为2h的条件下,可制得平均粒径为1μm左右的交联聚苯乙烯微球,其具有较好的单分散性和球形度,且表面光滑.  相似文献   

19.
Fully crosslinked, stable poly(styrene‐co‐divinylbenzene) microspheres, which are composed of various concentrations of divilylbenzene from 5 to 75 mol % based on styrene monomer, were prepared without a significant particle coagulation by the precipitation polymerization. The number‐average particle diameter ranged from 3.5 to 2.8 μm and decreased with an increasing concentration of divinylbenzene in monomer. In addition, the coefficient of variation of the microspheres was slightly reduced with the increasing concentration of divinylbenzene. The circularity and the measured specific surface area indicated that lesser particles are coagulated because of the improved stability of individual particles at a high divinylbenzene concentration and that the resulting particles have a smooth surface without micropores. The glass‐transition temperature was not observed for all microspheres formed from the range of divinylbenzene concentrations. In addition, the onset of the thermal‐degradation temperature was increased from 339.8 to 376.9 °C upon higher contents of divinylbenzene. On the basis of the DSC and thermogravimetric data, the polymer microspheres prepared by the precipitation polymerization possessed a fully crosslinked structure and highly enhanced thermal stability. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 835–845, 2004  相似文献   

20.
以季戊四醇三丙烯酸酯(PETA)作交联剂,苯乙烯作共聚单体,偶氮二异丁腈作引发剂,在乙醇或其与水的混合溶剂中沉淀聚合制备了交联聚合物微球.研究了反应时间、交联剂用量以及溶剂中水含量对聚合过程及微球的影响.结果表明当PETA用量在单体质量的5%-35%之间且反应时间不低于6h时可制得单分散聚合物微球.当PETA用量低于20%时,所得微球的粒径随PETA用量的增加逐渐减小,粒径分布逐渐变窄;此后继续提高PETA用量,微球粒径又逐渐增大,粒径分布逐渐变宽.向反应介质中加入水,可明显提高微球产率及单体转化率,但其体积分数达30%时,所得微球分散性变宽.在此基础上对微球的形成机理也进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号