首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 199 毫秒
1.
La2O3对沼气重整制氢催化剂Ni/γ-Al2O3的影响   总被引:4,自引:0,他引:4  
用浸渍法制备了不同La2O3含量的Ni/La2O3/γ-Al2O3催化剂,用CH4/CO2体积比为1的混合气体模拟沼气,考察了La2O3对沼气重整制氢催化剂Ni/γ-Al2O3的结构及催化性能的影响.运用XRD、H2-TPR、BET及TEM等手段对催化剂进行了表征.结果表明,La2O3对催化剂Ni/γ-Al2O3的影响主要取决于其含量.载体中La2O3的添加增强了Ni与Al2O3之间的相互作用.添加适量的La2O3能使催化剂具有更好的可还原性,并能增加金属Ni的分散性,抑制反应过程中Ni的烧结,提高载体对CO2的吸附能力,从而改善了催化剂的抗积炭性,使催化剂具有较好的活性及稳定性.反之,过量La2O3的掺杂会使催化剂的抗积炭性及活性下降.当La2O3含量为6%(ω)时,催化剂中Ni晶粒具有较好的分散性、还原性及抗积炭性,从而使催化剂具有更好的活性及稳定性.  相似文献   

2.
CeO2和Pd在Ni/γ-Al2O3催化剂中的助剂作用   总被引:3,自引:0,他引:3  
采用脉冲微反技术研究了添加n型半导体氧化物CeO2及贵金属Pd对Ni/γ-Al2O3催化剂上CH4积炭/CO2消炭反应性能的影响,并运用BET、TPR、CO2-TPSR及氢吸附等技术对催化剂进行了表征.结果表明,n型半导体氧化物CeO2的添加可以降低Ni/γ-Al2O3催化剂上CH4裂解积炭活性,提高CO2消炭活性,添加少量贵金属Pd可以进一步改变载体Al2O3、助剂CeO2和活性组分Ni之间的相互作用,从而改善Ni/γ-Al2O3催化剂的抗积炭性能.通过Ni-Ce-Pd/γ-Al2O3催化剂上CH4积炭/CO2消炭模型对上述作用机制作出了新的解释.  相似文献   

3.
Ni/γ-Al2O3中助剂的加入对于CH4/CO2重整反应性能的影响   总被引:5,自引:2,他引:3  
以含量为2%的K、Cu、La、Mg、Ca、Ba、Mo、Ce等多种金属作为助剂分别加入Ni/γ-Al2O3催化剂样品中,并对其分别用于CH4/CO2重整反应时的活性和积碳量进行了考察.研究结果表明加入助剂后的各种催化剂的活性变化不一.其中,以含Ca的催化剂效果最好,其甲烷的转化率可由原来的71.91%增加到72.92%,其次为La.但所有加入助剂后的催化剂的抗积碳性能均有所提高,特别是碱金属K的添加,使催化剂表面积碳量降到了0.1%.这表明添加碱金属或碱土金属助剂,对提高Ni/γ-Al2O3催化剂在CH4/CO2重整反应中的抗积炭性能有很大作用.  相似文献   

4.
碱性助剂的添加对Ni/CaO-Al2O3催化剂性能的影响   总被引:8,自引:1,他引:7  
傅利勇  吕绍洁 《分子催化》2000,14(3):179-183
在CH4、 CO2和O2制合成气的反应中, 通过在Ni/CaO-Al2O3催化剂中添加碱性助剂K2O、 MgO和La2O3, 使催化剂的性能得到了改善. 实验结果表明, MgO和La2O3助剂的添加, 有利于提高催化剂的活性;添加K2O, 却相反. 测得催化剂上积炭量的顺序为: Ni-La2O3/CaO-Al2O3相似文献   

5.
采用XRD、TPR和催化活性评价等技术,考察了负载型CoO催化剂的表面特征和其对CH4与CO2重整制合成气反应的催化性能.实验结果表明,采用浸渍法和焙烧温度为400℃时制备的11.0%CoO/γ-Al2O3催化剂,在反应温度为750 ℃和空速(GHSV)为2 500 h-1下,对CH4和CO2转化反应具有最佳的催化初活性,而大量的Co3O4晶粒的存在能导致催化剂因积炭而快速失去活性.CaO、MgO和La2O3助剂的添加能有效地改善其催化剂的抗积炭能力和还原性能,CoO/(CaO-γ-Al2O3)催化剂显示出最佳的催化反应稳定性,在750 ℃、GHSV=2 500 h-1、CH4/CO2原料比为1:1下,连续反应100 h催化剂活性较为稳定.CoO/(CaO-γ-Al2O3)和CoO/γ-Al2O3催化剂的表面特性本质上是不相同的.  相似文献   

6.
CeO2和Pd在Ni/γ-Al2O3催化剂中的助剂作用   总被引:6,自引:0,他引:6  
采用脉冲微反技术研究了添加n型半导体氧化物CeO2及贵金属Pd对Ni/γ Al2O3催化剂上CH4积炭/CO2消炭反应性能的影响,并运用BET、TPR、CO2 TPSR及氢吸附等技术对催化剂进行了表征.结果表明, n型半导体氧化物CeO2的添加可以降低Ni/γ Al2O3催化剂上CH4裂解积炭活性,提高CO2消炭活性,添加少量贵金属Pd可以进一步改变载体Al2O3、助剂CeO2和活性组分Ni之间的相互作用,从而改善Ni/γ Al2O3催化剂的抗积炭性能.通过Ni Ce Pd/γ Al2O3催化剂上CH4积炭/CO2消炭模型对上述作用机制作出了新的解释.  相似文献   

7.
采用浸渍法制备了系列Ru-La2O3/γ-Al2O3复合氧化物催化剂,考察了La2O3 的加入量、预处理方法对催化剂CO选择性氧化反应性能的影响,并通过XRD、H2-TPR、CO-TPR、XPS等手段对催化剂进行了表征。结果表明,添加La的 Ru1La6/Al2O3催化剂在110-170℃时具有99%以上的CO转化率,且催化剂的选择性在55.7%以上。和Ru/Al2O3相比,Ru1La6/Al2O3催化剂在较低温度下具有活性,活性温度区间变宽,适量La2O3的加入提高了钌物种的表面分散性,使催化剂表面活性位点增多,有利于CO的吸附和氧化,提高了催化剂的活性和选择性。和其他方法相比,经氢气预处理后的Ru1La6/Al2O3催化剂活性最佳,催化剂上Ru物种结合能降低,表面钌物种活性位增多,且表面晶格氧浓度增大,更有利于CO气体在催化剂表面上的氧化反应。  相似文献   

8.
CH4,CO2和O2制合成气反应中载体对催化剂抗积炭性能的影响   总被引:14,自引:0,他引:14  
在CH4,CO2 和O2 催化氧化制合成气反应中 ,积炭是催化剂活性减弱的一个重要因素 .通过向Ni/Al2 O3 添加各种氧化物后 ,催化剂的抗积炭性能得到了提高 .实验结果表明 ,催化剂的抗积炭顺序为 :Ni/CaO Al2 O3 >Ni/MgO Al2 O3 >Ni/TiO2 Al2 O3>Ni/CeO2 Al2 O3 >Ni/La2 O3 Al2 O3 >Ni/Y2 O3 Al2 O3 >Ni/Fe2 O3 Al2 O3 >Ni/Al2 O3 ,并通过CO2 TPD ,O2 TPD ,XPS等方法对催化剂进行表征 ,讨论了抗积炭顺序与催化剂性能的关系 .  相似文献   

9.
 通过H2程序升温脱附实验,在H2还原的Ni/La2O3/α-Al2O3催化剂上可以明显观察到高温脱附氢(高温氢). 动力学实验结果表明,随催化剂上高温氢含量的增加, CH4/CO2重整反应的初始活性升高,同时高温氢也可在重整反应过程中原位生成,并使重整反应的活性最终达到稳定. 脉冲实验结果表明,随催化剂上高温氢含量的增加, CH4解离后生成的活性中间体CHx物种的x值也增大,进而降低了CHx与CO2反应的活化能,提高了CHx与CO2反应的速率. La2O3助剂的添加提高了Ni/La2O3/α-Al2O3催化剂上逆水气变换反应的速率,并且对CO2的活化也有促进作用. La2O3助剂的加入对于CH4/CO2重整反应的重要作用是使高温氢的数量增多且稳定性提高,有利于保持CHx物种中较高的x值,促进重整反应.  相似文献   

10.
CeO2-La2O3/γ-Al2O3催化还原SO2反应机理的研究   总被引:5,自引:0,他引:5  
胡辉  李胜利  张顺喜  李劲 《催化学报》2004,25(2):115-119
 采用浸渍法制备了负载型CeO2/γ-Al2O3,La2O3/γ-Al2O3和CeO2-La2O3/γ-Al2O3催化剂,并用XRD和XPS对催化剂进行了表征,在n(SO2)/n(CO)=1/3,载流气体为N2,气体流量为1 L/min,催化剂用量为15 g的条件下,考察了催化剂催化CO还原SO2反应的性能,研究了催化剂的活化过程、催化活性和反应物配比对活性的影响. 结果表明,CeO2-La2O3/γ-Al2O3在催化还原SO2反应中的活化温度比单组分催化剂CeO2/γ-Al2O3或La2O3/γ-Al2O3下降了50~100 ℃,而且具有更高的活性. 这可以解释为由CeO2的redox反应与La2O3的COS中间物反应之间的协同作用所致. 还对SO2还原反应机理进行了探讨,发现CeO2的redox反应所生成的单质硫是整个过程中COS中间物反应的重要来源. 在此基础上,对CeO2-La2O3/γ-Al2O3催化CO还原SO2反应提出了redox-COS叠加反应机理.  相似文献   

11.
以十六烷基三甲基溴化胺为结构导向剂,采用溶胶-凝胶法制备了BaTiO3-BaAl2O4-Al2O3复合载体,采用X射线衍射、红外光谱、N2吸附-脱附、透射电子显微镜和H2程序升温还原等技术对复合载体进行了表征,并以CH4/CO2重整制合成气为探针反应,考察了不同Ni/BaTiO3-BaAl2O4-Al2O3催化剂的性能.结果表明,BaTiO3-BaAl2O4-Al2O3复合载体具有多孔织构特性和较高的比表面积,BaTiO3和BaAl2O4以晶粒状态分布在复合载体的内外表面,晶粒尺寸在20~50nm的范围,复合载体孔径为10~20nm.复合载体上BaTiO3和BaAl2O4的引入,适度削弱了Ni/BaTiO3-BaAl2O4-Al2O3催化剂中Ni物种与γ-Al2O3间的强相互作用,抑止了NiAl2O4尖晶石的生成;当载体中Ba(Ti)含量为17.33%时,其负载的Ni催化剂上CH4/CO2重整制合成气反应的活性和稳定性最高.  相似文献   

12.
用蒸发法制备了Ni/Al2O3催化剂及浸渍法制备了Ni/α-Al2O3和Ni/γ-Al2O3催化剂, 并与商品天然气水蒸气重整催化剂Z118Y一起进行了甲烷干重整实验, 考察了各催化剂上表面积炭行为. 通过H2程序升温还原(H2-TPR)、BET(Brunauer-Emmett-Teller)比表面积分析、X射线衍射(XRD)、透射电镜(TEM)、热重-差式扫描量热(TG-DSC)、程序升温氢化(TPH)等表征手段对催化剂表面沉积炭的特性进行了表征. 结果表明, 各催化剂上至少存在三种形式的碳物种: 无定形碳、丝状碳及石墨碳. 由于载体性质不同, 各催化剂上沉积炭的种类及其含量有所差别. Z118Y、Ni/Al2O3及Ni/α-Al2O3催化剂上主要沉积丝状炭, 而Ni/γ-Al2O3催化剂上则主要是石墨碳. Ni/γ-Al2O3催化剂中金属Ni颗粒较小(小于15 nm)、粒径分布范围较窄、分散性较好, 能减少催化剂表面炭的沉积, 有效地抑制丝状碳的生长.  相似文献   

13.
用传统湿式浸渍法制备了La2O3掺杂的商业γ-Al2O3负载的沼气重整催化剂Ni-Co/La2O3-γ-Al2O3, 并用程序升温加氢(TPH)、程序升温氧化(TPO)、程序升温表面反应(TPSR)、程序升温脱附(TPD)及脉冲实验对催化剂进行了表征. 结果表明, 沼气重整过程中Ni-Co/La2O3-γ-Al2O3催化剂上的表面碳物种主要来源于CH4的裂解, CO2的贡献很小. CH4裂解能够产生三种活性不同的碳物种, 即Cα、Cβ与Cγ. 随着反应的进行, Cα物种减小而Cβ与Cγ物种增加, 且Cγ物种能够转变为惰性的石墨碳. 重整反应过程中CH4与CO2的活化能相互促进. 催化剂表面的O物种与C反应生成CO或与CHx反应生成CHxO再分解为CO与吸附态的H物种, 可能是Ni-Co/La2O3-γ-Al2O3催化剂上沼气重整的速率控制步骤.  相似文献   

14.
考察了在无水条件下γ-Al2O3基金属氧化物M-Al2O3(M=Mg、La、Ba、Ce、Ni、P)与CF4反应转化为金属氟化物的反应. 结果表明, 在所筛选的金属氧化物中, γ-Al2O3的初活性较高, 但由于CF4分解时产生的强放热效应使未反应的γ-Al2O3发生了α相变, 致使CF4转化率急剧下降, 反应温度越高, γ-Al2O3的α相变越快, 活性下降就越快. CF4在MgO-Al2O3上分解时, Mg物种比Al优先氟化生成了MgF2, Mg物种的氟化反应及其产生的强放热效应使MgAl2O4结构发生了解体. 在Al2O3表面负载助剂P、Ni,提高了其热稳定性, 抑制了CF4高温分解时未反应的Al2O3发生α相变, 使更多的γ-Al2O3参与了CF4分解反应.  相似文献   

15.
流化床甲烷部分氧化制合成气Ni催化剂及助剂La的作用   总被引:11,自引:0,他引:11  
在流化床中,考察了不同Ni担载量的Ni/γ-Al2O3催化剂对POM反应的催化性能,以8%Ni最佳,TPR结果表明。催化剂表面主要有两种化学状态的NiO。当镍担载量≤2%时,催化剂表面 仅存在一种高温下才能被还原的NiO,在Ni催化剂中添加La,可削弱NiO与载体间的相互作用,并且可减缓在CH4+O2气氛下升温过程中NiO与载体发生强相互作用 生成NiAl2O4,因此添加La的Ni催化剂在750℃就能引发甲烷部分氧化(POM)反应,且反应引发后可获得与经700℃H2还原后的Ni^0催化剂相同的反应性能。  相似文献   

16.
Summary  K-Ca-promoted Ni/&agr;-Al2O3 catalyst exhibited higher activity better coke-resistance than Ni/&agr;-Al2O3 for CH4 reforming with CO2 under different reaction conditions. Temperature-programmed activation process of CH4 reforming with CO2 was investigated on these catalysts.  相似文献   

17.
A series of hybrid catalysts were made by physically mixing Cu-ZrO 2 and γ-Al 2 O 3,for former it was modified with different loadings of La 2 O 3 prepared by co-precipitation method.The catalysts were characterized by BET,XRD,N 2 O-adsorption,EXAFS,H 2-TPR,NH 3-TPD techniques and evaluated in the synthesis of dimethyl ether from syngas.The results show that La 2 O 3 promoted catalysts displayed a significantly better catalytic performance compared with Cu-ZrO 2 /γ-Al 2 O 3 catalyst in CO conversion and DME selectivity,and the optimum catalytic activity was obtained when the content of La 2 O 3 was 12 wt%.The characterizations reveal that high copper dispersion,facile reducibility of copper particles and appropriate amount of acidic sites are responsible for the superior catalytic performance.  相似文献   

18.
用微型催化反应装置评价, 并结合X射线粉末衍射(XRD)、表面积和孔结构测试、程序升温还原(TPR)、氢化学吸附和热重分析等方法研究了负载型PtSn/γ-Al2O3, PtSn/MCM-41和PtSn/Al2O3/MCM-41催化剂的丙烷脱氢反应催化性能. 发现PtSn/Al2O3/MCM-41催化剂具有较PtSn/MCM-41催化剂高的丙烷脱氢反应活性和较PtSn/γ-Al2O3催化剂高的反应稳定性. 实验结果表明, 纯硅MCM-41载体表面的锡物种因与载体相互作用较弱故易被还原, 导致铂金属分散度和催化剂的丙烷脱氢活性较低. 用Al2O3修饰MCM-41可以增强Sn物种与Al2O3/MCM-41载体之间的相互作用, 提高PtSn/Al2O3/MCM-41催化剂铂金属分散度和丙烷脱氢催化活性. 并且, 积炭后的PtSn/Al2O3/MCM-41催化剂具有较高的铂金属表面裸露度, 故具有较高的丙烷脱氢反应稳定性. PtSn/Al2O3/MCM-41催化剂优良的丙烷脱氢催化性能可能不仅与Sn-载体Al2O3/MCM-41较强的相互作用有关, 而且与Al2O3/MCM-41载体的介孔结构有关.  相似文献   

19.
La2O3对Ni/γ-Al2O3甲烷化催化剂的助催化作用   总被引:14,自引:0,他引:14  
我国将稀土作为助剂引入镍基甲烷化催化剂,大大提高了催化剂的活性和热稳定性,并已投入工业应用[1-3].稀土对不同镍催化剂反应性能及其作用机理的研究已有一些报导[3-7].谢有畅等观察到镍负载在经单层La2O3改性的γ-Al2O3表面,其晶粒要比没有La2O3时小得多.Rotgerink等认为添加La后反应速率的增加不只是由于几何效应,而是La对甲烷化本身有促进作用,单位镍表面的活性是随La含量不同而改变的,活性增加的同时表观活化能也增加[5].作为助剂的La2O3在氢还原和反应过程中的变化及其作用的研究和讨论较少,目前一般认为添…  相似文献   

20.
用X-射线衍射(XRD)、紫外-可见漫散射光谱(UV-Vis DRS)、程序升温还原(TPR)、CO化学吸附和微反测试等方法研究了Ni2+在γ-Al2O3上的分散状态和负载型Ni/γ-Al2O3催化剂的α-蒎烯加氢催化活性。结果表明,当Ni2+负载量远低于其在γ-Al2O3载体表面分散容量时,Ni2+优先嵌入载体表面四面体空位,随着Ni2+负载量的增加,嵌入载体表面八面体空位Ni2+的比例增大。由于八面体Ni2+易被还原为金属态Ni0,NiO/γ-Al2O3样品的还原度随Ni2+负载量的增加而大幅度地增加,经氢还原所得Ni/γ-Al2O3催化剂的CO吸附量和α-蒎烯加氢催化活性大幅度增加。对La2O3助剂的作用进行了研究,结果表明分散在γ-Al2O3上的La3+物种可阻止Ni2+嵌入γ-Al2O3表面四面体空位,增大了八面体Ni2+物种所占比例,提高了催化剂的还原度,故Ni-La2O3/γ-Al2O3催化剂催化活性高于Ni/γ-Al2O3催化剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号