首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
We have used a combination of ultrasound and density techniques to measure the hydration parameters, apparent molar volume, and apparent molar adiabatic compressibility, of the antitumor drug cis-dichlorodiammineplatinum(II), cis-[Pt(NH3)2Cl2], and its inactive isomer trans-dichlorodiammineplatinum(II), trans-[Pt(NH3)2Cl2], in 10 mM NaNO3, pH 5.6 at 37°C. The data have been interpreted in terms of the overall hydration of each isomer, the actual hydration contribution to the adiabatic compressibility, K h, ranges from –56.4 × 10–4 to –20.3 × 10–4 cm3-mol–1-bar–1, and the volume contribution, V h, ranges from –16.3 to –6.4 cm3-mol–1. The negative signs of these hydration contributions indicate that the volume and compressibility of the water immobilized by the platinum complexes is smaller than the volume and compressibility of bulk water. The V h and K h parameters for all platinum complexes investigated are linearly dependent on the relative amount of hydrolyzed chlorides. The values of each parameter become more negative with increasing hydrolysis, and show that the degree of hydration increases. The similar dependence of the amount of hydrolyzed chloride ligands reveals similar hydration properties for these two complexes. Thus, the symmetry of the complexes, which is of crucial importance for anticancer activity, has no influence on their hydration properties. Under our experimental conditions, the equilibrium constants for the hydrolysis of cis-[Pt(NH3)2Cl2] are K 1 = 2.52 mM and K 2 = 0.04 mM. The equilibrium constant for the first step of hydrolysis of trans-[Pt(NH3)2Cl2] is 0.03 mM, while the second chloride ligand cannot be substituted by water, even in the irreversible reaction with AgNO3. Furthermore, continuous measurements of the ultrasonic velocity during hydrolysis permits the accurate evaluation of the pseudo-first-order rate constant k 1 for the hydrolysis of the first chloride ligand of cis-[Pt(NH3)2Cl2], which is 16±1×10–5 s–1.  相似文献   

2.
The reactions of trans-[MoO(ONOMe)Cl2] 1 (ONOMe = methylamino-N,N-bis(2-methylene-4,6-dimethylphenolate) dianion) and trans-[MoO(ONOtBu)Cl2] 2 (ONOtBu = methylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenolate) dianion) with PhNCO afforded new imido molybdenum complexes trans-[Mo(NPh)(ONOMe)Cl2] 3 and trans-[Mo(NPh)(ONOtBu)Cl2] 4, respectively. As analogous oxotungsten starting materials did not show similar reactivity, corresponding imido tungsten complexes were prepared by the reaction between [W(NPh)Cl4] with aminobis(phenol)s. These reactions yielded cis- and trans-isomers of dichloro complexes [W(NPh)(ONOMe)Cl2] 5 and [W(NPh)(ONOtBu)Cl2] 6, respectively. The molecular structures of 4, cis-6 and trans-6 were verified by X-ray crystallography. Organosubstituted imido tungsten(VI) complex cis-[W(NPh)(ONOtBu)Me2] 7 was prepared by the transmetallation reaction of 6 (either cis or trans isomer) with methyl magnesium iodide.  相似文献   

3.
The reduction of Pt(IV) complexes followed by the oxidative addition of dimethyl sulfate to Pt(II) affords Cs2PtMe2Cl4, a complex of dimethylplatinum(IV). On treatment with such nucleophiles as Cl, Br, I, and PtCl4 2– in aqueous solutions at 368 K this complex undergoes reductive elimination to give MeX and PtIIMe as a transient species. The latter is further converted to methane upon protolysis, whereas in the presence of an oxidant (Na2PtCl6) it gives rise to the PtIVMe species. The kinetics of decomposition of Cs2PtMe2Cl4 in aqueous HCl-KCl systems (2M or 3M in Cl; [PtIVMe2][Cl]) were studied. The reaction takes place as anS N 2 attack of X on the carbon atom of a methyl group located with thetrans position with respect to the aqua-ligand of the [PtMe2Cl3(H2O)] complex.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 389–395, February, 1993.  相似文献   

4.
Summary The preparation of the series ofcis- andtrans-[Co(NH3)4(RNH2)Cl]2+ complexes (withcis, R = Me orn-Pr andtrans, R = Me, Et,n-Pr,n-Bu ori-Bu) is described. The u.v-visible spectra indicate a decrease of the ligand field on increasing chain length. Infrared spectra show an enhanced Co-Cl bond strength compared to the pentaammine. Partial molar volumes of the complex cations do not reveal steric compression. From proton exchange studies in D2O it follows that [Co(NH3)5Cl]2+ and thecis- andtrans-[Co(NH3)4-(CH3NH2)C1]2+ complexes exchange the amine protons on the grouptrans to the chloro faster than those on thecis. A coordinated methylamine group exchanges its amine protons slower than a corresponding NH3 group in the parent pentaammine, but the methyl introduction accelerates the exchange of the other NH3 groups. The aquation of thetrans-alkylamine complexes (studied at 52° C) is acceleratedca. 10 times compared to the parent pentaammine, irrespective of the nature of the alkyl group. Thecis complexes do not show this acceleration of aquation. In base hydrolysis (studied at 25° C) thecis complexes are the most reactive (a factor 20 over the parent ion). Thecis/trans product ratio in base hydrolysis and the competition ratio in the presence of azide ions were calculated from the 500 MHz1H n.m.r. spectra, which display distinctly different alkyl resonances for each individual complex. Thecis ions react under stereochemical retention of configuration; thetrans compounds give 10±1%trans tocis rearrangement. The ionic strength (4 mol dm–3) and the pH do not affect this result. The same product ratio is obtained in methanol-water and DMSO-water mixtures. Ammoniation in liquid ammonia gives the same ratios as in base hydrolysis, base-catalyzed solvolysis in neat methylamine gives stereochemical retention for both thecis- andtrans-methylamine ion. The product competition ratio (Co-N3)/(Co-OH2) for thecis compounds and the bulkier amines (R =n- andi-Bu), 15–25% at 1 mol dm–3N 3 , isca. twice that of thetrans compounds and the pentaammine. The results are interpreted in the classical conjugate base mechanism, and discussed in the context of current ideas about stereochemistry of base hydrolysis.Prof. C. R. Píriz Mac-Coll from Uruguay is a guest at the Free University of Amsterdam.  相似文献   

5.
P(OMe3)3 reacts with RuCl3 · 3H2O to produce the complex trans-[Ru{P(OMe)3}4Cl2] from which the complexes trans-[Ru{P(OMe)3}4S2]2+ and cis-[Ru{P(OMe)3}2S4]2+ (S = Solvent) can be prepared by solvation in neutral and acidic solution, respectively. The aquation takes place with a specific rate of 1.0 × 10–2 min–1 (pH = 3.0) and 5.4 × 10–3 min–1 (pH 7.0) The trans-[Ru{P(OMe)3}4Cl2] complex has been characterized by elemental analysis; electronic spectra [max = 408 nm] ( = 1.7 × 102 M–1 cm–1), max = 250 nm ( = 3.5 × 103 M–1 cm–1) and a shoulder at = 280 nm ( 8.3 × 102 M–1 cm–1)]; cyclic voltametry ( = 0.75 V versus s.c.e.); HPLC (t R = 5.7 min); and 31P-n.m.r. ( = 131 p.p.m.). In acidic solutions the 31P-n.m.r. variations point to a reaction intermediate, characterized as the complex ion trans-[Ru{P(OMe)3}4S2]2+ ( = 136 p.p.m.) followed by the formation of the proposed product, cis-[Ru{P(OMe)3}2S4]2+ ( = 145 p.p.m.). For this same complex, at pH = 7.0, the results show the formation of the trans-[Ru{P(OMe)3}4S2]2+ ( = 136 p.p.m.). The HPLC results for the trans-[Ru{P(OMe)3}4Cl2] complex show that the different species are present at different pH values. In acidic media a less polar species (t R = 4.3 min) compared with the starting material (t R = 5.7 min) was formed. At neutral pH (t R = 4.6 min) the species generated were not modified, however they exhibited different properties from the species obtained at a lower pH.  相似文献   

6.
Summary The ammoniation ofcis-[Rh(en)2Cl2] · (ClO4) in liquid NH3 was studied at constant ionic medium of 0.20 m perchlorate in the 0 to 35° range. The complex reacts in two distinct steps to givecis-[Rh(en)2(NH3)2] · (ClO4)3, with the intermediate formation ofcis-[Rh(en)2(NH3)Cl] · (ClO4)2. Both steps follow a conjugate-base mechanism. Activation parameters were obtained for the acid-base preequilibrium and the rate-determining step. The entropies of activation for the rate-determining step are 0 and –42 JK–1mol–1 for the first and second ammoniations respectively. These values are considerably lower than those found for the cobalt(III) analogues. The entropy changes for the acid-base equilibria are –84 and –36 JK–1mol–1 respectively, which is less negative than those values found for the cobalt(III) analogues. Trans-[Rh(en)2I2] · (ClO4) ammoniates totrans-[Rh(en)2(NH3)I] · (ClO4)2. The contribution of spontaneous ammoniation to the overall reaction oftrans-[Rh(en)2I2] · (ClO4) is negligible, so the uniqueness oftrans-[Co(en)2Cl2] · (ClO4) among cobalt(III) complexes in this respect is not reproduced for thetrans-dihalotetraamine structure in rhodium(III) complexes. A comparison of cobalt(III) and rhodium(III) amines with respect to activation parameters and the influence of formal charge of the metal complex on reactivity indicates a more associative type of activation for rhodium(III).  相似文献   

7.
The effect of stereochemistry on the mechanism of gas-phase fragmentation of [M+SiMe3]+ ions was studied usingcis- andtrans-1,2- and -1,4-cyclohexanediols, their methyl ethers, and acetates as model compounds. The higher stability of the [M+SiMe3]+ions is characteristic of cis-isomers of all the compounds examined, which is associated with chelation in the case ofcis-cyclohexanediols andcis-methoxycyclohexanols and with the higher reactivity oftrans-isomers due to anchimeric assistance of the methoxy and acetoxy groups. Dehydration is characteristic of the [M+SiMe3]+ ions formed from cyclohexanediols; both hydrogen atoms of the hydroxyl groups take part in the process, thus providing direct evidence of the chelation.Translated from Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 2025–2029, August, 1996.  相似文献   

8.
Summary Metal complexes of the macrocyclic tetraaza ligand C-meso-7,14-diphenyl-5,6-butano-12,13-butano-1,4,8,11-tetraazacyclotetradeca-4,11-diene (L) are described. The copper(II) and nickel(II) complexes, isolated as their perchlorate salts, are 4-coordinate species. Several cobalt(III) complexes,trans-[CoLX2]+(X = Cl, Br, NO 2 or N 3 have also been characterised. The most probable stereochemistry of the ligand in the metal complexes is the C-meso-N-meso arrangements of the chiral centres. The N-meso stereochemistry leads to the bulky phenyl groups lying in equatorial positions. I.r. and d-d spectra are reported for the various complexes described.  相似文献   

9.
Summary The preparation and characterization of a series of new coordination compounds of cobalt(II), nickel(II) and palladium(II) containing 2-picolyl- or 2-lutidyl-methyl ketone (HPMK or HLMK) and various anions, Cl, Br, NO 3 , NCS or BF 4 , are reported. Complexes of square planar, tetrahedral and octahedral stereochemistry as well as five-coordinate species were isolated. The reaction products were found to be dependent on the molar ratios, pH and the temperature at which the reaction takes place. Cobalt(II) thiocyanate was found to form a complex of the type [CoL3][Co(NCS)4] (L = HPMK or HLMK). Also complexes containing coordinated BF4 were isolated. The ligand field parameters (Dq, B and ) for the cobalt(II) and nickel(II) complexes were calculated using the averaged-ligand-field approximation. The influence of the substituents of theses parameters and on the stereochemistry are discussed.  相似文献   

10.
Summary The new complex double saltscw-[Co(NH3)(en)2(H2O)]2 [M(CN)4]3 (en = ethylenediamine; M = Ni, Pd or Pt),cis-[Co(NH3(en)2(H2O)]2[FeNO(CN)5]3 andcis-[Co(NH3)(en)2(H2O)][Co(CN)6] have been synthesized and by anation in the solid state the corresponding new dinuclear complexes with a cyano bridgecis- ortrans-[(NH3)(en)2Co-NC-M(CN)3]2 [M(CN)4] (M = Ni, Pd or Pt);cis-, trans-[(NH3)(en)2Co-NC-FeNO(CN)4]2[FeNO(CN)5] andcis-[(NH3)(en)2Co-NC-Co(CN)5 have been prepared. The complexes have been characterized by chemical analysis, t.g. measurements, and by i.r. and electronic spectroscopy. With [Ni(CN)4][2– and [Co(CN)in]6 3– only thecis-isomer is produced; with [Pd(CN)4]2–, [Pt(CN)4]2– and [FeNO(CN)5]2– thetrans- isomer is the dominant species. The dinuclear complex derived from [Pt(CN)4]2– shows strong Pt-Pt interactions both in the solid state and in solution.  相似文献   

11.
The behaviour of the Cobalt(III)–nta (nta = nitrilotriacetate) system in an acidic medium was investigated. The acid dissociation constant, pK a1, of [(nta)(H2O)Co(-OH)Co(H2O)(nta)] was determined as 3.09(3) and the pK a of the cis-[Co(nta)(H2O)2]/[Co(nta)(H2O)(OH)] equilibrium was determined as 6.71(1). cis-[Co(nta)(H2O)2] undergoes ring-opening upon acidification below pH = 2.0. The formation of [Co( 3-nta)(H2O)3]+ was also studied. The substitutions between cis-[Co(nta)(H2O)2] and NCS ions were investigated in the pH = 2–7 ranges. [Co(nta) (H2O)(OH)] reacts ca. 70 times faster at 24.7 °C with NCS ions than cis-[Co(nta)(H2O)2], indicating a cis-labilising effect of the OH ligand.  相似文献   

12.
Summary Rate constants are reported for mercury(II)-catalysed aquation of thetrans-[Rh(en)2Cl2]+, [Cr(NH3)5Cl]2+, andcis-[Cr(NH3)4(OH2)Cl]2+ cations in water and in methanol-, ethanol-, and acetonitrile-water solvent mixtures. In the case oftrans-[Rh(en)2Cl2]+, the dependence of rate constants on mercury(II) concentration indicates reaction through a binuclear (Rh-Cl-Hg bridged) intermediate. The dependence of the equilibrium constant for the formation of this intermediate and of its rate constant for dissociation (loss of HgCl+) on solvent composition have been established. With the aid of measured solubilities, published ancillary thermodynamic data, and suitable extrathermodynamic assumptions, the observed reactivity trends for these mercury(II)-catalysed aquations are dissected into initial state and transition state components. The reactivity patterns for these three complexes are compared with those for mercury(II)-catalysed aquation of other chloro-transition metal complexes, particularlycis-[Rh(en)2Cl2]+, [Co(NH3)5Cl]2+, and [ReCl6]2–.  相似文献   

13.
Summary In the solid state l-cis-[M(en)2Cl2]Cl [M=cobalt(III) or chromium(III)] undergoes thermal racemisation smoothly at 158 °C without anycis-trans interconversion. The values of krac, H and S are 6 × 10–6s–1, 218 kJM–1 and 156.1 JK–1M–1 for the cobalt(III) complex and 3.5 × 10–5s–1, 229.7 kJM–1 and 197.9 JK–1M–1 for the chromium(III) complex, respectively. The results are only in accord with a rhombic twist mechanism of the type originally proposed by Ray and Dutt for [M(AA)3] complexes.  相似文献   

14.
Summary The electronic properties of a series of cobalt(III)trans-furyldioximato-complexes of the type [CoB(FH)2X] (B=NH3, X=Cl, Br, I or NO2; B=pyridine (py) or thiocarbamide (thio), X=Cl or Br; B=imidazole (imid), X=Br), [Co(FH2)(FH)Cl2] and [Co(thio)2(FH)2]NO3 were studied by i.r., u.v. and1H and13C n.m.r. spectra The results were compared with those from the corresponding dimethylglyoximato-complexes. It was concluded that -conjugation over the equatorial plane in the furyldioximates is greater than in the dimethylglyoximates. There is some evidence of thetrans-influence of the anionic ligands in the ammines which are in the order NO 2 >Br>Cl.  相似文献   

15.
The temperature dependence of the1H NMR spectra ofcis-[Pt(II)R2Cl2] complexes was studied in DMSO at 18–100°C (R is 2-methyl and 2,5-dimethylpyridine). The broadening of the signals from the methyl groups or hydrogen atoms in theortho-positions of heteroaromatic ligands is due to the coexistence of two forms of thecis-complexes in solution. These forms arise from the hindered rotation of asymmetrical ligands around the Pt-N bond.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 424–425, February, 1993.  相似文献   

16.
Summary The complexescis--[Co(trien)(ImH)Cl]2+ (ImH=imidazole, trien=1,8-diamino-3,6-diazaoctane),cis--[Co(trien)(Bun-NH2)Cl]2+,cis--[Co(trien)(NH2CH2-CH(OMe)2)Cl]2+ andcis-2-[Co(trien)(py)Cl]2+ (py=pyridine) have been characterised and their kinetics of base hydrolysis studied. Thecis--isomers which have afac-fac arrangement of the trien ligand have values of k OH 25 in the 73 to 253 dm3 mol–1 s–1 range at I=0.1 mol dm–3. Extremely rapid base hydrolysis is observed withcis-2-[Co(trien)(py)Cl]2+ where k OH 25 is 6.65×106 mol3 mol–1 s–1 at I=0.1 mol dm–3. This complex has amer-fac arrangement of the trien ligand with flatsec-NH donor leading to rapid base hydrolysis due to good -overlap between the conjugate base and cobalt(III). The pyridine ligand causes aca. 30 fold rate increase compared with the hydrolysis ofcis-2-[Co(trien)(NH3)Cl]2+.  相似文献   

17.
1H, 13C and 15N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with picolines, [Au(PIC)Cl3], trans‐[Pd(PIC)2Cl2], trans/cis‐[Pt(PIC)2Cl2] and [Pt(PIC)4]Cl2, were performed. After complexation, the 1H and 13C signals were shifted to higher frequency, whereas the 15N ones to lower (by ca 80–110 ppm), with respect to the free ligands. The 15N shielding phenomenon was enhanced in the series [Au(PIC)Cl3] < trans‐[Pd(PIC)2Cl2] < cis‐[Pt(PIC)2Cl2] < trans‐[Pt(PIC)2Cl2]; it increased following the Pd(II) → Pt(II) replacement, but decreased upon the transcis‐transition. Experimental 1H, 13C and 15N NMR chemical shifts were compared to those quantum‐chemically calculated by B3LYP/LanL2DZ + 6‐31G**//B3LYP/LanL2DZ + 6‐31G*. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Three new optically pure C1-terpyridine ligands (L13) were prepared and the copper(II) complexes, of formula [Cu(L)Cl2], the rhodium(III) complexes, of formula [Rh(L)Cl3], and the ruthenium(II) complexes, of formula cis- or trans-[Ru(L)(X)Cl2] (X = DMSO or CO), were synthesized. Structures of a chiral C1-ligand, a copper complex, a rhodium complex and a ruthenium DMSO complex were analysed using X-ray crystal structure analysis. The copper, rhodium and ruthenium complexes were shown to be precursors of catalysts for cyclopropanation. Reaction of [Cu(L)Cl2], [Rh(L)Cl3] or cis- or trans-[Ru(L)(X)Cl2] with AgOTf converted the complex to catalyst, which in the case of trans-[Ru(L)(CO)Cl2] gave enantioselectivities of up to 67% ee for the cis-isomers of styrene cyclopropanes with t-butyl diazoacetate. Comparisons with C2-analog of copper, rhodium and ruthenium catalysts were made.  相似文献   

19.
Summary The kinetics of acid hydrolysis ofcis-[CoCl(btzH)(en)2]2+ andcis-[CoCl(btzMe)(en)2]2+ complexes (where btzH = benzotriazole, btzMe =N-methylbenzotriazole and en = ethylenediamine) have been investigated in HClO4 at ionic strength 1 = 0.25 mol dm–3 in the 30–40° range. In the 1.0 x 10–1 to 1.0 X 10–3 mol dm–3 acid strength range, the rate of aquation of the [CoCl(btzH)(en)2]2+ cation follows the relationship:-d ln[complex]/dt = k1 + k2KNH[H+]–1, where k1 and k2 are aquation rate constants of the acid independent and acid dependent steps respectively, and KNH is the acid dissociation constant of the coordinated benzotriazole.cis-[CoCl(btzMe)-(en)2]2+ undergoes acid independent hydrolysis presumably due to the absence of a labile N-H proton. The base hydrolysis could be followed for thecis-[CoCl(btzMe)(en)2]2+ complex only by measuring hydrolysis rates at 0°.  相似文献   

20.
Two cyano-bridged assemblies, [FeIII(salpn)]2[FeII(CN)5NO] (1) and [FeIII (salpn)]2[NiII(CN)4] (2) [salpn = N, N-1,2-propylenebis(salicylideneiminato)dianion], have been prepared and structurally and magnetically characterized. In each complex, [Fe(CN)5NO]2– or [Ni(CN)4]2– coordinates with four [Fe(salpn)]+ cations using four co-planar CN ligands, whereas each [Fe(salpn)]+ links two [Fe(CN)5NO]2– or [Ni(CN)4]2– ions in the trans form, which results in a two-dimensional (2D) network consisting of pillow-like octanuclear [—MII—CN—FeIII—NC—]4 units (M = Fe or Ni). In complex (1), the NO group of [Fe(CN)5NO]2– remains monodentate and the bond angle of FeII—N—O is 180.0°. The variable temperature magnetic susceptibilities, measured in the 5–300 K range, show weak intralayer antiferromagnetic interactions in both complexes with the intramolecular iron(III)iron(III) exchange integrals of –0.017 cm–1 for (1) and –0.020 cm–1 for (2), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号