首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The synthesis and X‐ray crystal structure of two new multinuclear thorium complexes are reported. The tetranuclear μ4‐oxo cluster complex Th44‐O)(μ‐Cl)2I62(O,O’)‐μ‐O(CH2)2OCH3]6 and the dinuclear complex Th2I52(O,O’)‐μ‐O(CH2)2OCH3]3(DME) (DME=dimethoxyethane) are formed by C?O bond activation of 1,2‐dimethoxyethane (DME) mediated by thorium iodide complexes.  相似文献   

2.
Some bis(cyclopentadienyl)titanium(IV) complexes of the type [Cp2TiCl2?n{L}n] {where, n = 1 or 2; L = ONC(R)Ar; R = H or CH3 and Ar = C5H4N‐2, C4H3O‐2 or C4H3S‐2} have been synthesized by the metathetical reactions of Cp2TiCl2 with the sodium salt of internally functionalized oximes in 1:1 and 1:2 stoichiometry in anhydrous THF. All these red to brown colored solid derivatives have been characterized by elemental analyses, FT‐IR and NMR (1H and 13C{1H}) spectral studies. The FAB mass spectra of some representative derivatives indicate their monomeric nature. Oximato ligands in all the complexes appear to bind the titanium via N and O in a dihapto ( ‐N, O) manner in the solid state. Thermogravimetric curves of [Cp2TiCl{ONC(CH3)C5H4N‐2}] and [Cp2Ti{ONC(CH3)C5H4N‐2}2] suggest the formation of hybrid materials CpTiO(Cl) and Cp2TiO, respectively, as the final products at 900 °C under nitrogen atmosphere. Sol–gel transformations of Cp2TiCl2, [Cp2TiCl{ONC(CH3)C5H4N‐2}] and [Cp2Ti{ONC(CH3)C5H4N‐2}2] yielded titania a–c, respectively, at low sintering temperature (600 °C). The powder XRD patterns, IR as well as Raman spectra of all these oxides indicate the formation of nano‐sized anatase phase. The SEM images of titania a–c indicate agglomers like surface morphologies. The absorption spectra of a–c exhibit an energy band gap in the range of 3.47–3.71 eV. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Syntheses and Structures of the Polymeric Silver Complexes [Ag2Cl2(dppbp)3], [Ag2(SPh)2(dppe)3] and [Ag2(SPh)2(triphos)] as well as the Silver Chalcogenido Clusters [Ag7(SPh)7(dppm)3], {[Ag7(TePh)7(dppp)3]2(dppp)}, and [Ag22Cl(SPh)10(PhCOO)11(dmf)3] The reaction of silver carboxylate with silylated chalcogen compounds have been found to have a possibility for the synthesis of metal‐chalcogenide‐custers. Especially phosphine ligands have been found to be useful in stabilising the cluster cores. Some of the silver carboxylate phosphine complexes, which are formed in‐situ, ([Ag2Cl2(dppbp)3] ( 1 )) and some silver chalcogen complexes ([Ag2(SPh)2(dppe)3] ( 2 ) und [Ag2(SPh)2(triphos)] ( 3 )), could be isolated and characterised by X‐ray diffraction. Using special reaction conditions, it is possible to isolate cluster species like [Ag7(SPh)7(dppm)3] ( 4 ), {[Ag7(TePh)7(dppp)3]2(dppp)} ( 5 ) and [Ag22Cl(SPh)10(PhCOO)11(dmf)3] ( 6 ) beside the complex compounds. 1: Space group P21/n (No. 14), Z = 2, a = 1336, 1(2), b = 2081, 2(5), c = 2015, 4(4) pm, β = 99, 87(2)°; 2: Space group P21/n (No. 14), Z = 2, a = 1416, 1(3), b = 1874, 7(4), c = 1444, 8(3) pm, β = 93, 26(3)°; 3: Space group P21/n (No. 14), Z = 4, a = 1456, 8(3, b = 1890, 2(4), c = 1916, 1(4) pm, β = 99, 11(3)°; 4: Space group P21/n (No. 14), Z = 4, a = 1570, 2(3), b = 2798, 5(6), c = 2752, 7(6) pm, β = 98, 02(3)°; 5: Space group P1 (No. 2), Z = 2, a = 2115, 5(4), b = 2553, 3(5), c = 3188, 7(6) pm, α = 68, 87(3)°, β = 74, 05(3)°, γ = 69, 70(3)°; 6: Space group P1 (No. 2), Z = 2, a = 1583, 0(3), b = 1709, 6(3), c = 2990, 0(6) pm, α = 80, 41(3)°, β = 88, 86(3)°, γ = 71, 10(3)°).  相似文献   

4.
The title compounds, bis{μ‐N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine‐κ2N1:P}disilver bis(perchlorate) acetonitrile monosolvate, [Ag2(C18H17N2P)2](ClO4)2·CH3CN, (1), and bis{μ‐N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine‐κ2N1:P}bis[(nitrato‐κ2O,O)silver], [Ag2(C18H17N2P)2(NO3)2], (2), each contain disilver macrocyclic [Ag2(C18H17N2P)2]2+ cations lying about inversion centres. The cations are constructed by two N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine (DPP) ligands linking two Ag+ cations in a head‐to‐tail fashion. In (1), the unique Ag+ cation has a near‐linear coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands. Two ClO4 anions doubly bridge two metallomacrocycles through Ag...O and N—H...O weak interactions to form a chain extending in the c direction. The half‐occupancy acetonitrile molecule lies with its methyl C atom on a twofold axis and makes a weak N...Ag contact. In (2), there are two independent [Ag(C18H17N2P)]+ cations. The nitrate anions weakly chelate to each Ag+ cation, leading to each Ag+ cation having a distorted tetrahedral coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands, and two chelating nitrate O atoms. Each dinuclear [Ag2(C18H17N2P)2(NO3)2] molecule acts as a four‐node to bridge four adjacent equivalent molecules through N—H...O interactions, forming a two‐dimensional sheet parallel to the bc plane. Each sheet contains dinuclear molecules involving just Ag1 or Ag2 and these two types of sheet are stacked in an alternating fashion. The sheets containing Ag1 all lie near x = , , etc, while those containing Ag2 all lie near x = 0, 1, 2 etc. Thus, the two independent sheets are arranged in an alternating sequence at x = 0, , 1, etc. These two different supramolecular structures result from the different geometric conformations of the templating anions which direct the self‐assembly of the cations and anions.  相似文献   

5.
Heterodialkylation of [Pt2(μ‐S)2(dppp)2] (dppp=Ph2P(CH2)3PPh2) was achieved under high pressure (10 kbar). This enabled the synthesis of rare diplatinum complexes with structurally diverse thiolate bridges, such as [Pt2(μ‐SC5H10CO2CH2CH3)(μ‐SC3H7)‐(dppp)2](PF6)2, which was crystallographically identified. Complete homodialkylation was also achieved under similar conditions (6 kbar at room temperature), thus permitting the isolation of [Pt2(μ‐SC2H4CO2CH2CH3)2(dppp)2]‐(PF6)2. The isolation of these complexes extends the applications of high‐pressure chemistry to thiolato homo‐ and heterobridged complexes that are otherwise not accessible.  相似文献   

6.
The reactions of phosphonium‐substituted metallabenzenes and metallapyridinium with bis(diphenylphosphino)methane (DPPM) were investigated. Treatment of [Os{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl with DPPM produced osmabenzenes [Os{CHC(PPh3)CHC(PPh3)CH}Cl2{(PPh2)CH2(PPh2)}]Cl ( 2 ), [Os{CHC(PPh3)CHC(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 3 ), and cyclic osmium η2‐allene complex [Os{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 4 ). When the analogue complex of osmabenzene 1 , ruthenabenzene [Ru{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl, was used, the reaction produced ruthenacyclohexadiene [Ru{CH?C(PPh3)CH?C(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 6 ), which could be viewed as a Jackson–Meisenheimer complex. Complex 6 is unstable in solution and can easily be convert to the cyclic ruthenium η2‐allene complexes [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 7 ) and [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 8 ). The key intermediates of the reactions have been isolated and fully characterized, further supporting the proposed mechanism for the reactions. Similar reactions also occurred in phosphonium‐substituted metallapyridinium [OsCl2{NHC(CH3)C(Ph)C(PPh3)CH}(PPh3)2]BF4 to give the cyclic osmium η2‐allene‐imine complex [OsCl2{NH?C(CH3)C(Ph)?(η2‐C?CH)}{(PPh2)CH2(PPh2)}(PPh3)]BF4 ( 11 ).  相似文献   

7.
Secondary Hydroxyalkylphosphanes: Synthesis and Characterization of Mono‐, Bis‐ and Trisalkoxyphosphane‐substituted Zirconium Complexes and the Heterobimetallic Trinuclear Complex [Cp2Zr{O(CH2)3PHMes(AuCl)}2] The secondary hydroxyalkylphosphanes RPHCH2OH [R = 2,4,6‐Me3C6H2 (Mes) ( 1 ), 2,4,6‐iPr3C6H2 (Tipp) ( 2 )], 1‐AdPH‐2‐OH‐cyclo‐C6H10 ( 3 ) and RPH(CH2)3OH [R = Ph ( 4 ), Mes ( 5 ), Tipp ( 6 ), Cy ( 7 ), tBu ( 8 )] were obtained from primary phosphanes RPH2 and formaldehyde ( 1 , 2 ) or from LiPHR and cyclohexene oxide ( 3 ) or trimethylene oxide ( 4 ‐ 8 ). Starting from 5 or 7 and [CpR2ZrMe2] [CpR = C5EtMe4 (Cp°), C5H5 (Cp), C5MeH4 (Cp′)], the monoalkoxyphosphane‐substituted zirconocene complexes [CpR2Zr(Me){O(CH2)3PHMes}] [CpR = Cp° ( 9 ), Cp ( 10 )] were prepared. With [CpR2ZrCl2], the bisalkoxyphosphane‐substituted complexes [Cp′2Zr{O(CH2)3PHMes}2] ( 11 ) and [Cp2Zr{O(CH2)3PHCy}2] ( 12 ) are obtained, and with [TpRZrCl3], the trisalkoxyphosphane‐substituted zirconium complexes [TpRZr{O(CH2)3PHMes}3] [TpR = trispyrazolylborato (Tp) ( 13 ), TpR = tris(3,5‐dimethyl)pyrazolylborato (Tp*) ( 14 )] are prepared. The reaction of 5 with [AuCl(tht)] (tht = tetrahydrothiophene) yielded the mononuclear complex [AuCl{PHMes(CH2)3OH}] ( 15 ). The trinuclear complex [Cp2Zr{O(CH2)3PHMes(AuCl)}2] ( 16 ) was obtained from [Cp2ZrCl2] and 15 . Compounds 1 ‐ 16 were characterized spectroscopically (1H‐, 31P‐, 13C‐NMR; IR; MS) and compound 2 also by crystal structure determination. The bis‐ and trisalkoxyphosphane‐substituted complexes 11‐14 and 16 were obtained as mixtures of two diastereomers which could not be separated.  相似文献   

8.
Trinuclear silver(I) thiolate and silver(I) thiocarboxylate complexes [Ag3(μ‐dppm)3n‐SR)2](ClO4) [n = 2, R = C6H4Cl‐4 ( 1 ) and C{O}Ph ( 2 ); n = 3, R = tBu ( 3 )], pentanuclear silver(I) thiolate complex [Ag5(μ‐dppm)43‐SC6H4NO2‐4)4](PF6) ( 4 ), and hexanuclear silver(I) thiolate complexes [Ag6(μ‐dppm)43‐SR)4]Y2 [Y = ClO4, R =C6H4CH3‐4 ( 5 ) and C10H7 (2‐naphthyl) ( 7 ); Y = PF6, R = C6H4OCH3‐4( 6 )], were synthesized [dppm = bis(diphenylphosphanyl)methane] and their crystal structures as well as photophysical properties were studied. In the solid state at 77 K, trinuclear silver(I) thiolate and silver(I) thiocarboxylate complexes 1 and 2 exhibit luminescence at 470–523 nm, tentatively attributed to originate from the 3IL (intraligand) of thiolate or thiocarboxylate ligands, whereas hexanuclaer silver(I) thiolate complexes 5 and 7 produce dual emission, in which high‐energy emission is tentatively attributed to come from the 3IL of thiolate ligands and low‐energy emission is tentatively assigned to come from the admixture of metal ··· metal bond‐to‐ligand charge‐transfer (MMLCT) and metal‐centered (MC) excited states.  相似文献   

9.
The reaction of (carbamoylmethyl)diphenylphosphine sulfide with AgNO3 yields the polymeric complex [Ag2{Ph2P(S)CH2C(O)NH2}2(NO3)2] n . Its structure was established by X-ray diffraction analysis. The coordination environments about both Ag+ cations are formed by five donor atoms, two of which are bonded to the metal atom substantially more weakly than the remaining three atoms. The compositions of the coordination polyhedra are different: ({AgSO′(C)O(N)O2(N′)} and {AgS′ SO(C)O2(N)}). The coordinated ligands differ in their functions: one ligand chelates the metal cation and its sulfur atom is additionally bonded to the second cation, while the second ligand acts as a bridge between the two different cations. The structure of the complex and the character of the interaction between the ligand and AgNO3 are substantially affected by the network of hydrogen bonds. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 838–845, April, 1997.  相似文献   

10.
The asymmetric unit of the title compound, dipotassium bis[hexaaquanickel(II)] tris(μ2‐methylenediphosphonato)tripalladium(II) hexahydrate, K2[Ni(H2O)6]2[Pd3{CH2(PO3)2}3]·6H2O, consists of half a {[Pd{CH2(PO3)2}]3}6− anion [one Pd atom (4e) and a methylene C atom (4e) occupy positions on a twofold axis] in a rare `handbell‐like' arrangement, with K+ and [Ni(H2O)6]2+ cations to form the neutral complex, completed by three solvent water molecules. The {[Pd{CH2(PO3)2}]3}6− units exhibit close Pd...Pd separations of 3.0469 (4) Å and are packed via intermolecular C—H...Pd hydrogen bonds. The [KO9] and [NiO6] units are assembled into sheets coplanar with (011) and stacked along the [100] direction. Within these sheets there are [K4Ni4O8] and [K2Ni2O4] loops. Successive alternation of the sheets and [Pd{CH2(PO3)2}]3 units parallel to [001] produces the three‐dimensional packing, which is also supported by a dense network of hydrogen bonds involving the solvent water molecules.  相似文献   

11.
Reaction of biotin {C10H16N2O3S, HL; systematic name: 5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoic acid} with silver acetate and a few drops of aqueous ammonia leads to the deprotonation of the carboxylic acid group and the formation of a neutral chiral two‐dimensional polymer network, poly[[{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}silver(I)] trihydrate], {[Ag(C10H15N2O3S)]·3H2O}n or {[Ag(L)]·3H2O}n, (I). Here, the AgI cations are pentacoordinate, coordinated by four biotin anions via two S atoms and a ureido O atom, and by two carboxylate O atoms of the same molecule. The reaction of biotin with silver salts of potentially coordinating anions, viz. nitrate and perchlorate, leads to the formation of the chiral one‐dimensional coordination polymers catena‐poly[[bis[nitratosilver(I)]‐bis{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] monohydrate], {[Ag2(NO3)2(C10H16N2O3S)2]·H2O}n or {[Ag2(NO3)2(HL)2]·H2O}n, (II), and catena‐poly[bis[perchloratosilver(I)]‐bis{μ3‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}], [Ag2(ClO4)2(C10H16N2O3S)2]n or [Ag2(ClO4)2(HL)2]n, (III), respectively. In (II), the AgI cations are again pentacoordinated by three biotin molecules via two S atoms and a ureido O atom, and by two O atoms of a nitrate anion. In (I), (II) and (III), the AgI cations are bridged by an S atom and are coordinated by the ureido O atom and the O atoms of the anions. The reaction of biotin with silver salts of noncoordinating anions, viz. hexafluoridophosphate (PF6) and hexafluoridoantimonate (SbF6), gave the chiral double‐stranded helical structures catena‐poly[[silver(I)‐bis{μ2‐5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] hexafluoridophosphate], {[Ag(C10H16N2O3S)2](PF6)}n or {[Ag(HL)2](PF6)}n, (IV), and catena‐poly[[[{5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}silver(I)]‐μ2‐{5‐[(3aS,4S,6aR)‐2‐oxohexahydro‐1H‐thieno[3,4‐d]imidazol‐4‐yl]pentanoato}] hexafluoridoantimonate], {[Ag(C10H16N2O3S)2](SbF6)}n or {[Ag(HL)2](SbF6)}n, (V), respectively. In (IV), the AgI cations have a tetrahedral coordination environment, coordinated by four biotin molecules via two S atoms, and by two carboxy O atoms of two different molecules. In (V), however, the AgI cations have a trigonal coordination environment, coordinated by three biotin molecules via two S atoms and one carboxy O atom. In (IV) and (V), neither the ureido O atom nor the F atoms of the anion are involved in coordination. Hence, the coordination environment of the AgI cations varies from AgS2O trigonal to AgS2O2 tetrahedral to AgS2O3 square‐pyramidal. The conformation of the valeric acid side chain varies from extended to twisted and this, together with the various anions present, has an influence on the solid‐state structures of the resulting compounds. The various O—H...O and N—H...O hydrogen bonds present result in the formation of chiral two‐ and three‐dimensional networks, which are further stabilized by C—H...X (X = O, F, S) interactions, and by N—H...F interactions for (IV) and (V). Biotin itself has a twisted valeric acid side chain which is involved in an intramolecular C—H...S hydrogen bond. The tetrahydrothiophene ring has an envelope conformation with the S atom as the flap. It is displaced from the mean plane of the four C atoms (plane B) by 0.8789 (6) Å, towards the ureido ring (plane A). Planes A and B are inclined to one another by 58.89 (14)°. In the crystal, molecules are linked via O—H...O and N—H...O hydrogen bonds, enclosing R22(8) loops, forming zigzag chains propagating along [001]. These chains are linked via N—H...O hydrogen bonds, and C—H...S and C—H...O interactions forming a three‐dimensional network. The absolute configurations of biotin and complexes (I), (II), (IV) and (V) were confirmed crystallographically by resonant scattering.  相似文献   

12.
Crystallization of [Ag14(C?CtBu)12Cl][BF4] and different polyoxometalates in organic solvents yields a series of new intercluster compounds: [Ag14(C?CtBu)12Cl(CH3CN)]2[W6O19] ( 1 ), (nBu4N)[Ag14(C?CtBu)12Cl(CH3CN)]2[PW12O40] ( 2 ), and [Ag14(C?CtBu)12Cl]2[Ag14(C?CtBu)12Cl(CH3CN)]2[SiMo12O40] ( 3 ). Applying the same technique to a system starting from polymeric {[Ag3(C?CtBu)2][BF4]?0.6 H2O}n and the polyoxometalate (nBu4N)2[W6O19] results in the formation of [Ag14(C?CtBu)12(CH3CN)2][W6O19] ( 4 ). Here, the Ag14 cluster is generated from polymeric {[Ag3(C?CtBu)2][BF4]?0.6 H2O}n during crystallization. In a similar way, [Ag15(C?CtBu)12(CH3CN)5][PW12O40] ( 5 ) has been obtained from {[Ag3(C?CtBu)2][BF4]?0.6 H2O}n and (nBu4N)3[PW12O40]. The use of charged building blocks was intentional, because at these conditions the contribution of long‐range Coulomb interactions would benefit most from full periodicity of the intercluster compound, thus favoring formation of well‐crystalline materials. The latter has been achieved, indeed. However, as a most conspicuous feature, equally charged species aggregate, which demonstrates that the short‐range interactions between the “surfaces” of the clusters represent the more powerful structure direction forces than the long‐range Coulomb bonding. This observation is of significant importance for understanding the mechanisms underlying self‐organization of monodisperse and structurally well‐defined particles of nanometer size.  相似文献   

13.
Tantalum complexes [TaCp*Me{κ4C,N,O,O‐(OCH2)(OCHC(CH2NMe2)?CH)py}] ( 4 ) and [TaCp*Me{κ4C,N,O,O‐(OCH2)(OCHC(CH2NH2)?CH)py}] ( 5 ), which contain modified alkoxide pincer ligands, were synthesized from the reactions of [TaCp*Me{κ3N,O,O‐(OCH2)(OCH)py}] (Cp*=η5‐C5Me5) with HC?CCH2NMe2 and HC?CCH2NH2, respectively. The reactions of [TaCp*Me{κ4C,N,O,O‐(OCH2)(OCHC(Ph)?CH)py}] ( 2 ) and [TaCp*Me{κ4C,N,O,O‐(OCH2)(OCHC(SiMe3)?CH)py}] ( 3 ) with triflic acid (1:2 molar ratio) rendered the corresponding bis‐triflate derivatives [TaCp*(OTf)23N,O,O‐(OCH2)(OCHC(Ph)?CH2)py}] ( 6 ) and [TaCp*(OTf)23N,O,O‐(OCH2)(OCHC(SiMe3)?CH2)py}] ( 7 ), respectively. Complex 4 reacted with triflic acid in a 1:2 molar ratio to selectively yield the water‐soluble cationic complex [TaCp*(OTf){κ4C,N,O,O‐(OCH2)(OCHC(CH2NHMe2)?CH)py}]OTf ( 8 ). Compound 8 reacted with water to afford the hydrolyzed complex [TaCp*(OH)(H2O){κ3N,O,O‐(OCH2)(OCHC(CH2NHMe2)?CH2)py}](OTf)2 ( 9 ). Protonation of compound 8 with triflic acid gave the new tantalum compound [TaCp*(OTf){κ4C,N,O,O‐(OCH2)(HOCHC(CH2NHMe2)?CH)py}](OTf)2 ( 10 ), which afforded the corresponding protonolysis derivative [TaCp*(OTf)23N,O,O‐(OCH2)(HOCHC(CH2NHMe2)?CH2)py}](OTf) ( 11 ) in solution. Complex 8 reacted with CNtBu and potassium 2‐isocyanoacetate to give the corresponding iminoacyl derivatives 12 and 13 , respectively. The molecular structures of complexes 5 , 7 , and 10 were established by single‐crystal X‐ray diffraction studies.  相似文献   

14.
The synergistic Ag+/X2 system (X=Cl, Br, I) is a very strong, but ill‐defined oxidant—more powerful than X2 or Ag+ alone. Intermediates for its action may include [Agm(X2)n]m+ complexes. Here, we report on an unexpectedly variable coordination chemistry of diiodine towards this direction: ( A )Ag‐I2‐Ag( A ), [Ag2(I2)4]2+( A ?)2 and [Ag2(I2)6]2+( A ?)2?(I2)x≈0.65 form by reaction of Ag( A ) ( A =Al(ORF)4; RF=C(CF3)3) with diiodine (single crystal/powder XRD, Raman spectra and quantum‐mechanical calculations). The molecular ( A )Ag‐I2‐Ag( A ) is ideally set up to act as a 2 e? oxidant with stoichiometric formation of 2 AgI and 2 A ?. Preliminary reactivity tests proved this ( A )Ag‐I2‐Ag( A ) starting material to oxidize n‐C5H12, C3H8, CH2Cl2, P4 or S8 at room temperature. A rough estimate of its electron affinity places it amongst very strong oxidizers like MF6 (M=4d metals). This suggests that ( A )Ag‐I2‐Ag( A ) will serve as an easily in bulk accessible, well‐defined, and very potent oxidant with multiple applications.  相似文献   

15.
In the title complex, [Ag2Cd(CN)4(C12H12N2)2]·H2O or cis‐[Cd{Ag(CN)2}2(5,5′‐dmbpy)2]·H2O, where 5,5′‐dmbpy is 5,5′‐dimethyl‐2,2′‐bipyridyl, the asymmetric unit consists of a discrete neutral [Cd{Ag(CN)2}2(5,5′‐dmbpy)2] unit and a solvent water molecule. The CdII cation is coordinated by two bidentate chelate 5,5′‐dmbpy ligands and two monodentate [AgI(CN)2] anions, which are in a cis arrangement around the CdII cation, leading to an octahedral CdN6 geometry. The overall structure is stabilized by a combination of intermolecular hydrogen bonding, and AgI...AgI and π–π interactions, forming a three‐dimensional supramolecular network.  相似文献   

16.
Large silver(I) clusters stabilized by the dianionic carba-closo-dodecaboranylethynyl ligand were obtained. Crystallization of polymeric {Ag2(12-C≡C-closo-1-CB11H11)}n from dimethyl sulfoxide afforded [Ag14(12-C≡C-closo-1-CB11H11)7(DMSO)12] · DMSO that contained an AgI10 cage augmented by four AgI ions. Crystals of [Ag16(12-C≡C-closo-1-CB11H11)8(THF)12] · 2THF were obtained from anhydrous THF and {Ag2(12-C≡C-closo-1-CB11H11)}n. In the presence of moisture the similar but water-containing complex [Ag16(12-C≡C-closo-1-CB11H11)8(THF)12(H2O)2] · 2.5THF was identified. Both silver(I) clusters are composed of a central octahedral AgI6 unit and ten further silver(I) ions bonded via argentophilic interactions. [Ag14(12-C≡C-closo-1-CB11H11)7(DMSO)12] · DMSO and [Ag16(12-C≡C-closo-1-CB11H11)8(THF)12] · 2THF were characterized by elemental analysis and vibrational (IR and Raman) as well as NMR spectroscopy. In addition, the crystal structures of [Ag25(12-C≡C-closo-1-CB11H11)12(CH3CN)13.5(OH)] · 0.5CH3CN and [Ag25(12-C≡C-closo-1-CB11H11)12{(CH3)2CO}13.5(H2O)Cl] · 15(CH3)2CO were determined. Both compounds contain AgI14 rhombic dodecahedrons augmented by eleven silver(I) ions. A hydroxide or a chloride template ion is present in the center of the rhombic dodecahedron, respectively.  相似文献   

17.
Template combination of copper acetate (Cu(AcO)2?H2O) with sodium dicyanamide (NaN(C≡N)2, 2 equiv) or cyanoguanidine (N≡CNHC(=NH)NH2, 2 equiv) and an alcohol ROH (used also as solvent) leads to the neutral copper(II)–(2,4‐alkoxy‐1,3,5‐triazapentadienato) complexes [Cu{NH?C(OR)NC(OR)?NH}2] (R=Me ( 1 ), Et ( 2 ), nPr ( 3 ), iPr ( 4 ), CH2CH2OCH3 ( 5 )) or cationic copper(II)–(2‐alkoxy‐4‐amino‐1,3,5‐triazapentadiene) complexes [Cu{NH?C(OR)NHC(NH2)?NH}2](AcO)2 (R=Me ( 6 ), Et ( 7 ), nPr ( 8 ), nBu ( 9 ), CH2CH2OCH3 ( 10 )), respectively. Several intermediates of this reaction were isolated and a pathway was proposed. The deprotonation of 6 – 10 with NaOH allows their transformation to the corresponding neutral triazapentadienates [Cu{NH?C(OR)NC(NH2)?NH}2] 11 – 15 . Reaction of 11 , 12 or 15 with acetyl acetone (MeC(?O)CH2C(?O)Me) leads to liberation of the corresponding pyrimidines NC(Me)CHC(Me)NC NHC(?NH)OR, whereas the same treatment of the cationic complexes 6 , 7 or 10 allows the corresponding metal‐free triazapentadiene salts {NH2C(OR)?NC(NH2)?NH2}(OAc) to be isolated. The alkoxy‐1,3,5‐triazapentadiene/ato copper(II) complexes have been applied as efficient catalysts for the TEMPO radical‐mediated mild aerobic oxidation of alcohols to the corresponding aldehydes (molar yields of aldehydes of up to 100 % with >99 % selectivity) and for the solvent‐free microwave‐assisted synthesis of ketones from secondary alcohols with tert‐butylhydroperoxide as oxidant (yields of up to 97 %, turnover numbers of up to 485 and turnover frequencies of up to 1170 h?1).  相似文献   

18.
Four diiron dithiolate complexes with monophosphine ligands have been prepared and structurally characterized. Reactions of (μ-SCH2CH2S-μ)Fe2(CO)6 or [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)6 with tris(4-chlorophenyl)phosphine or diphenyl-2-pyridylphosphine in the presence of Me3NO·2H2O afforded diiron pentacarbonyl complexes with monophosphine ligands (μ-SCH2CH2S-μ)Fe2(CO)5[P(4-C6H4Cl)3] (1), (μ-SCH2CH2S-μ)Fe2(CO)5[Ph2P(2-C5H4N)] (2), [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5[P(4-C6H4Cl)3] (3), and [μ-SCH(CH3)CH(CH3)S-μ]Fe2(CO)5[Ph2P(2-C5H4N)] (4) in good yields. Complexes 14 were characterized by elemental analysis, 1H NMR, 31P{1H} NMR and 13C{1H} NMR spectroscopy. Furthermore, the molecular structures of 14 were confirmed by X-ray crystallography.  相似文献   

19.
The synergistic Ag+/X2 system (X=Cl, Br, I) is a very strong, but ill‐defined oxidant—more powerful than X2 or Ag+ alone. Intermediates for its action may include [Agm(X2)n]m+ complexes. Here, we report on an unexpectedly variable coordination chemistry of diiodine towards this direction: ( A )Ag‐I2‐Ag( A ), [Ag2(I2)4]2+( A )2 and [Ag2(I2)6]2+( A )2⋅(I2)x≈0.65 form by reaction of Ag( A ) ( A =Al(ORF)4; RF=C(CF3)3) with diiodine (single crystal/powder XRD, Raman spectra and quantum‐mechanical calculations). The molecular ( A )Ag‐I2‐Ag( A ) is ideally set up to act as a 2 e oxidant with stoichiometric formation of 2 AgI and 2 A . Preliminary reactivity tests proved this ( A )Ag‐I2‐Ag( A ) starting material to oxidize n‐C5H12, C3H8, CH2Cl2, P4 or S8 at room temperature. A rough estimate of its electron affinity places it amongst very strong oxidizers like MF6 (M=4d metals). This suggests that ( A )Ag‐I2‐Ag( A ) will serve as an easily in bulk accessible, well‐defined, and very potent oxidant with multiple applications.  相似文献   

20.
The title compound, poly[potassium [diaquapenta‐μ2‐dicyanamido‐dicadmium(II)] dihydrate], {K[Cd2(C2N3)5(H2O)2]·2H2O}n, contains two‐dimensional anionic sheets of {[Cd2{N(CN)2}(H2O)2]}n with a modified (6,3)‐net (layer group , No. 35). Two sets of equivalent sheets interpenetrate orthogonally to form a tetragonal enmeshed grid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号