首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 705 毫秒
1.
The \begin{document}$ C^2\Pi $\end{document}-\begin{document}$ X^2\Pi $\end{document}(0, 0) band of AgO has been reinvestigated by laser induced fluorescence spectroscopy with a spectral resolution of \begin{document}$ \sim $\end{document}0.02 cm\begin{document}$ ^{-1} $\end{document}. The AgO molecules are produced by discharging a gas mixture of O\begin{document}$ _2 $\end{document}/Ar with silver needle electrodes in a supersonic jet expansion. By employing a home-made narrowband single longitude mode optical parametric oscillator (SLM-OPO) as the laser source, high-resolution spectra of the \begin{document}$ C^2\Pi $\end{document}-\begin{document}$ X^2\Pi $\end{document}(0, 0) band have been recorded for both \begin{document}$ ^{107} $\end{document}Ag\begin{document}$ ^{16} $\end{document}O and \begin{document}$ ^{109} $\end{document}Ag\begin{document}$ ^{16} $\end{document}O isotopologues. The spectroscopic constants of the \begin{document}$ C^2\Pi $\end{document} state are consequently determined, with the \begin{document}$ ^{109} $\end{document}Ag\begin{document}$ ^{16} $\end{document}O one being reported for the first time. The nature of the spin-orbit coupling effect in the \begin{document}$ C^2\Pi $\end{document} state is proposed to be due to state mixing with the nearby repulsive \begin{document}$ ^{4}\Sigma^{-} $\end{document} and \begin{document}$ ^{4}\Pi $\end{document} states.  相似文献   

2.
The structures, energetics, and infrared (IR) spectra of the cationic monomethylamine-water clusters, [(CH\begin{document}$_3$\end{document}NH\begin{document}$_2$\end{document})(H\begin{document}$_2$\end{document}O)\begin{document}$_n$\end{document}]\begin{document}$^+$\end{document} (\begin{document}$n$\end{document}=1\begin{document}$-$\end{document}5), have been studied using quantum chemical calculations at the MP2/6-311+G(2d,p) level. The results reveal that the formation of proton-transferred CH\begin{document}$_2$\end{document}NH\begin{document}$_3$\end{document}\begin{document}$^+$\end{document} ion core structure is preferred via the intramolecular proton transfer from the methyl group to the nitrogen atom and the water molecules act as the acceptor for the O\begin{document}$\cdots$\end{document}HN hydrogen bonds with the positively charged NH\begin{document}$_3$\end{document}\begin{document}$^+$\end{document} moiety of CH\begin{document}$_2$\end{document}NH\begin{document}$_3$\end{document}\begin{document}$^+$\end{document}, whose motif is retained in the larger clusters. The CH\begin{document}$_3$\end{document}NH\begin{document}$_2$\end{document}\begin{document}$^+$\end{document} ion core structure is predicted to be less energetically favorable. Vibrational frequencies of CH stretches, hydrogen-bonded and free NH stretches, and hydrogen-bonded OH stretches in the calculated IR spectra of the CH\begin{document}$_2$\end{document}NH\begin{document}$_3$\end{document}\begin{document}$^+$\end{document} and CH\begin{document}$_3$\end{document}NH\begin{document}$_2$\end{document}\begin{document}$^+$\end{document} type structures are different from each other, which would afford the sensitive probes for fundamental understanding of hydrogen bonding networks generated from the radiation-induced chemical processes in the [(CH\begin{document}$_3$\end{document}NH\begin{document}$_2$\end{document})(H\begin{document}$_2$\end{document}O)\begin{document}$_n$\end{document}]\begin{document}$^+$\end{document} complexes.  相似文献   

3.
Full-dimensional adiabatic potential energy surfaces of the electronic ground state \begin{document}$ \tilde X $\end{document} and nine excited states \begin{document}$ \tilde A $\end{document}, \begin{document}$ \tilde I $\end{document}, \begin{document}$ \tilde B $\end{document}, \begin{document}$ \tilde C $\end{document}, \begin{document}$ \tilde D $\end{document}, \begin{document}$ \tilde D' $\end{document}, \begin{document}$ \tilde D'' $\end{document}, \begin{document}$ \tilde E' $\end{document} and \begin{document}$ \tilde F $\end{document} of H\begin{document}$ _2 $\end{document}O molecule are developed at the level of internally contracted multireference configuration interaction with the Davidson correction. The potential energy surfaces are fitted by using Gaussian process regression combining permutation invariant polynomials. With a large selected active space and extra diffuse basis set to describe these Rydberg states, the calculated vertical excited energies and equilibrium geometries are in good agreement with the previous theoretical and experimental values. Compared with the well-investigated photodissociation of the first three low-lying states, both theoretical and experimental studies on higher states are still limited. In this work, we focus on all the three channels of the highly excited state, which are directly involved in the vacuum ultraviolet photodissociation of water. In particular, some conical intersections of \begin{document}$ \tilde D $\end{document}-\begin{document}$ \tilde E' $\end{document}, \begin{document}$ \tilde E' $\end{document}-\begin{document}$ \tilde F $\end{document}, \begin{document}$ \tilde A $\end{document}-\begin{document}$ \tilde I $\end{document} and \begin{document}$ \tilde I $\end{document}-\begin{document}$ \tilde C $\end{document} states are clearly illustrated for the first time based on the newly developed potential energy surfaces (PESs). The nonadiabatic dissociation pathways for these excited states are discussed in detail, which may shed light on the photodissociation mechanisms for these highly excited states.  相似文献   

4.
In this work, we used time-sliced ion velocity imaging to study the photodissociation dynamics of MgO at \mbox{193 nm}. Three dissociation pathways are found through the speed and angular distributions of magnesium. One pathway is the one-photon excitation of MgO(X\begin{document}$^1\Sigma^+$\end{document}) to MgO(G\begin{document}$^1\Pi$\end{document}) followed by spin-orbit coupling between the G\begin{document}$^1\Pi$\end{document}, 3\begin{document}$^3\Pi$\end{document} and 1\begin{document}$^5\Pi$\end{document} states, and finally dissociated to the Mg(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{u}$\end{document})+O(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{g}$\end{document}) along the 1\begin{document}$^5\Pi$\end{document} surface. The other two pathways are one-photon absorption of MgO(A\begin{document}$^1\Pi$\end{document}) state to MgO(G\begin{document}$^1\Pi$\end{document}) and MgO(4\begin{document}$^1\Pi$\end{document}) state to dissociate into Mg(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{u}$\end{document})+O(\begin{document}$^3$\end{document}P\begin{document}$_\textrm{g}$\end{document}) and Mg(\begin{document}$^1$\end{document}S\begin{document}$_\textrm{g}$\end{document})+O(\begin{document}$^1$\end{document}S\begin{document}$_\textrm{g}$\end{document}), respectively. The anisotropy parameters of the dissociation pathways are related to the lifetime of the vibrational energy levels and the coupling of rotational and vibronic spin-orbit states. The total kinetic energy analysis gives \begin{document}$D_0$\end{document}(Mg\begin{document}$-$\end{document}O)=21645\begin{document}$\pm$\end{document}50 cm\begin{document}$^{-1}$\end{document}.  相似文献   

5.
The photochemical reaction of potassium ferrocyanide (K\begin{document}$ _4 $\end{document}Fe(CN)\begin{document}$ _6 $\end{document}) exhibits excitation wavelength dependence and non-Kasha rule behavior. In this study, the excited-state dynamics of K\begin{document}$ _4 $\end{document}Fe(CN)\begin{document}$ _6 $\end{document} were studied by transient absorption spectroscopy. Excited state electron detachment (ESED) and photoaquation reactions were clarified by comparing the results of 260, 320, 340, and 350 nm excitations. ESED is the path to generate a hydrated electron (e\begin{document}$ _{\rm{aq}}^{-} $\end{document}). ESED energy barrier varies with the excited state, and it occurs even at the first singlet excited state (\begin{document}$ ^{1} $\end{document}T\begin{document}$ _{\rm{1g}} $\end{document}). The \begin{document}$ ^{1} $\end{document}T\begin{document}$ _{\rm{1g}} $\end{document} state shows \begin{document}$ {\sim} $\end{document}0.2 ps lifetime and converts into triplet [Fe(CN)\begin{document}$ _{6} $\end{document}]\begin{document}$ ^{4-} $\end{document} by intersystem crossing. Subsequently, \begin{document}$ ^{3} $\end{document}[Fe(CN)\begin{document}$ _{5} $\end{document}]\begin{document}$ ^{3-} $\end{document} appears after one CN\begin{document}$ ^{-} $\end{document} ligand is ejected. In sequence, H\begin{document}$ _{2} $\end{document}O attacks [Fe(CN)\begin{document}$ _{5} $\end{document}]\begin{document}$ ^{3-} $\end{document} to generate [Fe(CN)\begin{document}$ _{5} $\end{document}H\begin{document}$ _{2} $\end{document}O]\begin{document}$ ^{3-} $\end{document} with a time constant of approximately 20 ps. The \begin{document}$ ^{1} $\end{document}T\begin{document}$ _{\rm{1g}} $\end{document} state and e\begin{document}$ _{\rm{aq}}^{-} $\end{document} exhibit strong reducing power. The addition of uridine 5\begin{document}$ ' $\end{document}-monophosphate (UMP) to the K\begin{document}$ _{4} $\end{document}Fe(CN)\begin{document}$ _{6} $\end{document} solution decrease the yield of e\begin{document}$ _{\rm{aq}}^{-} $\end{document} and reduce the lifetimes of the e\begin{document}$ _{\rm{aq}}^{-} $\end{document} and \begin{document}$ ^{1} $\end{document}T\begin{document}$ _{\rm{1g}} $\end{document} state. The obtained reaction rate constant of \begin{document}$ ^{1} $\end{document}T\begin{document}$ _{\rm{1g}} $\end{document} state and UMP is 1.7\begin{document}$ {\times} $\end{document}10\begin{document}$ ^{14} $\end{document} (mol/L)\begin{document}$ ^{-1}\cdot $\end{document}s\begin{document}$ ^{-1} $\end{document}, and the e\begin{document}$ _{\rm{aq}}^{-} $\end{document} attachment to UMP is \begin{document}$ {\sim} $\end{document}8\begin{document}$ {\times} $\end{document}10\begin{document}$ ^{9} $\end{document} (mol/L)\begin{document}$ ^{-1}\cdot $\end{document}s\begin{document}$ ^{-1} $\end{document}. Our results indicate that the reductive damage of K\begin{document}$ _{4} $\end{document}Fe(CN)\begin{document}$ _{6} $\end{document} solution to nucleic acids under ultraviolet irradiation cannot be neglected.  相似文献   

6.
The dissociative photoionization of cyclopentanone was investigated by means of a reflectron time-of-flight mass spectrometer (RTOF-MS) with tunable vacuum ultraviolet synchrotron radiation in the photon energy range of 9.0-15.5 eV. The photoionization efficiency (PIE) curves for molecular ion and fragment ions were measured. The ionization energy of cyclopentanone was determined to be 9.23\begin{document}$\pm$\end{document}0.03 eV. Fragment ions from the dissociative photoionization of cyclopentanone were identified as C\begin{document}$_5$\end{document}H\begin{document}$_7$\end{document}O\begin{document}$^+$\end{document}, C\begin{document}$_4$\end{document}H\begin{document}$_5$\end{document}O\begin{document}$^+$\end{document}, C\begin{document}$_4$\end{document}H\begin{document}$_8^+$\end{document}/C\begin{document}$_3$\end{document}H\begin{document}$_4$\end{document}O\begin{document}$^+$\end{document}, C\begin{document}$_3$\end{document}H\begin{document}$_3$\end{document}O\begin{document}$^+$\end{document}, C\begin{document}$_4$\end{document}H\begin{document}$_6^+$\end{document}, C\begin{document}$_2$\end{document}H\begin{document}$_4$\end{document}O\begin{document}$^+$\end{document}, C\begin{document}$_3$\end{document}H\begin{document}$_6^+$\end{document}, C\begin{document}$_3$\end{document}H\begin{document}$_5^+$\end{document}, C\begin{document}$_3$\end{document}H\begin{document}$_4^+$\end{document}, C\begin{document}$_3$\end{document}H\begin{document}$_3^+$\end{document}, C\begin{document}$_2$\end{document}H\begin{document}$_5^+$\end{document} and C\begin{document}$_2$\end{document}H\begin{document}$_4^+$\end{document}. With the aid of the ab initio calculations at the \begin{document}$\omega$\end{document}B97X-D/6-31+G(d, p) level of theory, the dissociative mechanisms of C\begin{document}$_5$\end{document}H\begin{document}$_8$\end{document}O\begin{document}$^+$\end{document} are proposed. Ring opening and hydrogen migrations are the predominant processes in most of the fragmentation pathways of cyclopentanone.  相似文献   

7.
A rod-like NiCo\begin{document}$_2$\end{document}O\begin{document}$_4$\end{document} modified glassy carbon electrode was fabricated and used for non-enzymatic glucose sensing. The NiCo\begin{document}$_2$\end{document}O\begin{document}$_4$\end{document} was prepared by a facile hydrothermal reaction and subsequently treated in a commercial microwave oven to eliminate the residual water introduced during the hydrothermal procedure. Structural analysis showed that there was no significant structural alteration before and after microwave treatment. The elimination of water residuals was confirmed by the stoichiometric ratio change by using element analysis. The microwave treated NiCo\begin{document}$_2$\end{document}O\begin{document}$_4$\end{document} (M-NiCo\begin{document}$_2$\end{document}O\begin{document}$_4$\end{document}) showed excellent performance as a glucose sensor (sensitivity 431.29 \begin{document}$\mu $\end{document}A\begin{document}$\cdot$\end{document}mmol/L\begin{document}$^{-1}$\end{document}\begin{document}$\cdot$\end{document}cm\begin{document}$^{-2}$\end{document}). The sensing performance decreases dramatically by soaking the M-NiCo\begin{document}$_2$\end{document}O\begin{document}$_4$\end{document} in water. This result indicates that the introduction of residual water during hydrothermal process strongly affects the electrochemical performance and microwave pre-treatment is crucial for better sensory performance.  相似文献   

8.
Metallophilic interaction is a unique type of weak intermolecular interaction, where the electronic configuration of two metal atoms is closed shell. Despite its significance in multidisciplinary fields, the nature of metallophilic interaction is still not well understood. In this work, we investigated the electronic structures and bonding characteristic of bimetallic Au\begin{document}$ _{2} $\end{document}@Cu\begin{document}$ _{6} $\end{document} nanocluster through density functional theory method, which was reported in experiments recently [Angew. Chem. Int. Ed. 55 , 3611 (2016)]. In general thinking, interaction between two moieties of (CuSH)\begin{document}$ _{6} $\end{document} ring and (Au\begin{document}$ _{2} $\end{document}PH\begin{document}$ _{3} $\end{document})\begin{document}$ _{2} $\end{document} in the Au\begin{document}$ _{2} $\end{document}@Cu\begin{document}$ _{6} $\end{document} nanocluster can be viewed as a d\begin{document}$ ^{10} $\end{document}-\begin{document}$ \sigma $\end{document} closed-shell interaction. However, chemical bonding analysis shows that there is a ten center-two electron (10c-2e) multicenter bonding between two moieties. Further comparative studies on other bimetallic nanocluster M\begin{document}$ _{2} $\end{document}@Cu\begin{document}$ _{6} $\end{document} (M = Ag, Cu, Zn, Cd, Hg) also revealed that multicenter bonding is the origin of electronic stability of the complexes besides the d\begin{document}$ ^{10} $\end{document}-\begin{document}$ \sigma $\end{document} closed-shell interaction. This will provide valuable insights into the understanding of closed-shell interactions.  相似文献   

9.
The geometric structures and vibration frequencies of \begin{document}$ para $\end{document}-chlorofluorobenzene (\begin{document}$ p $\end{document}-ClFPh) in the first excited state of neutral and ground state of cation were investigated by resonance-enhanced multiphoton ionization and slow electron velocity-map imaging. The infrared spectrum of S\begin{document}$ _0 $\end{document} state and absorption spectrum for S\begin{document}$ _1 $\end{document}\begin{document}$ \leftarrow $\end{document}S\begin{document}$ _0 $\end{document} transition in \begin{document}$ p $\end{document}-ClFPh were also recorded. Based on the one-color resonant two-photon ionization spectrum and two-color resonant two-photon ionization spectrum, we obtained the adiabatic excited-state energy of \begin{document}$ p $\end{document}-ClFPh as 36302\begin{document}$ \pm $\end{document}4 cm\begin{document}$ ^{-1} $\end{document}. In the two-color resonant two-photon ionization slow electron velocity-map imagin spectra, the accurate adiabatic ionization potential of \begin{document}$ p $\end{document}-ClFPh was extrapolated as 72937\begin{document}$ \pm $\end{document}8 cm\begin{document}$ ^{-1} $\end{document} via threshold ionization measurement. In addition, Franck-Condon simulation was performed to help us confidently ascertain the main vibrational modes in the S\begin{document}$ _1 $\end{document} and D\begin{document}$ _0 $\end{document} states. Furthermore, the mixing of vibrational modes between S\begin{document}$ _0 $\end{document}\begin{document}$ \rightarrow $\end{document}S\begin{document}$ _1 $\end{document} and S\begin{document}$ _1 $\end{document}\begin{document}$ \rightarrow $\end{document}D\begin{document}$ _0 $\end{document} has been analyzed.  相似文献   

10.
We predict two novel group 14 element alloys Si\begin{document}$_2$\end{document}Ge and SiGe\begin{document}$_2$\end{document} in \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22 phase in this work through first-principles calculations. The structures, stability, elastic anisotropy, electronic and thermodynamic properties of these two proposed alloys are investigated systematically. The proposed \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-Si\begin{document}$_2$\end{document}Ge and \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-SiGe\begin{document}$_2$\end{document} have a hexagonal symmetry structure, and the phonon dispersion spectra and elastic constants indicate that these two alloys are dynamically and mechanically stable at ambient pressure. The elastic anisotropy properties of \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-Si\begin{document}$_2$\end{document}Ge and \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-SiGe\begin{document}$_2$\end{document} are examined elaborately by illustrating the surface constructions of Young's modulus, the contour surfaces of shear modulus, and the directional dependence of Poisson's ratio; the differences with their corresponding group 14 element allotropes \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-Si\begin{document}$_3$\end{document} and \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-Ge\begin{document}$_3$\end{document} are also discussed and compared. Moreover, the Debye temperature and sound velocities are analyzed to study the thermodynamic properties of the proposed \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-Si\begin{document}$_2$\end{document}Ge and \begin{document}$P$\end{document}6\begin{document}$_2$\end{document}22-SiGe\begin{document}$_2$\end{document}.  相似文献   

11.
Laser flash photolysis was used to investigate the photoinduced reactions of excited triplet bioquinone molecule duroquinone (DQ) with tryptophan (Trp) and tyrosine (Tyr) in acetonitrile-water (MeCN-H\begin{document}$_2$\end{document}O) and ethylene glycol-water (EG-H\begin{document}$_2$\end{document}O) solutions. The reaction mechanisms were analyzed and the reaction rate constants were measured based on Stern-Volmer equation. The H-atom transfer reaction from Trp (Tyr) to \begin{document}$^3$\end{document}DQ\begin{document}$^*$\end{document} is dominant after the formation of \begin{document}$^3$\end{document}DQ\begin{document}$^*$\end{document} during the laser photolysis. For DQ and Trp in MeCN-H\begin{document}$_2$\end{document}O and EG-H\begin{document}$_2$\end{document}O solutions, \begin{document}$^3$\end{document}DQ\begin{document}$^*$\end{document} captures H-atom from Trp to generate duroquinone neutral radical DQH\begin{document}$^\bullet$\end{document}, carbon-centered tryptophan neutral radical Trp\begin{document}$^\bullet$\end{document}/NH and nitrogen-centered tryptophan neutral radical Trp/N\begin{document}$^\bullet$\end{document}. For DQ and Tyr in MeCN-H\begin{document}$_2$\end{document}O and EG-H\begin{document}$_2$\end{document}O solutions, \begin{document}$^3$\end{document}DQ\begin{document}$^*$\end{document} captures H-atom from Tyr to generate duroquinone neutral radical DQH\begin{document}$^\bullet$\end{document} and tyrosine neutral radical Tyr/O\begin{document}$^\bullet$\end{document}. The H-atom transfer reaction rate constant of \begin{document}$^3$\end{document}DQ\begin{document}$^*$\end{document} with Trp (Tyr) is on the level of 10\begin{document}$^9$\end{document} L\begin{document}$\cdot$\end{document}mol\begin{document}$^{-1}$\end{document}\begin{document}$\cdot$\end{document}s\begin{document}$^{-1}$\end{document}, nearly controlled by diffusion. The reaction rate constant of \begin{document}$^3$\end{document}DQ\begin{document}$^*$\end{document} with Trp (Tyr) in MeCN/H\begin{document}$_2$\end{document}O solution is larger than that in EG/H\begin{document}$_2$\end{document}O solution, which agrees with Stokes-Einstein relationship qualitatively.  相似文献   

12.
The product branching ratio between different products in multichannel reactions is as important as the overall rate of reaction, both in terms of practical applications (\emph{e.g}. models of combustion or atmosphere chemistry) in understanding the fundamental mechanisms of such chemical reactions. A global ground state potential energy surface for the dissociation reaction of deuterated alkyl halide CD\begin{document}$ _3 $\end{document}CH\begin{document}$ _2 $\end{document}F was computed at the CCSD(T)/CBS//B3LYP/aug-cc-pVDZ level of theory for all species. The decomposition of CD\begin{document}$ _3 $\end{document}CH\begin{document}$ _2 $\end{document}F is controversial concerning C\begin{document}$ - $\end{document}F bond dissociation reaction and molecular (HF, DF, H\begin{document}$ _2 $\end{document}, D\begin{document}$ _2 $\end{document}, HD) elimination reaction. Rice-Ramsperger-Kassel-Marcus (RRKM) calculations were applied to compute the rate constants for individual reaction steps and the relative product branching ratios for the dissociation products were calculated using the steady-state approach. At the different energies studied, the RRKM method predicts that the main channel for DF or HF elimination from 1, 2-elimination of CD\begin{document}$ _3 $\end{document}CH\begin{document}$ _2 $\end{document}F is through a four-center transition state, whereas D\begin{document}$ _2 $\end{document} or H\begin{document}$ _2 $\end{document} elimination from 1, 1-elimination of CD\begin{document}$ _3 $\end{document}CH\begin{document}$ _2 $\end{document}F occurs through a direct three-center elimination. At 266, 248, and 193 nm photodissociation, the main product CD\begin{document}$ _2 $\end{document}CH\begin{document}$ _2 $\end{document}+DF branching ratios are computed to be 96.57%, 91.47%, and 48.52%, respectively; however, at 157 nm photodissociation, the product branching ratio is computed to be 16.11%. Based on these transition state structures and energies, the following photodissociation mechanisms are suggested: at 266, 248, 193 nm, CD\begin{document}$ _3 $\end{document}CH\begin{document}$ _2 $\end{document}F\begin{document}$ \rightarrow $\end{document}absorption of a photon\begin{document}$ \rightarrow $\end{document}TS5\begin{document}$ \rightarrow $\end{document}the formation of the major product CD\begin{document}$ _2 $\end{document}CH\begin{document}$ _2 $\end{document}+DF; at 157 nm, CD\begin{document}$ _3 $\end{document}CH\begin{document}$ _2 $\end{document}F\begin{document}$ \rightarrow $\end{document}absorption of a photon\begin{document}$ \rightarrow $\end{document}D/F interchange of TS1\begin{document}$ \rightarrow $\end{document}CDH\begin{document}$ _2 $\end{document}CDF\begin{document}$ \rightarrow $\end{document}H/F interchange of TS2\begin{document}$ \rightarrow $\end{document}CHD\begin{document}$ _2 $\end{document}CHDF\begin{document}$ \rightarrow $\end{document}the formation of the major product CHD\begin{document}$ _2 $\end{document}+CHDF.  相似文献   

13.
The development of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document}-based materials has become one of research hotspots due to the increasing demands on high-efficient photocatalyst responding to visible light. In this work, the effect of high energy radiation (\begin{document}$\gamma$\end{document}-ray) on the structure and the photocatalytic activity of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals was first studied. No morphological change of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals was observed by SEM under \begin{document}$\gamma$\end{document}-ray radiation. However, the XRD spectra of the irradiated \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals showed the characteristic 2\begin{document}$\theta$\end{document} of (113) plane shifts slightly from 28.37\begin{document}$^{\rm{o}}$\end{document} to 28.45\begin{document}$^{\rm{o}}$\end{document} with the increase of the absorbed dose, confirming the change in the crystal structure of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document}. The XPS results proved the crystal structure change was originated from the generation of oxygen vacancy defects under high-dose radiation. The photocatalytic activity of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} on the decomposition of methylene blue (MB) in water under visible light increases gradually with the increase of absorbed dose. Moreover, the improved photocatalytic performance of the irradiated \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} nanocrystals remained after three cycles of photocatalysis, indicating a good stability of the created oxygen vacancy defects. This work gives a new simple way to improve photocatalytic performance of \begin{document}$\rm{Bi}_2$\end{document}W\begin{document}$\rm{O}_6$\end{document} through creating oxygen vacancy defects in the crystal structure by \begin{document}$\gamma$\end{document}-ray radiation.  相似文献   

14.
The ethoxycarbonyl isothiocyanate has been investigated by using supersonic jet Fourier transform microwave spectroscopy. Two sets of rotational spectra belonging to conformers TCC (with the backbone of C\begin{document}$ - $\end{document}C\begin{document}$ - $\end{document}O\begin{document}$ - $\end{document}C, C\begin{document}$ - $\end{document}O\begin{document}$ - $\end{document}C=O, and O\begin{document}$ - $\end{document}C(=O)\begin{document}$ - $\end{document}NCS being trans, cis, and cis arranged, respectively) and GCC (\begin{document}$ gauche $\end{document}, cis, and cis arrangement of the C\begin{document}$ - $\end{document}C\begin{document}$ - $\end{document}O\begin{document}$ - $\end{document}C, C\begin{document}$ - $\end{document}O\begin{document}$ - $\end{document}C=O, and O\begin{document}$ - $\end{document}C(=O)\begin{document}$ - $\end{document}NCS) have been measured and assigned. The measurements of \begin{document}$ ^{13} $\end{document}C, \begin{document}$ ^{15} $\end{document}N and \begin{document}$ ^{34} $\end{document}S mono-substituted species of the two conformers have also been performed. The comprehensive rotational spectroscopic investigations provide accurate values of rotational constants and \begin{document}$ ^{14} $\end{document}N quadrupole coupling constants, which lead to structural determinations of the two conformers of ethoxycarbonyl isothiocyanate. For conformer TCC, the values of \begin{document}$ P_{ \rm{cc}} $\end{document} keep constant upon isotopic substitution, indicating that the heavy atoms of TCC are effectively located in the \begin{document}$ ab $\end{document} plane.  相似文献   

15.
The anionic carbonyl complexes of groups IV and V metals TM(CO)\begin{document}$ _{6,7} $\end{document} (TM=Ti, Zr, Hf, V, Nb, Ta) are prepared in the gas phase using a laser vaporation-supersonic expansion ion source. The infrared spectra of TM(CO)\begin{document}$ _{6,7} $\end{document}\begin{document}$ ^- $\end{document} anion complexes in the carbonyl stretching frequency region are measured by mass-selected infrared photodissociation spectroscopy. The six-coordinated TM(CO)\begin{document}$ _6 $\end{document}\begin{document}$ ^- $\end{document} anions are determined to be the coordination saturate complexes for both the group IV and group V metals. The TM(CO)\begin{document}$ _6 $\end{document}\begin{document}$ ^- $\end{document} complexes of group IV metals (TM=Ti, Zr, Hf) are 17-electron complexes having a \begin{document}$ ^2 $\end{document}A\begin{document}$ _{\rm{1g}} $\end{document} ground state with \begin{document}$ D_{\rm{3d}} $\end{document} symmetry, while the TM(CO)\begin{document}$ _6 $\end{document}\begin{document}$ ^- $\end{document} complexes of group V metals (TM=V, Nb, Ta) are 18-electron species with a closed-shell singlet ground state possessing \begin{document}$ O_{\rm{h}} $\end{document} symmetry. The energy decomposition analyses indicate that the metal-CO covalent bonding is dominated by TM\begin{document}$ ^- $\end{document}(d)\begin{document}$ \rightarrow $\end{document}(CO)\begin{document}$ _6 $\end{document} \begin{document}$ \pi $\end{document}-backdonation and TM\begin{document}$ ^- $\end{document}(d)\begin{document}$ \leftarrow $\end{document}(CO)\begin{document}$ _6 $\end{document} \begin{document}$ \sigma $\end{document}-donation interactions.  相似文献   

16.
The kinetics for hydrogen (H) adsorption on Ir(111) electrode has been studied in both HClO\begin{document}$ _4 $\end{document} and H\begin{document}$ _2 $\end{document}SO\begin{document}$ _4 $\end{document} solutions by impedance spectroscopy. In HClO\begin{document}$ _4 $\end{document}, the adsorption rate for H adsorption on Ir(111) increases from 1.74\begin{document}$ \times $\end{document}10\begin{document}$ ^{-8} $\end{document} mol\begin{document}$ \cdot $\end{document}cm\begin{document}$ ^{-2} $\end{document}\begin{document}$ \cdot $\end{document}s\begin{document}$ ^{-1} $\end{document} to 3.47\begin{document}$ \times $\end{document}10\begin{document}$ ^{-7} $\end{document} mol\begin{document}$ \cdot $\end{document}cm\begin{document}$ ^{-2} $\end{document}\begin{document}$ \cdot $\end{document}s\begin{document}$ ^{-1} $\end{document} with the decrease of the applied potential from 0.2 V to 0.1 V (vs. RHE), which is ca. one to two orders of magnitude slower than that on Pt(111) under otherwise identical condition. This is explained by the stronger binding of water to Ir(111), which needs a higher barrier to reorient during the under potential deposition of H from hydronium within the hydrogen bonded water network. In H\begin{document}$ _2 $\end{document}SO\begin{document}$ _4 $\end{document}, the adsorption potential is ca. 200 mV negatively shifted, accompanied by a decrease of adsorption rate by up to one order of magnitude, which is explained by the hindrance of the strongly adsorbed sulfate/bisulfate on Ir(111). Our results demonstrate that under electrochemical environment, H adsorption is strongly affected by the accompanying displacement and reorientation of water molecules that initially stay close to the electrode surface.  相似文献   

17.
In this work, we investigated the methanol steam reforming (MSR) reaction (CH\begin{document}$_3$\end{document}OH+H\begin{document}$_2$\end{document}O \begin{document}$\rightarrow$\end{document}CO\begin{document}$_2$\end{document}+3H\begin{document}$_2$\end{document}) catalyzed by \begin{document}$\alpha$\end{document}-MoC by means of density functional theory calculations. The adsorption behavior of the relevant intermediates and the kinetics of the elementary steps in the MSR reaction are systematically investigated. The results show that, on the \begin{document}$\alpha$\end{document}-MoC(100) surface, the O\begin{document}$-$\end{document}H bond cleavage of CH\begin{document}$_3$\end{document}OH leads to CH\begin{document}$_3$\end{document}O, which subsequently dehydrogenates to CH\begin{document}$_2$\end{document}O. Then, the formation of CH\begin{document}$_2$\end{document}OOH between CH\begin{document}$_2$\end{document}O and OH is favored over the decomposition to CHO and H. The sequential dehydrogenation of CH\begin{document}$_2$\end{document}OOH results in a high selectivity for CO\begin{document}$_2$\end{document}. In contrast, the over-strong adsorption of the CH\begin{document}$_2$\end{document}O intermediate on the \begin{document}$\alpha$\end{document}-MoC(111) surface leads to its dehydrogenation to CO product. In addition, we found that OH species, which is produced from the facile water activation, help the O\begin{document}$-$\end{document}H bond breaking of intermediates by lowering the reaction energy barrier. This work not only reveals the catalytic role played by \begin{document}$\alpha$\end{document}-MoC(100) in the MSR reaction, but also provides theoretical guidance for the design of \begin{document}$\alpha$\end{document}-MoC-based catalysts.  相似文献   

18.

The simple homodinuclear M

\begin{document}$ - $\end{document}

M single bonds for group II and XII elements are difficult to obtain as a result of the fulfilled s

\begin{document}$ ^2 $\end{document}

electronic configurations, consequently, a dicationic prototype is often utilized to design the M

\begin{document}$ ^+ $\end{document}\begin{document}$ - $\end{document}

M

\begin{document}$ ^+ $\end{document}

single bond. Existing studies generally use sterically bulky organic ligands L

\begin{document}$ ^- $\end{document}

to synthesize the compounds in the L

\begin{document}$ ^- $\end{document}\begin{document}$ - $\end{document}

M

\begin{document}$ ^+ $\end{document}\begin{document}$ - $\end{document}

M

\begin{document}$ ^+ $\end{document}\begin{document}$ - $\end{document}

L

\begin{document}$ ^- $\end{document}

manner. However, here we report the design of Mg

\begin{document}$ - $\end{document}

Mg and Zn

\begin{document}$ - $\end{document}

Zn single bonds in two ligandless clusters, Mg

\begin{document}$ _2 $\end{document}

B

\begin{document}$ _7 $\end{document}\begin{document}$ ^- $\end{document}

and Zn

\begin{document}$ _2 $\end{document}

B

\begin{document}$ _7 $\end{document}\begin{document}$ ^- $\end{document}

, using density functional theory methods. The global minima of both of the clusters are in the form of M

\begin{document}$ _2 $\end{document}\begin{document}$ ^{2+} $\end{document}

(B

\begin{document}$ _7 $\end{document}\begin{document}$ ^{3-} $\end{document}

), where the M

\begin{document}$ - $\end{document}

M single bonds are positioned above a quasi-planar hexagonal B

\begin{document}$ _7 $\end{document}

moiety. Chemical bonding analyses further confirm the existence of Mg

\begin{document}$ - $\end{document}

Mg and Zn

\begin{document}$ - $\end{document}

Zn single bonds in these clusters, which are driven by the unusually stable B

\begin{document}$ _7 $\end{document}\begin{document}$ ^{3-} $\end{document}

moiety that is both

\begin{document}$ \sigma $\end{document}

and

\begin{document}$ \pi $\end{document}

aromatic. Vertical detachment energies of Mg

\begin{document}$ _2 $\end{document}

B

\begin{document}$ _7 $\end{document}\begin{document}$ ^- $\end{document}

and Zn

\begin{document}$ _2 $\end{document}

B

\begin{document}$ _7 $\end{document}\begin{document}$ ^- $\end{document}

are calculated to be 2.79 eV and 2.94 eV, respectively, for the future comparisons with experimental data.

  相似文献   

19.
In view of the high activity of Pt single atoms in the low-temperature oxidation of CO, we investigate the adsorption behavior of Pt single atoms on reduced rutile TiO\begin{document}$ _2 $\end{document}(110) surface and their interaction with CO and O\begin{document}$ _2 $\end{document} molecules using scanning tunneling microscopy and density function theory calculations. Pt single atoms were prepared on the TiO\begin{document}$ _2 $\end{document}(110) surface at 80 K, showing their preferred adsorption sites at the oxygen vacancies. We characterized the adsorption configurations of CO and O\begin{document}$ _2 $\end{document} molecules separately to the TiO\begin{document}$ _2 $\end{document}-supported Pt single atom samples at 80 K. It is found that the Pt single atoms tend to capture one CO to form Pt-CO complexes, with the CO molecule bonding to the fivefold coordinated Ti (Ti\begin{document}$ _{5 \rm{c}} $\end{document}) atom at the next nearest neighbor site. After annealing the sample from 80 K to 100 K, CO molecules may diffuse, forming another type of complexes, Pt-(CO)\begin{document}$ _2 $\end{document}. For O\begin{document}$ _2 $\end{document} adsorption, each Pt single atom may also capture one O\begin{document}$ _2 $\end{document} molecule, forming Pt-O\begin{document}$ _2 $\end{document} complexes with O\begin{document}$ _2 $\end{document} molecule bonding to either the nearest or the next nearest neighboring Ti\begin{document}$ _{5 \rm{c}} $\end{document} sites. Our study provides the single-molecule-level knowledge of the interaction of CO and O\begin{document}$ _2 $\end{document} with Pt single atoms, which represent the important initial states of the reaction between CO and O\begin{document}$ _2 $\end{document}.  相似文献   

20.
A fundamental study on C-C coupling, that is the crucial step in the Fischer-Tropsch synthesis (FTS) process to obtain multi-carbon products, is of great importance to tailor catalysts and then guide a more promising pathway. It has been demonstrated that the coupling of CO with the metal carbide can represent the early stage in the FTS process, while the related mechanism is elusive. Herein, the reactions of the CuC\begin{document}$ _3 $\end{document}H\begin{document}$ ^- $\end{document} and CuC\begin{document}$ _3 $\end{document}\begin{document}$ ^- $\end{document} cluster anions with CO have been studied by using mass spectrometry and theoretical calculations. The experimental results showed that the coupling of CO with the C\begin{document}$ _3 $\end{document}H\begin{document}$ ^- $\end{document} moiety of CuC\begin{document}$ _3 $\end{document}H\begin{document}$ ^- $\end{document} can generate the exclusive ion product COC\begin{document}$ _3 $\end{document}H\begin{document}$ ^- $\end{document}. The reactivity and selectivity of this reaction of CuC\begin{document}$ _3 $\end{document}H\begin{document}$ ^- $\end{document} with CO are greatly higher than that of the reaction of CuC\begin{document}$ _3 $\end{document}\begin{document}$ ^- $\end{document} with CO, and this H-assisted C-C coupling process was rationalized by theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号