首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 698 毫秒
1.
Ternary copper(II) complexes [Cu(l-met)B(Solv)](ClO4) (1-4), where B is a N,N-donor heterocyclic base like 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2'],3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (L-Hmet =L-methionine). Complex 2, structurally characterized by X-ray crystallography, shows a square pyramidal (4 + 1) coordination geometry in which the N,O-donor L-methionine and N,N-donor heterocyclic base bind at the basal plane and a solvent molecule is coordinated at the axial site. The complexes display a d-d band at approximately 600 nm in DMF and exhibit a cyclic voltammetric response due to the Cu(II)/Cu(I) couple near -0.1 V in DMF-Tris-HCl buffer. The complexes display significant binding propensity to the calf thymus DNA in the order: 4(dppz) > 3(dpq) > 2(phen> 1(bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or red light (632.8 nm) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The DNA cleavage activity of the dpq complex is found to be significantly more than its dppz and phen analogues.  相似文献   

2.
Ternary copper(II) complexes [Cu(py2phe)B](ClO4)2 (1-3), where py2phe is a tripodal ligand N,N-bis[2-(2-pyridyl)ethyl]-2-phenylethylamine and B is a heterocyclic base (viz., 1,10-phenanthroline (phen, 1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2), or dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3)), are prepared and their DNA-binding and photoinduced DNA-cleavage activities are studied. Complex 1 has been structurally characterized by single crystal X-ray crystallography. The molecular structure shows an axially elongated square-pyramidal (4 + 1) coordination geometry in which the phen ligand binds at the basal plane. The tripodal ligand py2phe displays an axial-equatorial binding mode with the amine nitrogen bonded at the axial site. A chemically significant CH-pi interaction involving the CH moiety of the phenyl group of the tripodal ligand and the aromatic ring of phen is observed. The complexes display good binding propensity to calf thymus DNA giving a relative order of 3 (dppz) > 2 (dpq) > 1 (phen). The DNA binding constants (K(b)) for 1-3, determined from absorption spectral studies, are 6.2 x 10(3), 1.0 x 10(4), and 5.7 x 10(4) M(-1), respectively. The complexes show chemical nuclease activity in the presence of 3-mercaptopropionic acid as a reducing agent forming hydroxyl radicals as the cleavage active species. The photoinduced DNA-cleavage activity of the complexes has been studied using UV radiation of 365 nm and red light of 632.8 and 694 nm. The phen complex in absence of any photosensitizing moiety does not show any DNA cleavage upon photoirradiation. The dpq and dppz ligands with their photoactive quinoxaline and phenazine moieties display significant photoinduced DNA-cleavage activity. The dppz complex is more active than its dpq analogue because of the better steric protection of the DNA-bound photosensitizing dppz ligand from the solvent molecules. Control experiments reveal the formation of singlet oxygen in the light-induced DNA-cleavage reactions. The observed efficient photoinduced DNA-cleavage activity of 2 and 3 is akin to the "light switch" effect known for the tris-chelates of ruthenium(II).  相似文献   

3.
Ternary copper(II) complexes [Cu(L1)B](ClO4) (1, 2) and [Cu(L2)B](ClO4) (3, 4), where HL1 and HL2 are tridentate NSO- and ONO-donor Schiff bases and B is a heterocyclic base, viz. dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 1 and 3) or dipyrido[3,2-a:2',3'-c]phenazine (dppz, 2 and 4), were prepared and their DNA binding and photoinduced DNA cleavage activity studied. Complex 1, structurally characterized by single-crystal X-ray crystallography, shows an axially elongated square-pyramidal (4 + 1) coordination geometry in which the monoanionic L1 binds at the equatorial plane. The NN-donor dpq ligand exhibits an axial-equatorial binding mode. The complexes display good binding propensity to calf thymus DNA, giving a relative order 2 (NSO-dppz) > 4 (ONO-dppz) > 1 (NSO-dpq) > 3 (ONO-dpq). They cleave supercoiled pUC19 DNA to its nicked circular form when treated with 3-mercaptopropionic acid (MPA) by formation of hydroxyl radicals as the cleavage active species under dark reaction conditions. The photoinduced DNA cleavage activity of the complexes was investigated using UV radiation of 365 nm and red light of 633, 647.1, and 676.4 nm (CW He-Ne and Ar-Kr mixed gas ion laser sources) in the absence of MPA. Complexes 1 and 2, having photoactive NSO-donor Schiff base and dpq/dppz ligands, show dual photosensitizing effects involving both the photoactive ligands in the ternary structure with significantly better cleavage properties when compared to those of 3 and 4, having only photoactive dpq/dppz ligands. Involvement of singlet oxygen in the light-induced DNA cleavage reactions is proposed. A significant enhancement of the red-light-induced DNA cleavage activity is observed for the dpq and dppz complexes containing the sulfur ligand when compared to their earlier reported phen (1,10-phenanthroline) analogue. Enhancement of the cleavage activity on photoexposure at the d-d band indicates the occurrence of metal-assisted photosensitization processes involving the LMCT and d-d band in the ternary structure.  相似文献   

4.
Ferrocene-conjugated L-tryptophan (L-Trp) reduced Schiff base (Fc-TrpH) copper(II) complexes [Cu(Fc-Trp)(L)](ClO(4)) of phenanthroline bases (L), viz. 2,2'-bipyridine (bpy in 1), 1,10-phenanthroline (phen in 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 4), were prepared and characterized and their photocytotoxicity studied. Cationic reduced Schiff base (Ph-TrpH) complexes [Cu(Ph-Trp)(L)(H(2)O)](ClO(4)) (L = phen in 5; dppz in 6) having the ferrocenyl moiety replaced by a phenyl group and the Zn(II) analogue (7) of complex 4 were prepared and used as control species. The crystal structures of 1 and 5 with respective square-planar CuN(3)O and square-pyramidal CuN(3)O(2) coordination geometry show significantly different core structures. Complexes 1-4 exhibit a Cu(II)-Cu(I) redox couple near -0.1 V and the Fc(+)-Fc couple at ~0.5 V vs SCE in DMF-0.1 M [Bu(n)(4)N](ClO(4)) (Fc = ferrocenyl moiety). The complexes display a copper(II)-based d-d band near 600 nm and a Fc-centered band at ~450 nm in DMF-Tris-HCl buffer. The complexes are efficient binders to calf thymus DNA. They are synthetic chemical nucleases in the presence of thiol or H(2)O(2), forming hydroxyl radicals. The photoactive complexes are cleavers of pUC19 DNA in visible light, forming hydroxyl radicals. Complexes 2-6 show photocytotoxicity in HeLa cancer cells, giving IC(50) values of 4.7, 10.2, 1.3, 4.8, and 4.3 μM, respectively, in visible light with the appearance of apoptotic bodies. The complexes also show photocytotoxicity in MCF-7 cancer cells. Nuclear chromatin cleavage has been observed with acridine orange/ethidium bromide (AO/EB) dual staining with complex 4 in visible light. The complexes induce caspase-independent apoptosis in the HeLa cells.  相似文献   

5.
Two Eu(III) complexes, [Eu(acac)(3)(dpq)] (1) and [Eu(acac)(3)(dppz)] CH(3)OH (2) {viz. acetylacetonate (acac), dipyrido[3,2-d:20,30-f]quinoxaline (dpq), dipyrido[3,2-a:20,30-c] phenazine (dppz)}, have been synthesized and their DNA binding, photo-induced DNA cleavage activity and cell cytotoxicity are studied. The complexes display significant binding propensity to the calf thymus DNA in the order: 2(dppz) >1(dpq). Cleavage experiments using pBR322 supercoiled DNA suggest major groove binding for 2 and minor groove binding for 1. The mechanistic aspects on natural light (natural light in room during the day) and UV-A (365 nm) irradiation are via a mechanistic pathway involving formation of singlet oxygen and hydroxyl radical as the reactive species. The photo-induced DNA cleavage activity of 2 is also stronger than 1. The cytotoxicity of 1 and 2 against HeLa (cervical) cancer cells show that the IC(50) value of 19.11 ± 3.56 μM and 17.95 ± 5.47 μM, respectively.  相似文献   

6.
Oxovanadium(IV) complexes [VO(salmet)(B)] (1-3) and [VO(saltrp)(B)] (4-6), where salmet and saltrp are N-salicylidene-l-methionate and N-salicylidene-l-tryptophanate, respectively, and B is a N,N-donor heterocyclic base (viz. 1,10-phenanthroline (phen, 1, 4), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 2, 5), and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 3, 6)) are prepared and characterized and their DNA binding and photoinduced DNA cleavage activity studied. Complexes 1, 2, and 4 are structurally characterized by single-crystal X-ray crystallography. The molecular structure shows the presence of a vanadyl group in the VO3N3 coordination geometry. The dianionic alpha-amino acid Schiff base acts as a tridentate O,N,O-donor ligand in a meridional binding mode. The N,N-donor heterocyclic base displays a chelating mode of bonding with a N-donor site trans to the oxo group. The complexes show a d-d band in the range of 680-710 nm in DMF with a shoulder near 840 nm. They exhibit an irreversible oxidative cyclic voltammetric response near 0.8 V assignable to the V(V)/V(IV) couple and a quasi-reversible V(IV)/V(III) redox couple near -1.1 V vs SCE in DMF-0.1 M TBAP. The complexes show good binding propensity to calf thymus DNA giving binding constant values in the range from 5.2 x 10(4) to 7.2 x 10(5) M(-1). The binding site size, thermal melting, and viscosity data suggest DNA surface and/or groove binding nature of the complexes. The complexes show poor "chemical nuclease" activity in the dark in the presence of 3-mercaptopropionic acid or hydrogen peroxide. The dpq and dppz complexes show efficient DNA cleavage activity on irradiation with UV-A light of 365 nm via a mechanistic pathway involving formation of singlet oxygen as the reactive species. They also show significant DNA cleavage activity on photoexcitation in red light (>750 nm) by (1)O2 species. Observation of red-light-induced cleavage of DNA is unprecedented in the vanadium chemistry. The DNA cleavage activity is metal promoted as the ligands or vanadyl sulfate alone are cleavage inactive on photoirradiation at these wavelengths.  相似文献   

7.
Complexes of formulation [Cu(Tp(Ph))(L)](ClO(4)) (1-4), where Tp(Ph) is anionic tris(3-phenylpyrazolyl)borate and L is N,N-donor heterocyclic base, viz. 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyridoquinoxaline (dpq, 3), and dipyridophenazine (dppz, 4), are prepared from a reaction of copper(II) acetate.hydrate with KTp(Ph) and L in CH(2)Cl(2) and isolated as perchlorate salts. The complexes are characterized by analytical, structural, and spectral methods. The crystal structures of complexes 1-4 show the presence of discrete cationic complexes having the metal, Tp(Ph), and L in a 1:1:1 ratio and a noncoordinating perchlorate anion. The complexes have a square-pyramidal 4 + 1 coordination geometry in which two nitrogens of L and two nitrogens of the Tp(Ph) ligand occupy the basal plane and one nitrogen of Tp(Ph) binds at the axial site. Complexes 3 and 4 display distortion from the square-pyramidal geometry. The Cu-N distances for the equatorial and axial positions are approximately 2.0 and 2.2 A, respectively. The phenyl groups of Tp(Ph) form a bowl-shaped structure that encloses the [CuL] moiety. The steric encumbrance is greater for the bpy and phen ligands compared to that for dpq and dppz. The one-electron paramagnetic complexes (mu approximately equal to 1.8 mu(B)) exhibit axial EPR spectra in CH(2)Cl(2) glass at 77 K giving g(parallel) and g(perpendicular) values of approximately 2.18 (A(parallel) = 128 G) and approximately 2.07. The data suggest a [d(x(2)-y(2))](1) ground state. The complexes are redox-active and display a quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.0 V versus SCE with an i(pc)/i(pa) ratio of unity in CH(2)Cl(2) or DMF-0.1 M TBAP. The E(1/2) values of the couple vary in the order 4 > 3 > 2 > 1. A profound effect of steric encumbrance caused by the Tp(Ph) ligand is observed in the reactivity of 1-4 with the calf thymus (CT) and supercoiled (SC) DNA. Complexes 2-4 show similar binding to CT DNA. The propensity for the SC DNA cleavage varies as 4 > 3 > 2. The bpy complex does not show any significant binding or cleavage of DNA. Mechanistic investigations using distamycin reveal minor groove binding for 2 and 3 and a major groove binding for 4. The scission reactions that are found to be inhibited by hydroxyl radical scavenger DMSO are likely to proceed through sugar hydrogen abstraction pathways.  相似文献   

8.
The complexes [Cu(phen)(3)](ClO(4))(2) 1, [Cu(5,6-dmp)(3)](ClO(4))(2) 2, [Cu(dpq)(3)](ClO(4))(2) 3, [Zn(phen)(3)](ClO(4))(2) 4, [Zn(5,6-dmp)(3)](ClO(4))(2) 5 and [Zn(dpq)(3)](ClO(4))(2) 6, where phen = 1,10-phenanthroline, 5,6-dmp = 5,6-dimethyl-1,10-phenanthroline and dpq = dipyrido[3,2-d:2',3'-f]quinoxaline, have been isolated, characterized and their interaction with calf thymus DNA studied by using a host of physical methods. The X-ray crystal structures of rac-[Cu(5,6-dmp)(3)](ClO(4))(2) and rac-[Zn(5,6-dmp)(3)](ClO(4))(2) have been determined. While 2 possesses a regular elongated octahedral coordination geometry (REO), 5 possesses a distorted octahedral geometry. Absorption spectral titrations of the Cu(II) complexes with CT DNA reveal that the red-shift (12 nm) and DNA binding affinity of 3 (K(b), 7.5 x 10(4) M(-1)) are higher than those of 1 (red-shift, 6 nm; K(b), 9.6 x 10(3) M(-1)) indicating that the partial insertion of the extended phen ring of dpq ligand in between the DNA base pairs is deeper than that of phen ring. Also, 2 with a fluxional Cu(II) geometry interacts with DNA (K(b), 3.8 x 10(4) M(-1)) more strongly than 1 suggesting that the hydrophobic forces of interaction of 5,6 methyl groups on the phen ring is more pronounced than the partial intercalation of phen ring in the latter with a static geometry. The DNA binding affinity of 1 is lower than that of its Zn(ii) analogue 4, and, interestingly, the DNA binding affinity 2 of with a fluxional geometry is higher than that of its Zn(II) analogue 5 with a spherical geometry. It is remarkable that upon binding to DNA 3 shows an increase in viscosity higher than that the intercalator EthBr does, which is consistent with the above DNA binding affinities. The CD spectra show only one induced CD band on the characteristic positive band of CT DNA upon interaction with the phen (1,4) and dpq (3,6) complexes. In contrast, the 5,6-dmp complexes 2 and 5 bound to CT DNA show exciton-coupled biphasic CD signals with 2 showing CD signals more intense than 5. The Delta-enantiomer of rac-[Cu(5,6-dmp)(3)](2+) 2 binds specifically to the right-handed B-form of CT DNA at lower ionic strength (0.05 M NaCl) while the Lambda-enantiomer binds specifically to the left-handed Z-form of CT DNA generated by treating the B-form with 5 M NaCl. The complex 2 is stabilized in the higher oxidation state of Cu(II) more than its phen analogue 1 upon binding to DNA suggesting the involvement of electrostatic forces in DNA interaction of the former. In contrast, 3 bound to DNA is stabilized as Cu(I) rather than the Cu(II) oxidation state due to partial intercalative interaction of the dpq ligand. The efficiencies of the complexes to oxidatively cleave pUC19 DNA vary in the order, 3> 1 > 2 with 3 effecting 100% cleavage even at 10 microM complex concentration. However, interestingly, this order is reversed when the DNA cleavage is performed using H(2)O(2) as an activator and the highest cleavage efficiency of 2 is ascribed to its electrostatic interaction with the exterior phosphates of DNA.  相似文献   

9.
Complexes of the type [Co(pic)(2)(NN)], where pic = picolinate, NN = dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (4) and 4b,5,7,7a-tetrahydro-4b,7a-epiminomethanoimino-6H-imidazo[4,5-f][1,10]-phenanthroline-6,13-dione (bipyridyl-glycoluril) (bpg) (6) have been synthesized and characterized by elemental analysis, IR, UV-vis, NMR and ESI-MS spectroscopy and thermogravimetic analysis (TGA). Their physicochemical properties are compared with previously synthesized complexes, where NN = (H(2)O)(2) (1), 2,2'-bipyridine (bpy) (2), 1,10-phenanthroline (phen) (3) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) (5). The crystal structures of the complexes 4-6 were solved by single-crystal X-ray diffraction. The complexes 4 and 5 crystallize from a mixture of chloroform and methanol in monoclinic and orthorhombic crystal systems, respectively, whereas complex 6 crystallizes from dimethyl sulfoxide (DMSO) in a tetragonal crystal system. The coordination sphere consists of two oxygen atoms and two nitrogen atoms from the two picolinates and two nitrogen atoms from the dpq, dppz or bpg ligand, respectively. Co(ii)/Co(iii) oxidation potentials have been determined by cyclic voltammetry. The DNA binding of complexes 1-5 has been investigated using thermal melting, fluorescence quenching and viscosity measurements, which indicate the partial intercalation of complex 5 with an apparent binding constant (k(app)) of 8.3 × 10(5) M(-1). DNA cleavage studies of complexes 1-5 have been investigated using gel electrophoresis in the presence of H(2)O(2) as an oxidizing agent and also by photoirradiation at 365 nm. The mechanistic investigations suggest that singlet oxygen ((1)O(2)) is the major species involved in the DNA cleavage by these complexes. The structures of complexes 2-6 were optimized with density functional theory (DFT) method (B3LYP/6-31G(d,p)). The low vertical ionization potential values indicate photoredox pathways for the DNA cleavage activity by complexes 4 and 5, which is corroborated by DNA cleavage experiments.  相似文献   

10.
A series of mixed ligand ruthenium(II) complexes [Ru(pdto)(diimine)](ClO4)2/(PF6)2 1-3 and [Ru(bbdo)(diimine)](ClO4), 4-6, where pdto is 1,8-bis(pyrid-2-yl)-3,6-dithiooctane, bbdo is 1,8-bis(benzimidazol-2-yl)-3,6-dithiooctane and diimine is 1,10-phenanthroline (phen), dipyrido-[3,2-d:2',3'-f]-quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz), have been isolated and characterised by analytical and spectral methods. The complexes [Ru(pdto)(phen)](PF6)2 la, [Ru(pdto)(dpq)(Cl](PF6) 2a, [Ru(bbdo)(phen)](PF6)2 4a and [Ru(bbdo)(dpq)](ClO4)2 5 have been structurally characterized and their coordination geometries around ruthenium(II) are described as distorted octahedral. In la, 4a and 5 the two thioether sulfur and two py/bzim nitrogen atoms of the tetradentate pdto/bbdo ligand are folded around Ru(II) to give predominantly a "cis-alpha" configuration. (I)H NMR spectral data of the complexes support this configuration in solution. In [Ru(pdto)(dpq)Cl](PF6) 2a with a distorted octahedral coordination geometry, one of the two py nitrogens of pdto is not coordinated. The DNA binding constants (Kb: 2, 2.00 +/- 0.02 x 10(4) M(-1), s = 1.0; 3, 3.00 +/- 0.01 x 10(6) M(-1), s = 1.3) determined by absorption spectral titrations of the complexes with CT DNA reveal that 3 interacts with DNA more tightly than 2 through partial intercalation of the extended planar ring of coordinated dppz with the DNA base stack. The DNA binding affinities of the complexes increase with increase in the number of planar aromatic rings in the co-ligand, and on replacing both the py moieties in pdto complexes (1-3) by bzim moieties to give bbdo complexes (4-6). Upon interaction with CT DNA the complexes 1, 2, 5 and 6 show a decrease in anodic current in the cyclic voltammograms. On the other hand, interestingly, 3 and 4 show an increase in anodic current suggesting their involvement in electrocatalytic guanine oxidation. Interestingly, of all the complexes, only 6 alters the superhelicity of DNA upon binding with supercoiled pBR322 DNA. The cytotoxicities of the dppz complexes 3 and 6, which avidly bind to DNA, have been examined by screening them against cell lines of different cancer origins. It is noteworthy that 6 exhibits selectivity with higher cytotoxicity against the melanoma cancer cell line (A375) than other cell lines, potency approximately twice that of cisplatin and toxicity to normal cells 3 and 90 times less than cisplatin and adriamycin respectively.  相似文献   

11.
Redox active mononuclear and binuclear copper(II) complexes have been prepared and structurally characterized. The complexes have planar N-donor heterocyclic bases like 1,10-phenanthroline (phen), dipyridoquinoxaline (dpq) and dipyridophenazine (dppz) ligands that are suitable for intercalation to B-DNA. Complexes studied for nuclease activity have the formulations [Cu(dpq)2(H2O)] (ClO4)2.H2O (1), [CuL(H2O)2(μ-ox)](ClO4)2 (L = bpy,2; phen,3; dpq,4; and dppz,5) and [Cu(L)(salgly)] (L = bpy,6; phen,7; dpq,8; and dppz,9), where salgly is a tridentate Schiff base obtained from the condensation of glycine and salicylaldehyde. The dpq complexes are efficient DNA binding and cleavage active species. The dppz complexes show good binding ability but poor nuclease activity. The cleavage activity of thebis-dpq complex is significantly higher than thebis-phen complex of copper(II). The nuclease activity is found to be dependent on the intercalating nature of the complex and on the redox potential of the copper(II)/copper(I) couple. The ancillary ligand plays a significant role in binding and cleavage activity.  相似文献   

12.
The complexes rac-[Fe(diimine)(3)](ClO(4))(2)1-4, where diimine = 2,2'-bipyridine (bpy) 1, 1,10-phenanthroline (phen) 2, 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) 3 and dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) 4, have been isolated, characterized and their interaction with calf thymus DNA studied by using a host of physical methods. The X-ray crystal structure of rac-[Fe(5,6-dmp)(3)](ClO(4))(2)3 has been determined and the packing diagram shows the presence of two enantiomeric forms of the complex cations in the same unit cell. The structures of 1-4 in solution have also been studied using UV-Visible, Cyclic Voltammetry and ESI-MS data and all data available suggests that they retain their solid state structures even in solution. The absorption spectral titrations of the iron(ii) complexes with CT DNA reveal that the DNA binding affinities of the complexes vary in the order, 4 (K(b): 9.0 × 10(3)) > 2 (6.8 × 10(3)) > 3 (4. 8 × 10(3)) > 1 (2.9 × 10(3) M(-1)). The DNA interaction of dpq complex (4) involves partial insertion of the extended phen ring in between the DNA base pairs, which is deeper than that of phen (2). The 5,6-dmp (3) complex is involved in groove binding in the major groove of DNA. The lower DNA binding affinity of 1 is due to electrostatic interaction of the cationic complexes with exterior phosphates of DNA. The EthBr displacement assay and DNA viscosity study support these DNA binding modes and the above trend in DNA binding affinities. The complexes of 1 and 2 show induced CD (ICD) upon interaction with CT DNA while 3 and 4 bound to DNA exhibit inversion in the positive band with the helicity band showing very small changes, which implies that 3 and 4 bind enantiopreferentially to DNA. The DNA cleavage abilities of 1-4 have been observed at 10 μM concentration of complexes in the presence of 100 μM H(2)O(2) and the DNA cleavage efficiency (> 90%) follows the order 3 > 1 > 2 > 4. The anticancer activity of 1-4 against human breast cancer cell line (MCF-7) has also been studied. The IC(50) values of the complexes at different incubation time intervals of 24 and 48 h follow the order, 3 (0.8, 0.6) < 4 (20.0, 17.0) < 2 (28.0, 22.0) < 1 (32.0, 29.0 μM). Interestingly, 3 exhibits anticancer activity more potent than 1, 2 and 4 and cisplatin for both 24 and 48 h. It induces cell death both through apoptosis and necrosis mechanisms, as revealed by morphological assessment data obtained by using AO/EB and Hoechst 33258 fluorescence staining methods.  相似文献   

13.
The complexes [Co(diimine)(3)](ClO(4))(2)1-3 and [Ni(diimine)(3)](ClO(4))(2)4-6, where diimine = 1,10-phenanthroline (phen) (1,4), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) (2,5) and dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (3,6), have been isolated, characterized and their interaction with CT DNA studied by using a host of physical methods. The X-ray crystal structures of rac-[Co(5,6-dmp)(3)](ClO(4))(2)2 and rac-[Ni(5,6-dmp)(3)](ClO(4))(2)5 have been determined and the isostructural and also isomorphous complex cations possess distorted octahedral coordination geometries. The absorption spectral titrations of the complexes with DNA reveal that the CT DNA binding affinity (K(b)) of the complexes varies as 3>2>1; 6>5>4. The Ni(II) complexes display DNA binding stronger than the corresponding Co(II) analogues, which is expected of their bigger sizes. The higher DNA binding affinity of 3 and 6 is due to the involvement in partial insertion of the extended phen ring in between the DNA base pairs. In contrast, 2 and 5 interact with DNA in the major groove through hydrophobic forces involving the methyl groups on the 5,6 positions of phen ring. An enhancement in relative viscosities of DNA upon binding to 1-6 is consistent with the DNA binding affinities. The CD spectral studies show only an induced CD band on the characteristic positive band of CT DNA for both the phen (1,4) complexes. In contrast, the 5,6-dmp (2,5) and dpq (3,6) complexes bound to CT DNA exhibit biphasic CD signals in place of the positive CD band and the negative helicity band disappears. This reveals that the complexes bind to DNA enantiopreferentially and effect changes in secondary structure of DNA. The CV and DPV responses indicate that the DNA-bound dpq complexes are stabilized in the lower oxidation state of Co(II) more than in the Co(III) oxidation state. The prominent DNA cleavage abilities of 1-3 observed in the presence of H(2)O(2) (200 μM) follows the order 2>1>3 with efficiencies of more than 90% even at 10 μM complex concentration. Interestingly, Ni(II) complexes 4-6 exhibit higher cytotoxicity (IC(50): 1, 28.0; 2, 15.0; 3, 20.0; 4, 8.0; 5, 2.0; 6, 2.0 μM at 48 h; IC(50): 1, 30.0; 2, 20.0; 3, 25.0; 4, 10.0; 5, 3.0; 6, 3.0 μM at 24 h) against human breast cancer (MCF 7) cell lines than the Co(II) complexes 1-3 as well as cisplatin in spite of their inability to cleave DNA. Also, the 5,6-dmp complex 5 shows cytotoxicity higher than the dpq complex 6 at 24 h incubation time and both 5 and 6 display apoptotic and necrotic modes of cell death.  相似文献   

14.
A series of mixed ligand ruthenium(II) complexes [Ru(Hdpa)2(diimine)](ClO4)2, 1-5 where Hdpa is 2,2'-dipyridylamine and diimine is 1,10-phenanthroline (phen) and a modified/extended 1,10-phenanthroline such as, 5,6-dimethyl-1,10-phenanthroline (5,6-dmp), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), 5-methyldipyrido[3,2-d:2',3'-f]quinoxaline (mdpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) have been isolated and characterized by analytical and spectral methods. The complex [Ru(Hdpa)2(phen)](PF6)2 1 has been structurally characterized and the coordination geometry around Ru(II) in it is described as distorted octahedral. 1H NMR spectral data reveal that 1-5 should have a C2 symmetry lying on the diimine plane due to the rapid flapping of the coordinated Hdpa ligands. The interaction of the complexes with calf thymus (CT) DNA has been explored by using absorption and emission spectral and viscometry and electrochemical techniques and the mode of DNA binding of the complexes has been proposed. The DNA binding affinity of the complexes decreases with decrease in number of planar aromatic rings in the co-ligand supporting the intercalation of the diimine co-ligands in between the DNA base pairs. Circular dichroic spectral studies reveal that the complexes 3-5 exhibit induced circular dichroism upon binding to CT DNA. Interestingly, upon interaction with CT DNA all the complexes show an increase in anodic current in the cyclic voltammograms suggesting that they are involved in electrocatalytic guanine oxidation. Interestingly, of all the complexes, only 5 alters the DNA superhelicity upon binding with supercoiled pBR322 DNA, which is consistent with its higher DNA binding affinity. Further, the cytotoxicities of the complexes against human cervical epidermoid carcinoma cell line (ME180) have been examined. Interestingly, 5 exhibits a cytotoxicity against ME180 higher than other complexes with potency approximately 8 times more than cisplatin for 24 h incubation but 4 times lower than cisplatin for 48 h incubation.  相似文献   

15.
The DNA binding characteristics of mixed ligand complexes of the type [Co(en)2(L)]Br3 where en = N,N′-ethylenediamine and L = 1,10-phenanthroline (phen), 2,2′-bipyridine (bpy), 1,10-phenanthroline-5,6-dione (phendione), dipyrido[3,2-a:2′,3′-c]phenazine (dppz) have been investigated by absorption titration, competitive binding fluorescence spectroscopy and viscosity measurements. The order of intercalative ability of the coordinated ligands is dppz > phen > phendione > bpy in this series of complexes.  相似文献   

16.
The selective paramagnetic relaxation of oligonucleotide proton resonances of d(GTCGAC)(2) and d(GTGCAC)(2) by Ni(phen)(2)(L)(2+) where L = dipyridophenazine (dppz), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), and phenanthrenequinone (phi) has been examined to obtain structural insight into the noncovalent binding of these metal complexes to DNA. In the oligonucleotide d(GTCGAC)(2), preferential broadening of the G1H8, G4H8, T2H6, and C3H6 proton resonances was observed with Ni(phen)(2)(dppz)(2+), Ni(phen)(2)(dpq)(2+), and Ni(phen)(2)(phi)(2+). In the case of the sequence d(GTGCAC)(2), where the central two bases are juxtaposed from the previous one, preferential broadening was observed instead for the A5H2 proton resonance. Thus, a subtle change in the sequence of the oligonucleotide can cause significant change in the binding location of the metal complex in the oligonucleotide. Owing to comparable changes for all metal complexes and sequences in broadening of the thymine methyl proton resonances, we attribute the switch in preferential broadening to a change in site location within the oligomer rather than to an alteration of groove location. Therefore, even for DNA-binding complexes of low sequence-specificity, distinct variations in binding as a function of sequence are apparent.  相似文献   

17.
Molecular modeling methods have been applied to the structural characterization of the interaction between chiral metal complexes [Co(phen)2dppz]3+ (where phen = 1, 10-phenanthroline, dppz = dipyrido[3,2-a: 2′, 3′-c]phenazine) and the oligonucleotide (B-DNA fragment). The natures of two kinds of the binding modes, which are currently intense controversy, have been explored. Barton proposed that there is enantio-selective DNA binding by the octahedral complexes and intercalative access by these complexes from the major groove; but Norden suggested that both enantiomers bind extremely strongly to DNA from the minor groove without any noticeable enantio-selectivity. Our results support and extend structural models based upon Norden's studies, and conflict with Barton's model.  相似文献   

18.
Ternary 3d -metal complexes [M(Tp (Ph))(B)](ClO 4) ( 1- 8), where M is Co(II), Ni(II), Cu(II) and Zn(II), Tp (Ph) is anionic tris(3-phenylpyrazolyl)borate, and B is N,N-donor heterocyclic base, namely, 1,10-phenanthroline (phen, 1- 4) and dipyrido[3,2- d:2',3'- f]quinoxaline (dpq, 5- 8), were prepared from a reaction of the perchlorate salt of the metal with KTp (Ph) and B in CH 2Cl 2. The complexes were characterized by various physicochemical methods. 4- 6 and 8 were structurally characterized by single-crystal X-ray crystallography. The crystal structures of the complexes show the presence of discrete cationic complexes having a square-pyramidal (4 + 1) coordination geometry in which two nitrogen atoms of the phenanthroline base (B) and two nitrogen atoms of the Tp (Ph) ligand occupy the basal plane and one nitrogen of the Tp (Ph) ligand binds at the axial site. The phenyl groups of the Tp (Ph) form a bowl-shaped structure that essentially encloses the {M(phen/dpq)} moiety. DNA-binding studies were carried out using various spectral techniques and from viscosity measurements. The complexes show moderate binding propensity to calf thymus DNA at the minor groove, giving binding constant values ( K b) of approximately 10 (4) M (-1). The complexes exhibit poor DNA-cleavage activity in the dark in the presence of 3-mercaptopropionic acid (MPA) or hydrogen peroxide (H 2O 2). The photoinduced DNA-cleavage activity of the complexes was investigated using UV-A radiation of 365 nm and visible light of two different wavelengths with a tunable multicolor Ar-Kr mixed gas ion laser source. The dpq complexes show efficient photoinduced DNA-cleavage activity via a metal-assisted photoexcitation process involving the formation of singlet oxygen as the cleavage active species in a type-II pathway. The paramagnetic d (7)-Co(II)-dpq and d (9)-Cu(II)-dpq complexes exhibit efficient DNA-cleavage activity in visible light. The paramagnetic d (8)-Ni(II)-dpq complex displays only minor DNA-cleavage activity in visible light. Diamagnetic d (10)-Zn(II)-dpq complex shows only UV-A light-induced DNA cleavage but no apparent DNA-cleavage activity in visible light. Steric protection of the photoactive quinoxaline moiety of the dpq ligand inside the hydrophobic {M(Tp (Ph))} molecular bowl has a positive effect on the photoinduced DNA-cleavage activity.  相似文献   

19.
A series of mononuclear mixed ligand copper(II) complexes [Cu(bba)(diimine)](ClO(4))(2)1-4, where bba is N,N-bis(benzimidazol-2-ylmethyl)amine and diimine is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp) (3), or dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (4), have been isolated and characterized by analytical and spectral methods. The coordination geometry around copper(II) in 2 is described as square pyramidal with the two benzimidazole nitrogen atoms of the primary ligand bba and the two nitrogen atoms of phen (2) co-ligand constituting the equatorial plane and the amine nitrogen atom of bba occupying the apical position. In contrast, the two benzimidazole nitrogen atoms and the amine nitrogen atom of bba ligand and one of the two nitrogen atoms of 5,6-dmp constitute the equatorial plane of the trigonal bipyramidal distorted square based pyramidal (TBDSBP) coordination geometry of 3 with the other nitrogen atom of 5,6-dmp occupying the apical position. The structures of 1-4 have been optimized by using the density functional theory (DFT) method at the B3LYP/6-31G(d,p) level. Absorption spectral titrations with Calf Thymus (CT) DNA reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq (4) > 5,6-dmp (3) > phen (2) > bpy (1). The DNA binding affinity of 4 is higher than 2 revealing that the π-stacking interaction of the dpq ring in between the DNA base pairs with the two bzim moieties of the bba ligand stacked along the DNA surface is more intimate than that of phen. The complex 3 is bound to DNA more strongly than 1 and 2 through strong hydrophobic interaction of the methyl groups on 5,6-positions of the phen ring in the DNA grooves. The extent of the decrease in relative emission intensities of DNA-bound ethidium bromide (EB) upon adding the complexes parallels the trend in DNA binding affinities. The large enhancement in relative viscosity of DNA upon binding to 3 and 4 supports the DNA binding modes proposed. Interestingly, the 5,6-dmp complex 3 is selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that it induces a B to A conformational change. In contrast, 2 and 4 show induced CD responses indicating their involvement in strong DNA binding. Interestingly, only the dpq complex 4, which displays the strongest DNA binding affinity and is efficient in cleaving DNA in the absence of an activator with a rate constant of 5.8 ± 0.1 h(-1), which is higher than the uncatalyzed rate of DNA cleavage. All the complexes exhibit oxidative DNA cleavage ability, which varies as 4 > 2 > 3 > 1 (ascorbic acid) and 3 > 2 > 4 > 1 (H(2)O(2)). Also, the complexes cleave the protein bovine serum albumin in the presence of H(2)O(2) as an activator with the cleavage ability varying in the order 3 > 4 > 2 > 1. The highest efficiency of 3 to cleave both DNA and protein in the presence of H(2)O(2) is consistent with its strong hydrophobic interaction with the biopolymers. The IC(50) values of 1-4 against cervical cancer cell lines (SiHa) are almost equal to that of cisplatin, indicating that they have the potential to act as effective anticancer drugs in a time-dependent manner. The morphological assessment data obtained by using acridine orange/ethidium bromide (AO/EB) and Hoechst 33258 staining reveal that 3 induces apoptosis much more effectively than the other complexes. Also, the alkaline single-cell gel electrophoresis study (comet assay) suggests that the same complex induces DNA fragmentation more efficiently than others.  相似文献   

20.
Molecular modeling methods have been applied to the structural characterization of the interaction between chiral metal complexes [Co(phen)2dppz]3 (where phen = 1, 10-phenanthroline, dppz = dipyrido[3,2-a: 2', 3'-c]phenazine) and the oligonucleotide (B-DNA fragment). The natures of two kinds of the binding modes, which are currently intense controversy, have been explored. Barton proposed that there is enantio-selective DMA binding by the octahedral complexes and intercalative access by these complexes from the major groove; but Norden suggested that both enantiomers bind extremely strongly to DNA from the minor groove without any noticeable enantio-selectivity. Our results support and extend structural models based upon Norden's studies, and conflict with Barton's model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号