首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
While biogenic calcites frequently contain appreciable levels of magnesium, the pathways leading to such high concentrations remain unclear. The production of high-magnesian calcites in vitro is highly challenging, because Mg-free aragonite, rather than calcite, is the favored product in the presence of strongly hydrated Mg(2+) ions. While nature may overcome this problem by forming a Mg-rich amorphous precursor, which directly transforms to calcite without dissolution, high Mg(2+)/Ca(2+) ratios are required synthetically to precipitate high-magnesian calcite from solution. Indeed, it is difficult to synthesize amorphous calcium carbonate (ACC) containing high levels of Mg, and the Mg is typically not preserved in the calcite product as the transformation occurs via a dissolution-reprecipitation route. We here present a novel synthetic method, which employs a strategy based on biogenic systems, to generate high-magnesian calcite. Mg-containing ACC is produced in a nonaqueous environment by reacting a mixture of Ca and Mg coordination complexes with CO(2). Control over the Mg incorporation is simply obtained by the ratio of the starting materials. Subsequent crystallization at reduced water activities in an organic solvent/water mixture precludes dissolution and reprecipitation and yields high-magnesian calcite mesocrystals with Mg contents as high as 53 mol %. This is in direct contrast with the polycrystalline materials generally observed when magnesian calcite is formed synthetically. Our findings give insight into the possible mechanisms of formation of biogenic high-magnesian calcites and indicate that precise control over the water activity may be a key element.  相似文献   

2.
蒋伏广  姚晋荣  陈新  邵正中 《化学学报》2009,67(14):1675-1679
详细研究了不同浓度的聚丙烯酸(分子量为2000, PAA-2k)和镁离子对碳酸钙在再生丝素蛋白(RSF)膜表面结晶的影响. 发现单独采用PAA-2k时, 碳酸钙主要以方解石形式在RSF膜表面沉积成膜; 若加入一定量的镁离子参与共同调控, 碳酸钙则有可能在RSF膜表面形成以文石为主的连续薄膜, 进而得到了具有类珍珠质结构的层状RSF/文石复合材料. 我们认为, 吸附在RSF膜表面的PAA对碳酸钙成核诱导作用及其溶液中PAA对碳酸钙结晶抑制作用共同导致RSF膜表面碳酸钙薄膜的形成.  相似文献   

3.
The majority of invertebrate skeletal tissues are composed of the most stable crystalline polymorphs of CaCO(3), calcite, and/or aragonite. Here we describe a composite skeletal tissue from an ascidian in which amorphous and crystalline calcium carbonate coexist in well-defined domains separated by an organic sheath. Each biogenic mineral phase has a characteristic Mg content (5.9 and 1.7 mol %, respectively) and concentration of intramineral proteins (0.05 and 0.01 wt %, respectively). Macromolecular extracts from various biogenic amorphous calcium carbonate (ACC) skeletons are typically glycoproteins, rich in glutamic acid and hydroxyamino acids. The proteins from the crystalline calcitic phases are aspartate-rich. Macromolecules extracted from biogenic ACC induced the formation of stabilized ACC and/or inhibited crystallization of calcite in vitro. The yield of the synthetic ACC was 15-20%. The presence of Mg facilitated the stabilization of ACC: the protein content in synthetic ACC was 0.12 wt % in the absence of Mg and 0.07 wt % in the presence of Mg (the Mg content in the precipitate was 8.5 mol %). In contrast, the macromolecules extracted from the calcitic layer induced the formation of calcite crystals with modified morphology similar to that expressed by the original biogenic calcite. We suggest that specialized macromolecules and magnesium ions may cooperate in the stabilization of intrinsically unstable amorphous calcium carbonate and in the formation of complex ACC/calcite tissues in vivo.  相似文献   

4.
The effects of sulfate and BHTPMP (Bis (hexamethylene) triaminepentakis (methylene phosphonic acid)) on the crystallization rate, phase composition and morphology of calcium carbonate have been studied. It was observed that sulfate reduces the nucleation rate and favors the formation of aragonite form in the calcium carbonate precipitate. Moreover, in the presence of sulfate the rhombohedral morphology of the calcite crystals is modified, and during the formation of calcite, the development of {104} faces are more significantly prohibited than {110} faces. In the presence of sulfate together with BHTPMP, the crystallization process is inhibited and the modified morphology and the dominant calcite form are observed in the solid. The results from molecular dynamics simulations show the more strong combination of sulfate with calcite surface, in particular the {104} face, in comparison with the aragonite surface. The strong interaction of BHTPMP with sulfate and the aragonite surface favors the formation of the dominant calcite phase in the precipitate.  相似文献   

5.
The combined effect of templating and solution additives on calcite crystallization was studied. Self-assembled monolayers of mercaptoundecanoic acid supported on silver, as templates, induced the uniform, oriented nucleation of calcite from the (012) plane. The presence of Mg2+ in the crystallizing solution affected the crystal growth dramatically, due to the selective Mg binding to the calcite planes roughly parallel to the c-axis. Highly homogeneous arrays of oriented crystals with characteristic sizes, shapes, and morphology, depending on the relative concentration of Mg and Ca ions, were synthesized.  相似文献   

6.
CaCO3 crystallization on a chitosan membrane was studied using diffusion of (NH4)2CO3 vapors into a CaCl2 solution containing differing added amounts of two polyacrylic acids (PAAs) with molecular weights of ca. 2.0 x 10(3) and ca. 4.5 x 10(4). The coexistence of PAA and the chitosan membranes produced thin CaCO3 island crystals, which developed into a continuous CaCO3 film on the membranes. Continuous CaCO3 films consisting of only aragonite formed on the chitosan membranes at the optimum amount of PAA. When the amount of PAA is not optimum, the polymorph of CaCO3 switches from aragonite to vaterite, and the morphology has a tendency to become an isolated island structure. The formation of the aragonite and vaterite island crystals and the appearance of a range of added PAA suitable for their formation are explained by the action of two parallel phenomena: (a) the high concentration of Ca2+ ions in the chitosan membrane vicinity is achieved by the interaction between the -COO- groups of PAA adsorbed by the -NH3+ groups of the chitosan membrane through an electrostatic force and free Ca2+ ions in the CaCl2 solution, which produces the high supersaturation with CaCO3 in the membrane vicinity during CO2 diffusion; (b) PAA, remaining as mobile carboxylic anions in the CaCO3 solution, inhibits the growth of the CaCO3 island crystals by its adsorption. The CaCO3 supersaturation in the membrane vicinity is controlled by regulating the balance of these phenomena, which leads to the formation of the desired CaCO3 polymorph.  相似文献   

7.
It is established that the filtration of water through a microporous membrane does not change the hardness of the water; it does, however, reduce the amount of scale deposit, due to the crystallization of salts in water in the form of aragonite. The effect is consistently observed in water with a hardness of more than 7.0 H, a content of hydrocarbonate ions of more than 500 mg/L, and a pH ≥ 7.3. It is shown that introducing the seeds of calcite crystals into a filtrate results in the precipitation of calcite rather than aragonite. It is concluded that quasi-softening in the case of hard water microfiltration is caused by the removal of calcite micronuclei, and thus by conditions being created for the crystallization of aragonite as a thermodynamically less stable form.  相似文献   

8.
Hierarchically structured CaCO(3) films were synthesized at atmospheric conditions (room temperature and 1 atm) without the use of templates or amphiphilic molecules in this process. The resulting CaCO(3) film was formed by self-organization between Ca(OH)(2) and aqueous CO(2). The building blocks of the CaCO(3) film were thought to be CaCO(3) primary nanoparticles that aligned to build higher level structures with greater size, called mesocrystals, depending on the additives. The soluble additives played a key role in the control of the morphology, crystallinity, and polymorphism of the CaCO(3) film, and the effects strongly depended on the type of additive and their concentrations. The additives used in this study decreased the crystallinity of CaCO(3) (calcite) film in the order of glucose > aspartic acid > serine in a manner inversely proportional to the concentration of the additives. In addition, Mg(2+), K(+), and Na(+) ion additives led to the formation of an aragonite phase, the proportion of which increased with the concentration of ions. The threshold concentrations of these ions for the formation of the aragonite phase in CaCO(3) film were found to be in the order of Na(+) > K(+) > Mg(2+).  相似文献   

9.
Effect of Mg2+ and SO2*4 on wettability alteration of modified calcite surface to oil-wet by stearic acid (SA) is addressed both in macroscopic and nanoscale using contact angle and atomic force microscopy technique (AFM), respectively. No apparent difference is shown by AFM images, compared to a clear trend that is obtained form contact angle measurements, where Mg2+ ions have shown to alter the modified calcite surface to more water-wet than that in presence of SO2*4 ions. The adhesion forces, due to the presence of SA, are shown to be less pronounced in presence of Mg2+ ion than that in case of SO2*4. This confirms the macroscale measurements of contact angle by nanoscale level. The phenomenon of the alteration to more water-wet calcite surface is related to the distribution coefficient of SA in n-decane/water system, which decreased in presence of Mg2+ and SO2*4 ions, indicating less adsorption of SA on calcite surface.  相似文献   

10.
In this paper, biomimetic synthesis of aragonite superstructures using a low molecular weight organic-hexamethylenetetramine (HMT) as an additive in the presence of CO2 supplied by an ammonium carbonate ((NH4)2CO3) diffusion method at room temperature was studied. The products were characterized by scanning or transmission electron microscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffractometry, and selected area electron diffraction. The results showed the aragonite superstructures especially dumbbell-flower-like ones were obtained. The formation process of calcium carbonate (CaCO3) in HMT aqueous solution was investigated, suggesting that the products transformed from calcite to vaterite primarily, and then changed into a mixture of aragonite and calcite with an increase of reaction time. The formation mechanism of CaCO3 in HMT solution was also discussed, revealing that aragonite might be controlled by HMT molecules and NH4+ ions together.  相似文献   

11.
The crystallization kinetics and morphology of CaCO3 crystals precipitated from the high salinity oilfield water were studied. The crystallization kinetics measurements show that nucleation and nuclei growth obey the first order reaction kinetics. The induction period of precipitation is extended in the high salinity solutions. Morphological studies show that impurity ions remain mostly in the solution phase instead of filling the CaCO3 crystal lattice. The morphology of CaCO3 precipitates can be changed from a smooth surface (calcite) to rough spheres (vaterite), and spindle rod bundles, or spherical, ellipsoid, flowers, plates and other shapes (aragonite).  相似文献   

12.
Mesocrystals of high‐magnesian calcites are commonly found in biogenic calcites. Under ambient conditions, it remains challenging to prepare mesocrystals of high‐magnesian calcite in aqueous solution. We report that mesocrystals of calcite with magnesium content of about 20 mol % can be obtained from the phase transformation of magnesian amorphous calcium carbonate (Mg‐ACC) in lipid solution. The limited water content on the Mg‐ACC surface would reduce the extent of the dissolution–reprecipitation process and bias the phase transformation pathway toward solid‐state reaction. We infer from the selected area electron diffraction patterns and the dark‐field transmission electron microscopic images that the formation of Mg‐calcite mesocrystals occurs through solid‐state secondary nucleation, for which the phase transformation is initiated near the mineral surface and the crystalline phase propagates gradually toward the interior part of the microspheres of Mg‐ACC.  相似文献   

13.
Cyclooligomerization of 2,6-dichloropyrazine 4 and benzyl 2,3-dihydroxybenzoate 5 under microwave irradiation resulted in a racemic pair of ester functionalized ortho-linked oxacalix[2]benzene[2]pyrazine 6, which was further transformed to the corresponding racemic carboxylic acid functionalized ortho-linked oxacalix[2]benzene[2]pyrazine 3. Both enantiomers of 3 adopt 1,3-alternate conformations with their two carboxylic acid groups pointing to opposite directions in the solid state. Enantiomers of 3 form a step-like one-dimensional supramolecular polymer via intermolecular hydrogen bond interactions between the carboxylic acids for crystals obtained in methanol. No hydrogen bonds were formed between the carboxylic acids for crystals of 3 obtained in pyridine and aqueous guanidine solutions; instead, intermolecular hydrogen bonds between the carboxylic acid groups of 3 and pyridine, as well as guanidinium ions were formed. Under metal-mediated self-assembly conditions, the pyrazinyl nitrogen atoms in 3 interacted with transition metal ions, such as Ag(I), Cu(II) and Zn(II), and resulted in the formation of four new metal-containing supramolecular complexes. Metallomacrocycles 7, 8 and 9 were formed by reactions of 3 with Ag(I) or Cu(II) ions by bridging two ligands 3 in the equatorial region via M-N coordination bonds. A one-dimensional coordination polymer 10 was generated by reaction between ligand 3 and Zn(II) ions, and a cage-based structure is presented in 10 by bridging of the cyclophane units by Zn(2+) ions via Zn-N and Zn-O bonds.  相似文献   

14.
Calcium carbonate was precipitated from calcium hydroxide and carbonic acid solutions at 25 degrees C, with and without addition of different magnesium (MgSO(4), Mg(NO(3))(2) and MgCl(2)) and sodium salts (Na(2)SO(4), NaNO(3) and NaCl) of identical anions, in order to study the mode of incorporation of magnesium and inorganic anions and their effect on the morphology of calcite crystals over a range of initial reactant concentrations and limited c(i)(Mg(2+))/c(i)(Ca(2+)) molar ratios. The morphology, crystal size distribution, composition, structure, and specific surface area of the precipitated crystals, as well as the mode of cation and anion incorporation into the calcite crystal lattice, were studied by a combination of optical and scanning electron microscopy (SEM), electronic counting, a multiple BET method, thermogravimetry, FT-IR spectroscopy, X-ray diffraction (XRD), and electron paramagnetic resonance (EPR) spectroscopy. In the systems of high initial relative supersaturation, precipitation of an amorphous precursor phase preceded the formation of calcite, whereas in those of lower supersaturation calcite was the first and only polymorphic modification of calcium carbonate that appeared in the system. The magnesium content in calcite increased with the magnesium concentration in solution and was correlated with the type of magnesium salt used. Mg incorporation caused the formation of crystals elongated along the calcite c axis and, in some cases, the appearance of new [011] faces. Polycrystalline aggregates were formed when the c(i)(Mg(2+))/c(i)(Ca(2+)) molar ratios in solution were increased. Addition of sulfate ions, alone, caused formation of spherical calcite polycrystalline aggregates.  相似文献   

15.
In this paper, biomimetic synthesis of calcium carbonate (CaCO3) in the presence of biomolecules of two vegetables-tomato and capsicum is investigated. Scanning electron microscopy and X-ray powder diffractometry were used to characterize the CaCO3 obtained. The biomolecules in the extracts of two vegetables are determined by UV-vis or FTIR. The results indicate that a mixture of calcite and vaterite spheres constructed from small particles is produced with the extract of tomato, while aragonite rods or ellipsoids are formed in the presence of extract of capsicum. The possible formation mechanism of the CaCO3 crystals with tomato biomolecules can be interpreted by particle-aggregation based non-classical crystallization laws. The proteins and/or other biomolecules in tomato and capsicum may control the formation of vaterite and aragonite crystals by adsorbing onto facets of them.  相似文献   

16.
The three water‐free calcium carbonate polymorphs calcite, aragonite and vaterite were prepared from aqueous solutions without additives using standard laboratory equipment in a continuous process. Variation parameters were the way of mixing, the solution concentrations, and the reactor residence time. The samples were crystallographically and chemically pure, but a thorough elemental analysis revealed the presence of small amounts of sodium carbonate which was not detectable by X‐ray powder diffraction. The continuous process avoids the inherent variability of batch syntheses. By adapting the crystallization parameters, magnesium‐substituted amorphous calcium carbonate (molar ratio of Mg:Ca of 1:2.68) was prepared in this continuous process.  相似文献   

17.
The effects of seven carboxylic acids, i.e., acrylic acid, maleic acid, tartaric acid, malic acid, succinic acid, and citric acid, on CaCO(3) crystallization were studied using the unseeded pH-drift method along with a light-scattering technique. Experiments were started by mixing solutions of CaCl(2) and NaHCO(3) in the presence or absence of additives. The crystallization was studied by recording the decrease in pH resulting from the reaction Ca(2+)+HCO(3)(-)-->CaCO(3)+H(+). A given amount of carboxylic acid was added to the solution of CaCl(2) or NaHCO(3) before mixing the reactants. The pH profiles obtained in the case of the CaCl(2) solution containing an additive were similar to those for the NaHCO(3) solution containing one, and when an additive was added after the onset of crystallization, the growth of CaCO(3) immediately stopped. The light-scattering observations, in all cases, indicated that CaCO(3) nucleation occurred at 10-20 s after mixing of the reactants. The results indicated that the nucleation of CaCO(3) was not influenced by the presence of carboxylic acids, but CaCO(3) crystal growth was reduced by their adsorption to the surface of the CaCO(3) crystals. These phenomena were explained by assuming a stronger affinity of the carboxylic acids for CaCO(3) particles than for the free Ca(2+) ions in solution. The crystallization of CaCO(3) in the presence of additives was divided into three stages: nucleation, growth incubation, and growth periods. Copyright 2001 Academic Press.  相似文献   

18.
合成了温敏性的聚(N-异丙基丙烯酰胺)-b-聚(L-谷氨酸)(PNIPAM-b-PLGA)嵌段共聚物,在较高温度下制备了以PNIPAM为核、以PLGA为壳的自组装胶束,研究了胶束对碳酸钙晶体生长的控制作用.使用扫描电镜和X射线衍射表征了碳酸钙晶体的形貌和晶型.当聚合物胶束浓度较高时,得到纤维状的文石;当胶束浓度较低时,...  相似文献   

19.
The ozonization of several model lignin compounds (guaiacol, 2,6-dimethoxyphenol, phenol, and vanillin) was studied in acid media in the presence of iron(III) ions. It was found that Fe3+ did not influence the initial rate of the reactions between model phenols and ozone but accelerated the oxidation of intermediate ozonolysis products. The metal concentration dependences of the total ozone consumption and effective rate constants of catalytic reaction stages were determined. Data on reactions in the presence of oxalic acid as a competing chelate ligand showed that complex formation with Fe3+ was the principal factor that accelerated the ozonolysis of model phenols at the stage of the oxidation of carboxylic dibasic acids and C2 aldehydes formed as intermediate products.  相似文献   

20.
A general inversion-stereospecific, N-selective alkylation of substituted 2-pyridones (and analogues), amides, and carbamates using chiral α-chloro- or bromocarboxylic acids in the presence of KOt-Bu (or KHMDS) and Mg(Ot-Bu)(2) is reported. The resulting α-chiral carboxylic acid products were isolated by crystallization in good chemical yields and in high ee (>90% ee). Mechanistic evidence suggests that the reaction proceeds through 2-pyridone O-coordinated Mg carboxylate intermediates, which afford the product through an intramolecular S(N)2 alkylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号