首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
传统化石能源的大量消耗使得能源短缺和环境污染等问题日益严峻.社会的可持续发展需要进行能源结构调整,寻求清洁、可再生的替代能源已迫在眉睫.氢能作为一种可再生能源,其热值高,燃烧产物无污染,是未来最理想的能源形式之一.水裂解制氢是公认的未来清洁制氢的一种有效途径.然而,无论是电催化或光催化水裂解反应,析氧反应都是关键的半反应.因其复杂的四电子过程导致动力学缓慢,使得析氧半反应成为水裂解反应的瓶颈.长久以来,贵金属Ir和Ru基材料是被广泛研究的高活性的析氧催化剂.然而高成本和低储量极大地限制了它们的大规模工业化应用.因此,开发高效、储量丰富的析氧催化剂,意义重大但仍充满挑战性.本文考察了一种简便而有效的合成策略,在碱性水溶液条件下,成功实现将一系列Fe基金属有机框架(MOF)前驱物原位转化为无定形Fe基双金属氢氧化物纳米结构.这些由MOF前驱物转化得到的氢氧化物纳米结构保留了前驱体纳米棒的宏观形貌,由许多超细的无定形纳米颗粒(平均粒径小于10 nm)构成,在催化反应中可以提供丰富的催化活性位,相邻的纳米颗粒之间紧密接触,有利于电子在催化活性位之间传递.以玻碳电极作为基底,通过组分优化得到的NiFe-OH-0.75催化剂样品在电催化析氧反应中仅需270 mV的过电位便可达到10 mAcm-2的电流密度, Tafel斜率为39 mVdec-1.将催化剂负载到三维泡沫镍基底上时,由于电极基底导电性提升以及传质增加,在10 mAcm-2的电流密度所需的过电位可以降低到235 mV, Tafel斜率为37 mVdec-1,并且表现出较好的稳定性.同时,本文进一步证实这些无定形氢氧化物可以用作助催化剂,与合适的光敏剂结合,实现有效的光催化水氧化反应.在KH2PO4-K2HPO4缓冲溶液(pH=9)体系中,以[Ru(2,2’-bipyridine)3]Cl2为光敏剂, Na2S2O8为电子受体,由CoFe-MIL-0.75前驱体转化所得到的CoFe-OH-0.75助催化剂表现出更优越的光催化产氧性能,产氧效率可达59.6%.本文结果可以为其他基于MOF及其相关衍生材料的制备提供新思路.  相似文献   

2.
开发碱性体系的高效低成本析氧电催化剂是由可再生能源转化制氢的关键。本研究通过在泡沫Ni基底上原位电化学沉积的方法制备了花瓣状NiFeOxHy和NiFeOxHy/rGO复合催化剂用于析氧反应。花瓣状的结构不仅明显提高了催化剂的比表面积,而且暴露了更多的层状边缘和缺陷,进而增加了催化剂的活性中心。还原氧化石墨烯的加入进一步提升了催化剂的电导和析氧电催化性能,通过优化NiFeOxHy/rGO在1 mol/L KOH溶液中的析氧性能为:过电位200 mV(10 mA/cm2)、Tafel斜率29.11 mV/decade,并且保持了较好的稳定性。  相似文献   

3.
利用源源不断的太阳能,将CO2和水转化为增值化学品,是缓解温室效应与能源危机的一种有前途的方法。由于催化体系中的不同功能性部分难以实现氧化与还原反应的耦合,使用水作为还原剂实现光催化CO2还原是一项具有挑战性的工作。金属有机框架(metal-organic framework,MOF)由于其较大的比表面积、多样化的活性位点和结构可调性,是CO2光催化还原全反应的良好备选材料。本文中,我们首先整合了具有光活性的锌(Ⅱ)卟啉基元与联吡啶钌(Ⅱ)基元,构建了一种MOF光催化剂,记作PCN-224(Zn)-Bpy(Ru)。为了进行比较,还合成了两种仅具有锌(Ⅱ)卟啉或联吡啶钌(Ⅱ)基元的同构MOF,分别记作PCN-224(Zn)-Bpy和PCN-224-Bpy(Ru)。由测试结果可知,PCN-224(Zn)-Bpy(Ru)在乙腈和水混合溶液中表现出对CO2还原可观的光催化活性(CO产率为7.6μmol·g-1·h-1),无需额外添加助催化剂、光敏剂或牺牲剂。通过质...  相似文献   

4.
氢气作为一种清洁无污染的可再生能源,可以有效地解决全球能源危机和环境污染问题.低能耗水裂解制氢是公认的未来清洁制氢的有效途径之一.水裂解反应分为阳极上发生的析氧反应(OER)和阴极上发生的析氢反应,由于阳极半反应涉及四电子过程,反应动力学缓慢,进而导致整个水分解产氢效率低下,成为规模化水裂解制氢应用的瓶颈.贵金属Ir基和Ru基催化剂具有较好的OER催化性能,但其价格高昂和低储量极大地限制了其大规模应用.因此,设计出性能优良的非贵金属OER催化剂,对于促进电催化水裂解制氢领域的发展具有重要意义.自旋调控可以调节d-轨道电子与含氧物种之间的自旋占据态,进而改变含氧物种的吸附能,提升催化反应动力学.然而,自旋调控如何提升电催化水氧化及其内部的关联性鲜有报道.本文报道了一种(Co,Ni)Se2/C@FeOOH笼状纳米结构的自旋调控工程以提升其析氧反应活性.以金属有机框架材料ZIF-67为前驱体,采用离子交换方法和化学气相沉积法合成了(Co,Ni)Se2/C中空笼状纳米结构,接着通过化学水浴沉积法用FeOOH进行修饰,进一步提高了电催化反应动力学.磁化测试结果表明,(Co,Ni)Se2/C@FeOOH样品的极化自旋数(μb=6.966μb/f.u)高于(Co,Ni)Se2/C样品的极化自旋数(μb=6.398μb/f.u),从而有利于含氧中间体的吸附和脱附,这与表面价带谱的结果一致.与(Co,Ni)Se2/C相比,(Co,Ni)Se2/C@FeOOH样品具有更强的铁磁性,电磁感应促进了磁性粒子最外层电子的自旋.电子自旋的增加有利于(Co,Ni)Se2/C@FeOOH样品最外层电子能级的跃迁,在3d-轨道上产生更多的空电子轨道和未成对电子,有利于电子转移和氧吸附.Ni,Co和Fe之间的π电子在界面处的局域化重组再分配优化了对含氧物种的吸附与脱附自由能,提升了OER催化性能.此外,所设计的中空笼状纳米结构和杂原子掺杂碳基体对提高OER活性也有重要作用.因此,在1.0 mol/L KOH碱性溶液中,(Co,Ni)Se2/C@FeOOH催化剂展现出较好的析氧反应性能,在10 mA cm-2电流下的过电位为241 mV,塔菲尔斜率为44 mV dec-1,明显优于原先的(Co,Ni)Se2/C催化剂.本文将为高效OER电催化剂的设计提供一种新的思路和方法.  相似文献   

5.
采用简单的一锅法制备了血小板状Ru掺杂Ni_2P纳米片催化剂。金属Ru的引入不但显著增强了催化剂的电子传输性能,而且导致血小板状纳米片表面产生了大量阶梯/位错缺陷;此外,电催化活性位点测试表明Ru和Ni_2P均是电催化的有效活性组分。这些因素共同促进了电催化析氢(HER)和析氧反应(OER)过程。对于HER,该催化剂表现出明显优于单一Ni_2P和Ru且接近商用20%(w/w)Pt/C催化剂的初始电位(35 mV)和Tafel斜率(34 mV·dec~(-1))以及长久的稳定性(3 000圈)。对于OER,该催化剂表现出优于Ni_2P、Ru、20%Pt/C且接近商用IrO_2催化剂的初始电位(1.54 V)和过电势η10(0.49 V)。  相似文献   

6.
质子交换膜水电解槽(PEMWE)因其在低温下的高效率和高功率密度,成为新一代电解槽的发展方向.在水的电解过程中,设计高效稳定的析氢反应(HER)和析氧反应(OER)催化剂是进一步提高电解槽应用的前提.根据HER和OER “火山型”分布曲线,贵金属(Ir,Ru等)依然是主要的基准电催化剂.对于酸性条件下全水分解,Ir基和Ru基双功能催化剂仍然是最常见的选择.然而,与Ir基催化剂相比,Ru基催化剂在酸性条件下的高溶解速率易导致催化剂快速失活,大大降低了其实际应用价值.目前,酸性条件下全水分解的Ir基催化剂也取得了一些成果,如合金(如PdCu/Ir,Au@AuIr2,IrTe纳米棒和IrNi合金纳米花)、钙钛矿(如AIrO3)、硒化物(如Li-IrSe2)和团簇(如Ir纳米团簇,IrNi纳米团簇)等.然而,Ir基材料在高电流密度下仍然面临质量活性低和稳定性有限的挑战(100 mA cm-2时的过电位超过420 mV,酸性整体水分解在高电流密度下的长期稳定性差).上述问题使得电催化剂无法满足PEMWE的应用...  相似文献   

7.
蒋博龙  崔艳艳  史顺杰  姜楠  谭伟强 《化学学报》2022,80(10):1394-1400
电解水制氢是最具潜力的绿氢制备技术, 而高效析氢反应(HER)催化剂的开发对其大规模推广意义重大. 选用氯化镍和钼酸铵为镍源和钼源, 通过原位生长法获得NiMo双金属催化剂前驱体, 再以二腈二胺为氮源, 高温氮化-程序升温法制备了一系列NiMoxN@NC催化剂(x代表钼酸铵和氯化镍的物质的量比), 并对催化剂进行了结构、形貌以及金属价态表征. 分别在1 mol/L KOH碱液以及模拟海水中分析了析氢(HER)性能. 结果表明, 碱液中NiMoxN@NC催化剂均具有良好的电荷转移速率(Rct<1 Ω), 具有较好的内在催化活性(Tafel斜率103~168 mV/dec). 其中, NiMo0.75N@NC催化剂具有最高的极限电流(–178 mA/cm2), 最小的过电势η10=0.164 V, η100=0.448 V), 最高的内在催化活性, Tafel斜率只有103 mV/dec, 且具有较好的稳定性. 在海水中, 在10 mA/cm2和40 mA/cm2的负载电流下, NiMo0.75N@NC催化剂依旧表现出了较好的稳定性.  相似文献   

8.
为了研发高效、稳定的电解水催化剂,我们以氧空位和磷掺杂为基础,通过原位浸泡生长和两步热处理的方法,在泡沫铁上合成具有氧空位和磷掺杂的纳米花结构作为析氢反应(HER)和析氧反应(OER)双功能电催化剂。CoFe2O4已被报道为一种很有前途的OER和氧还原反应(ORR)电催化剂,然而CoFe2O4在HER中表现出电导率差、电催化反应慢的特性。CoFe2O4中氧空位(Ov)的形成可以有效调控催化剂表面的电子结构,有助于产生更多的缺陷和空位,从而提高OER的活性。随后,引入磷原子填充在空位中,制备的P-Ov-CoFe2O4/IF在碱性电催化测试中展现出优异的HER和OER性能,在10 mA·cm-2电流密度下HER和OER过电位仅为54和191 mV,Tafel斜率分别为57和54 mV·dec-1,并具有良好的循环稳定性。  相似文献   

9.
开发碱性体系的高效低成本析氧电催化剂是由可再生能源转化制氢的关键。本研究通过在泡沫Ni基底上原位电化学沉积的方法制备了花瓣状NiFeO_xH_y和NiFeO_xH_y/rGO复合催化剂用于析氧反应。花瓣状的结构不仅明显提高了催化剂的比表面积,而且暴露了更多的层状边缘和缺陷,进而增加了催化剂的活性中心。还原氧化石墨烯的加入进一步提升了催化剂的电导和析氧电催化性能,通过优化NiFeO_xH_y/r GO在1 mol/L KOH溶液中的析氧性能为:过电位200 mV(10 mA/cm~2)、Tafel斜率29.11 mV/decade,并且保持了较好的稳定性。  相似文献   

10.
非贵金属铁镍合金催化剂在析氧反应(OER)中性能优异,表现出取代贵金属RuO2催化剂的巨大潜力.以SiO2为大孔模板,多巴胺为氮碳源,Fe3+,Ni2+为金属源,通过原位吸附、聚合、焙烧、刻蚀等步骤制备得到铁镍合金纳米颗粒镶嵌的多级孔氮掺杂碳催化剂.碱性介质中的析氧反应测试表明,合金催化剂达到电流密度10 mA·cm-2时过电位仅为286 mV,显著低于以RuO2为催化剂的380 mV过电位;同时经过2000圈循环伏安老化后活性几乎无衰减,稳定性高.所制备的合金催化剂具有两方面结构优势:(1)铁镍合金以及单质铁纳米颗粒镶嵌于大孔碳的薄层孔壁中,有利于暴露活性位点;(2)石墨化氮碳层对合金纳米颗粒的保护提高了材料抗腐蚀性,进而提升其稳定性.  相似文献   

11.
析氧反应(OER)是电解水制氢的关键步骤,开发高效、稳定、廉价的OER电催化剂是目前该领域的研究热点.碱性电解液中的OER电催化剂成分以Mn、Fe、Co、Ni等为主,其中单一组分的Fe基化合物催化活性不高,但碱性电解液中的痕量铁杂质极易掺入Ni、Co等非Fe基材料的结构中,极大影响其OER催化性能,即现有大部分非Fe基化合物无法回避Fe的影响.为探究Fe基多金属电催化剂的活性规律,本文以结构清晰、组分可控的Fe基金属有机框架材料为基底,通过掺入Mn、Co、Ni等元素构建双元金属化合物Fe2M-MIL-88B(M=Mn,Co,Ni),并围绕上述Fe基双金属电催化剂的构效关系展开研究.扫描电镜、透射电镜、X射线衍射光谱、红外光谱等表征结果表明,所制备的Fe基双金属材料均为具有MIL-88B构型的纳米棒,其特征三核金属簇Fe3O中的一个铁原子被第二元金属所替代,从而形成相应的三核混合金属簇Fe2MO.上述Fe基双金属催化剂的析氧催化活性顺序为:Fe2Ni>Fe2Co>Fe2Mn>Fe(0.1 M KOH电解液).其中,Fe2Ni-MIL-88B电催化剂在10 mA cm-2析氧电流对应的过电位仅需307 mV,明显低于OER基准电催化剂20 wt%Ir/C(376 mV).结合材料的元素组成、电化学活性比表面积(ECSA)及金属价态分析发现,第二元金属的引入会在不同程度上降低Fe的价态,其中Ni的影响程度最大,Co次之,Mn的影响最小.借助分子轨道理论对上述实验现象进行了解释.处于低自旋态的Ni2+与邻近桥氧O2-之间存在电子排斥作用,因此部分电子将从Ni2+经O2-转移至高自旋态的Fe3+,从而在Ni2+和Fe3+之间形成了较强的电子耦合作用.Co2+具有和Ni2+相似的构型,但影响稍小.而Mn2+和Fe3+同为高自旋态,对Fe3+的电子结构影响最小,导致活性改善程度最低.密度泛函理论计算得到的自旋态变化情况印证了上述推测.该系列Fe基双金属材料的催化性能主要受金属活性位点的电子结构影响,Fe与邻近金属间形成的电子耦合作用修饰了金属活性位点的电子结构,从而提高了材料的OER本征催化活性.  相似文献   

12.
Oxygen evolution reaction(OER) is a key process for electrochemical water splitting due to its intrinsic large overpotential. Recently, layered double hydroxides(LDHs), especially Ni Fe-LDH, have been regarded as highly performed electrocatalysts for OER in alkaline condition. Here we first present a new class of Ni La-LDH electrocatalyst synthesized by an electrochemical process for efficient water splitting. The as-prepared NiL a-LDH nanosheet arrays(NSAs) give remarkable electrochemical activity and durability under alkaline environments, with a low overpotential of 209 mV for OER to deliver a current density of 10 mA cm~(-2), surpassing most of previous reported LDHs eletrocatalysts. The presence of NiLa-LDH in this work extends the studies about LDHs-based electrocatalysts, which will benefit the development of electrochemical energy storage and conversion systems.  相似文献   

13.
Electrochemical water splitting requires efficient, low‐cost water oxidation catalysts to accelerate the sluggish kinetics of the water oxidation reaction. A rapid photocorrosion method is now used to synthesize the homogeneous amorphous nanocages of Cu‐Ni‐Fe hydr(oxy)oxide as a highly efficient electrocatalyst for the oxygen evolution reaction (OER). The as‐fabricated product exhibits a low overpotential of 224 mV on a glassy carbon electrode at 10 mA cm?2 (even lower down to 181 mV when supported on Ni foam) with a Tafel slope of 44 mV dec?1 for OER in an alkaline solution. The obtained catalyst shows an extraordinarily large mass activity of 1464.5 A g?1 at overpotential of 300 mV, which is the highest mass activity for OER. This synthetic strategy may open a brand new pathway to prepare copper‐based ternary amorphous nanocages for greatly enhanced oxygen evolution.  相似文献   

14.
Zhou  Peng  He  Junying  Zou  Yuqin  Wang  Yanyong  Xie  Chao  Chen  Ru  Zang  Shuangquan  Wang  Shuangyin 《中国科学:化学(英文版)》2019,62(10):1365-1370
The oxygen evolution reaction(OER) with sluggish reaction kinetics and large overpotential is the critical reaction in water splitting that is promising for energy storage and conversion. Layered double hydroxides(LDHs), due to their unique lamellar structure and flexibility of chemical component, are very competing material candidates for OER. Herein, the morphology structure and the electronic structure of LDHs were simultaneously tuned to improve the OER catalytic activity by mild solvothermal reduction using ethylene glycol. The increased surface area, the introduction of oxygen vacancies and the construction of hierarchical structure greatly enhanced the electro-catalytic activity of LDHs for OER. The as-prepared LDHs showed a lower over-potential as low as 276 mV at a current density of 10 mA cm~(-2), and a small Tafel slope of 40.3 mV dec~(-1) accompanied with good stability. This work provides an efficient way to the design and optimization of advanced catalysts in the future.  相似文献   

15.
Combining the self-sacrifice of a highly crystalline substance to design a multistep chain reaction towards ultrathin active-layer construction for high-performance water splitting with atmospheric-temperature conditions and an environmentally benign aqueous environment is extremely intriguing and full of challenges. Here, taking cobalt carbonate hydroxides (CCHs) as the initial crystalline material, we choose the Lewis acid metal salt of Fe(NO3)3 to induce an aqueous-phase chain reaction generating free CO32− ions with subsequent instant FeCO3 hydrolysis. The resultant ultrathin (∼5 nm) amorphous Fe-based hydroxide layer on CCH results in considerable activity in catalyzing the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), yielding 10/50 mA ⋅ cm−2 at overpotentials of 230/266.5 mV for OER and 72.5/197.5 mV for HER. The catalysts can operate constantly in 1.0 M KOH over 48 and 45 h for the OER and HER, respectively. For bifunctional catalysis for alkaline electrolyzer assembly, a cell voltage as low as 1.53 V was necessary to yield 10 mA cm−2 (1.7 V at 50 mA cm−2). This work rationally builds high-efficiency electrochemical bifunctional water-splitting catalysts and offers a trial in establishing a controllable nanolevel ultrathin lattice disorder layer through an atmospheric-temperature chemical route.  相似文献   

16.
Earth-abundant transition metal-based catalysts have been extensively investigated for their applicability in water electrolysers to enable overall water splitting to produce clean hydrogen and oxygen. In this study a Fe−Co based catalyst is electrodeposited in 30 seconds under vigorous hydrogen evolution conditions to produce a high surface area material that is active for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). This catalyst can achieve high current densities of 600 mAcm−2 at an applied potential of 1.6 V (vs RHE) in 1 M NaOH with a Tafel slope value of 48 mV dec−1 for the OER. In addition, the HER can be facilitated at current densities as high as 400 mA cm−2 due to the large surface area of the material. The materials were found to be predominantly amorphous but did contain crystalline regions of CoFe2O4 which became more evident after the OER indicating interesting compositional and structural changes that occur to the catalyst after an electrocatalytic reaction. This rapid method of creating a bimetallic oxide electrode for both the HER and OER could possibly be adopted to other bimetallic oxide systems suitable for electrochemical water splitting.  相似文献   

17.
Metal–organic frameworks/zeolitic imidazolate frameworks (MOFs/ZIFs) and their post-synthesis modified nanostructures, such as oxides, hydroxides, and carbons have generated significant interest for electrocatalytic reactions. In this work, a high and durable oxygen evolution reaction (OER) performance directly from bimetallic Zn100−xCox-ZIF samples is reported, without carrying out high-temperature calcination and/or carbonization. ZIFs can be reproducibly and readily synthesized in large scale at ambient conditions. The bimetallic ZIFs show a systematic and gradually improved OER activity with increasing cobalt concentration. A further increase in OER activity is evidenced in ZIF-67 polyhedrons with controlled particle size of <200 nm among samples of different sizes between 50 nm and 2 μm. Building on this, a significantly enhanced, >50 %, OER activity is obtained with ZIF-67/carbon black, which shows a low overpotential of approximately 320 mV in 1.0 m KOH electrolyte. Such activity is comparable to or better than numerous MOF/ZIF-derived electrocatalysts. The optimized ZIF-67 sample also exhibits increased activity and durability over 24 h, which is attributed to an in situ developed active cobalt oxide/oxyhydroxide related nanophase.  相似文献   

18.
Molybdenum doping is an effective way to improve the oxygen evolution reaction(OER) properties of catalysts, which can efficiently improve the electronic conductivity, mass transport process, and intrinsic activity of transition metal oxides or hydroxides, especially for those multi-component oxides with more abundant active sites. Herein, we have prepared a quaternary FeCoMoCu metal oxide on Cu foam(FeCoMoCuOx@Cu) as an efficient OER catalyst. As expected, FeCoMoCuOx@Cu could exhibit a low overpotential(252 mV at the current density of 10 mA/cm2) and exceptional stability(10000 cycles of CV scans or constant electrolysis for 48 h).  相似文献   

19.
Developing efficient and affordable electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a significant barrier that needs to be overcome for the practical applications of hydrogen production via water electrolysis, transforming CO2 to value-added chemicals, and metal-air batteries. Recently, hydroxides have shown promise as electrocatalysts for OER. In situ or operando techniques are particularly indispensable for monitoring the key intermediates together with understanding the reaction process, which is extremely important for revealing the formation/OER catalytic mechanism of hydroxides and preparing cost-effective electrocatalysts for OER. However, there is a lack of comprehensive discussion on the current status and challenges of studying these mechanisms using in situ or operando techniques, which hinders our ability to identify and address the obstacles present in this field. This review offers an overview of in situ or operando techniques, outlining their capabilities, advantages, and disadvantages. Recent findings related to the formation mechanism and OER catalytic mechanism of hydroxides revealed by in situ or operando techniques are also discussed in detail. Additionally, some current challenges in this field are concluded and appropriate solution strategies are provided.  相似文献   

20.
Electrocatalysts have been developed to improve the efficiency of gas release for oxygen evolution reaction (OER), and finding a simple and efficient method for efficient electrocatalysts has inspired research enthusiasm. Herein, we report bimetallic metal-organic gels derived from phytic acid (PA) and mixed transition metal ions to explore their performance in electrocatalytic oxygen evolution reaction. PA is a natural phosphorus-rich organic compound, which can be obtained from plant seeds and grains. PA reacts with bimetallic ions (Fe3+ and Co2+) in a facile one-pot synthesis under mild conditions to form PA-FeCo bimetallic gels, and the corresponding aerogels are further partially reduced with NaBH4 to improve the electrocatalytic activity. Mixed valence states of Fe(II)/Fe(III) and Co(III)/Co(II) are present in the materials. Excellent OER performance in terms of overpotential (257 mV at 20 mA cm−2) and Tafel slope (36 mV dec−1) is achieved in an alkaline electrolyte. This reduction method is superior to the pyrolysis method by well maintaining the gel morphology structure. This strategy is conducive to the further improvement of the performance of metal-organic electrocatalysts, and provides guidance for the subsequent application of metal-organic gel electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号