首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 213 毫秒
1.
如何提高光催化制氢量子产率是太阳能分解水制氢研究的重点和焦点.Zn-Cd-S固溶体因具有窄的带隙宽度及合适的导带和价带位置而显示了广阔的应用前景.然而,两方面的问题限制了其规模化应用:(1)往往需负载Pt,Pd,Ru和Rh等贵金属助催化剂才能获得可观的光催化性能;(2)传统合成技术通常采用硫代乙酰胺、硫脲及硫化钠等昂贵且有毒的化学试剂作硫源.与上述硫源相比,生物小分子L-胱氨酸分子中含有-COOH、-NH_2及-SH基团,这些基团易于与金属阳离子配位,因此能够有效调控硫源释放S~(2-)的速度,硫化物的形貌、尺寸以及取向能够灵活地得到调控.另外,在强碱或强酸性介质中,L-胱氨酸具有良好的水溶性,因此材料的合成可选择在水介质中,这对光催化过程是非常关键的,有利于改善材料在光催化反应过程中的稳定性.基于此,本文以经济环保的生物小分子作硫源,制备了高效、稳定且有可见光响应的纳米硫化物光催化体系,旨在发展环境友好、条件温和、成本低廉、操作简单和易于工业化生产的绿色制备技术,.以L-胱氨酸为硫源和结构导向剂,采用水热合成技术在温和条件下制备了立方相结构的Zn-Cd-S固溶体光催化剂,采用XRD,TEM,HRTEM,XPS,UV-vis及N2吸附等手段表征了其结构和形貌.结果表明,随Zn含量增加,其带隙在2.11–3.19e V间连续可调.在可见光(λ420 nm)照射、无助催化剂和Na2S/Na_2SO_3水溶液为牺牲剂的条件下研究了其光催化制氢的性能.其中Zn_(0.9)Cd_(0.1)S具有最佳的光催化活性,其产氢速率约为4.4 mmol h~(-1)g~(-1)(无助催化剂,远高于CdS),且显示优良的稳定性及抗光腐蚀能力.通过经验公式计算得出了其能带结构示意图,结果表明,Zn _x Cd_(1-x) S固溶体的导带和价带的位置随着Zn含量的增加而向更负的导带和更正的价带移动.固溶体导带电位更负促进更有效的氢产生,电位价带更正导致电荷更容易发生转移.Zn_(0.9)Cd_(0.1)S高的光催化活性可能归因于中等的导带边缘和最合适的带隙.最后利用光电流及交流阻抗阐明了其光生电子-空穴对的分离及迁移机理.与CdS相比,Zn-Cd-S固溶体的形成促进了光生载流子在界面间的传输,抑制了其快速复合,从而大幅度改善了光催化活性及稳定性.该硫化物纳米晶的绿色制备技术期望可推广到其它硫化物可见光光催化体系.  相似文献   

2.
采用溶剂热制备了具有不同厚度和大小的Zn0.8Cd0.2S-乙二胺杂化纳米片固溶体,系统地考察了制备过程中S/(Zn+Cd)摩尔比对所制备的光催化材料的组成与结构、光电性质以及亲水性能的影响。HR-TEM照片表明,随着制备体系中硫脲含量的增加,固溶体纳米片表面逐渐平整;荧光发射光谱结果表明,合适的S/(Zn+ Cd)摩尔比可以提高光催化材料光生电子和空穴的分离效率;光催化性能评价表明,制备过程中的S/(Zn+ Cd)原子比对其制氢活性有明显影响,在可见光照射下,S/(Zn+Cd)为4.75时,合成的Zn0.8Cd0.2S-En样品表现出最高的氢气产率,其可达到12100 μmol·h-1·g-1,分别是S/(Zn+Cd)为1.2和6.5时合成的Zn0.8Cd0.2S-En样品产氢量的2.2倍和1.7倍。光催化活性的提高与样品较少的表面缺陷、合适的形貌以及高光生电子和空穴分离效率有关。  相似文献   

3.
邵珠旺  孟晓  赖红  张大凤  蒲锡鹏  苏昌华  李红  任小珍  耿延玲 《催化学报》2021,42(3):439-449,中插29-中插30
随着社会发展,传统化石能源消耗加剧,人类迫切需要开发新型的清洁能源.半导体光催化分解水产氢是一种非常具有潜力解决能源危机的清洁技术.目前,金属硫化物半导体有着合适的能带结构和高效的光催化产氢能力而得到了广泛的研究.通常,为了提高光催化剂产氢性能,添加贵金属助催化剂是一个行之有效的方法.但是贵金属昂贵的价格限制了其大规模的应用,因此有必要研究储量丰富,价格低廉的高效助催化剂.Ni2P,CoP,Co2P,MoP,Cu3P等过渡金属磷化物具有价格低廉,优异的稳定性和催化性能而被用作电催化产氢的催化剂.通常,用于电催化产氢的催化剂往往可以作为光催化产氢的助催化剂.众所周知,催化性能与材料的形貌密切相关,因此,具有棒状、中空、片状等形貌的金属硫化物被制备并用于光催化产氢.然而,四足状结构的金属硫化物研究较少.在已有的Ni2P(NP)相关研究中,仅合成了纳米颗粒状的NP.本文成功合成了四足状Cd0.9Zn0.1S(CZS)和珊瑚状形貌的NP,进一步得到一系列Ni2P-Cd0.9Zn0.1S(NPCZS)光催化剂,采用XRD,SEM,TEM,XPS和ICP-AES测试了样品的结构、形貌、表面成分和元素含量,并测试了样品的光催化产氢性能.采用水热法合成的CZS样品具有特殊的四足状形貌,足部由纳米棒组成.XRD结果表明,四足状CZS中立方相(WZ)和六方相(ZB)共存.经TEM进一步分析,发现CZS中心部位呈ZB相结构,而足部却是WZ相.经光催化性能测试,这种新型四足状CZS表现出优异的光催化产氢性能.进一步通过超声或研磨破坏四足状结构后,发现CZS的产氢性能显著下降,说明四足状形貌是材料性能提高的关键.通过分析WZ和ZB两物相的价带顶和导带底的电位发现,ZB/WZ间形成的同质结可以加速光生载流子的分离和传输.NP也采用水热法制备,其具有珊瑚状形貌.该形貌具有高的比表面积,可以提供更多的活性位点,进一步提高了材料的光催化性能.光催化性能测试表明,NP负载量为12 wt%的NPCZS-12样品表现出很好的产氢性能(l.88 mmol h-1),是纯CZS的1.43倍.同时,NPCZS-12具有良好的光稳定性和循环使用性能.结合光催化实验、光谱实验、表面光电压和电化学测试的结果发现,四足状形貌、同质结和NP助催化剂的协同效应是NPCZS具有良好光催化性能的主要原因.  相似文献   

4.
采用共沉淀法制备了Cd0.53Zn0.47S固溶体光催化剂,以光还原沉积法负载Pt,水解正硅酸乙酯负载SiO2,得到了负载Pt的SiO2复合光催化剂SiO2/Pt-Cd0.53Zn0.47S,并研究了水解pH值对其催化活性的影响.通过X射线衍射(XRD)、比表面(BET)、荧光光谱(PL)、紫外-可见漫反射光谱(UV-Vis DRS)和扫描电镜(SEM)等测试技术对催化剂进行了表征.结果表明,SiO2复合光催化剂有效地抑制了Pt-Cd0.53Zn0.47S光催化过程中发生的光腐蚀和粒子团聚,促使光生电子和空穴分离,从而使可见光制氢催化剂活性和稳定性大大提高.  相似文献   

5.
薛文华  常文茜  胡晓云  樊君  刘恩周 《催化学报》2021,42(1):152-163,后插22-后插27
太阳光驱动的光催化分解水产氢是一种绿色制氢技术,并以氢为载体可实现太阳能向化学能的转化.目前开发高效、稳定的可见光催化剂仍是本领域的研究热点.在各类光催化材料中,Cd0.5Zn0.5S固溶体比TiO2及g-C3N4具有更优异的光催化产氢活性,但它一般为团聚了的纳米颗粒或纳米微球,表面积小,比表面反应迟缓,从而限制了其实际应用.通常,超薄多孔二维结构光催化剂具有高比表面积,能够为反应物分子与催化剂之间提供大量接触界面并促进传质,此外,特定晶面暴露赋予了其大量不饱和配位表面原子,使反应物分子更容易在催化剂表面吸附活化,提升表面催化反应动力学.本文首先采用乙二胺与水的混合溶液制备了无机有机杂化的硫化锌-乙二胺(记为:ZnS(en)0.5).随后,分别以ZnS(en)0.5为硬模板、以乙二醇为反应介质、氯化镉为镉源,通过溶剂热阳离子交换得到了无机有机杂化的Cd0.5Zn0.5S(en)x中间产物.最后,将Cd0.5Zn0.5S(en)x在纯水中进行水热反应脱除晶格内乙二胺分子得到了2D介孔超薄Cd0.5Zn0.5S纳米片.TEM测试发现,纳米片表面存在大量孔洞,其主要源于Cd0.5Zn0.5S(en)x的相变过程及其晶格内乙二胺分子的逃逸导致的晶格畸变.AFM观察结果表明,最终产物Cd0.5Zn0.5S纳米片厚度约为1.5 nm;其比表面积可达63.5 m2/g,几乎是相应纳米颗粒的两倍.以三乙醇胺(TEOA)为牺牲剂时,Cd0.5Zn0.5S纳米片的产氢速率达到19.1 mmol·h^?1·g^?1,是相应纳米颗粒的两倍多.即使在纯水中,Cd0.5Zn0.5S纳米片产氢速率仍可达到1395μmol·h?^1·g^?1,超过了目前所报道的未加修饰的光催化剂的活性.其优异的活性源于其独特的结构优势,包括载流子迁移距离的缩短、表面不饱合原子及比表面积的增大.但在纯水中其严重的光腐蚀仍然亟待克服.此外,为进一步增强其活性,通过机械复合的方法得到了NiCo2S4/Cd0.5Zn0.5S二元复合光催化剂,其在TEOA为牺牲剂时制氢速率可达62.2 mmol·h^?1·g^?1,在纯水制氢速率达到2436μmol·h^?1·g^?1.电化学、UPS及EPR分析表明,NiCo2S4与Cd0.5Zn0.5S纳米片间形成了肖特基接触,进一步促进了载流子分离能力,提高了复合物的产氢活性.以本工作为基础,还可制备其他高活性的CdZnS-基功能光催化材料用于太阳能转化或其他领域.  相似文献   

6.
采用共沉淀法制备了Cd0.53Zn0.47S固溶体光催化剂, 以光还原沉积法负载Pt, 水解正硅酸乙酯负载SiO2, 得到了负载Pt的SiO2复合光催化剂SiO2/Pt-Cd0.53Zn0.47S, 并研究了水解pH值对其催化活性的影响. 通过X射线衍射(XRD)、比表面(BET)、荧光光谱(PL)、紫外-可见漫反射光谱(UV-Vis DRS)和扫描电镜(SEM)等测试技术对催化剂进行了表征. 结果表明, SiO2复合光催化剂有效地抑制了Pt-Cd0.53Zn0.47S光催化过程中发生的光腐蚀和粒子团聚, 促使光生电子和空穴分离, 从而使可见光制氢催化剂活性和稳定性大大提高.  相似文献   

7.
采用浸渍法制备了B掺杂的Cd0.5Zn0.5S光催化剂,考察了不同B掺杂量的Cd0.5Zn0.5S催化剂在可见光光照下的放氢活性和稳定性.实验结果表明,B掺杂可以显著提高催化剂的活性和稳定性.B的掺杂量对催化剂的活性有显著影响,最佳担载量为2%.在利用XRD、PL、XPS、UV-V is等手段对催化剂表征的基础上,结合光催化性能测定结果与催化剂表征结果,初步探讨了B掺杂对Cd0.5Zn0.5S光催化剂性能的影响机制.结果表明,B掺杂显著地增强了B/Cd0.5Zn0.5S催化剂的紫外-可见漫反射和荧光光谱强度.XPS结果表明,催化剂中的B物种不是以简单氧化物的形式存在,而可能是通过某种化学反应与Cd0.5Zn0.5S光催化剂作用,使催化剂的性能得以改善.  相似文献   

8.
硫化镉锌(Zn0.5Cd0.5S)纳米棒因其制备方法简单以及具有良好的光催化活性等优点,在光催化领域得到广泛的研究和应用.单一Zn0.5Cd0.5S存在光生电子与空穴易复合以及光腐蚀等问题,采用助催化剂修饰将有助于电荷分离与迁移,从而提高其光催化性能.本文将PtPd合金作为助催化剂修饰Zn0.5Cd0.5S纳米棒光催化材料,以提高可见光照射下的产氢速率,并对合金助催化剂提高催化活性的机理进行了深入研究.通过简单水热法合成Zn0.5Cd0.5S,采用化学还原沉积法制备PtPd/Zn0.5Cd0.5S复合光催化材料.XRD结果表明,成功合成了Zn0.5Cd0.5S催化剂.TEM结果表明,Zn0.5Cd0.5S呈纳米棒状,测量得到PtPd合金的(111)晶面条纹间距为0.23 nm,说明合金成功负载到硫化镉锌上.XPS结果表明,PtPd/Zn0.5Cd0.5S复合样品中Pt和Pd元素的峰值较Pt/Zn0.5Cd0.5S和Pd/Zn0.5Cd0.5S均发生了偏移,Pt和Pd元素化学结合环境发生改变,进一步证实合成了PtPd合金.光催化产氢实验结果表明,当Zn0.5Cd0.5S负载PtPd合金以后,光催化产氢速率大幅提升,其中负载量为1.0 wt%的PtPd/Zn0.5Cd0.5S复合光催化材料的产氢速率最快,达到9.689 mmol·g-1·h-1,分别是纯Zn0.5Cd0.5S,Pt/Zn0.5Cd0.5S和Pd/Zn0.5Cd0.5S的9.5,3.6和1.7倍.为了探究PtPd合金性能优于Pt的原因,本文结合化学反应热力学(DFT理论计算)和动力学(光致发光光谱、光电流响应、电化学阻抗谱和表面光电压谱)手段进行了详细研究.结果 表明,PtPd二元贵金属合金具有与Pt相近的氢活性物种吸附能和d带中心,可以大大加速电荷转移,促进电荷分离,降低H2生成的活化能.虽然Pt在热力学上有利于光催化产氢,但从催化反应动力学结果可知,PtPd合金在动力学上更有利于产氢,这与光催化产氢结果一致,即PtPd/Zn0.5Cd0.5S复合材料催化活性高于Pt/Zn0.5Cd0.5S.综上,本文研究结果可为其他金属合金助催化剂的研究提供新思路.  相似文献   

9.
近年来,化石燃料燃烧导致的环境污染问题和能源危机越来越严重.在众多解决方案中,光催化产氢由于其可持续性以及无污染等特点而受到广泛关注.然而,由于许多半导体光催化剂性能不理想,光催化水分解研究进程缓慢.本研究采用水热法成功制备了梯型Pg-C3N4/Zn0.2Cd0.8S-DETA复合材料用于光催化产氢.DETA(二亚乙基三胺)作为一种有机分子插入在Zn0.2Cd0.8S的层中构成有机-无机杂化材料.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、紫外-可见光漫反射光谱(UV-vis)以及光电流研究了所制备样品的结构、形貌、元素组成以及光电特征,并提出了可能的光催化机制.XRD和XPS结果表明Pg-C3N4和Zn0.2Cd0.8S-DETA复合在一起而不是机械混合.通过TEM可以看出Pg-C3N4是一种带有很多孔洞的纳米片,而Zn0.2Cd0.8S-DETA类似于纳米花瓣,在Pg-C3N4/Zn0.2Cd0.8S-DETA复合材料中Pg-C3N4表面充满了Zn0.2Cd0.8S-DETA纳米花瓣.经过元素分析得知所合成的复合材料没有杂质元素.UV-vis表明Pg-C3N4和Zn0.2Cd0.8S-DETA具有良好的吸收带边以及带隙,分别为2.83 eV和2.48 eV.光电流和PL显示15%Pg-C3N4/Zn0.2Cd0.8S-DETA具有很高的载流子分离及传输效率.光催化性能测试显示15%Pg-C3N4/Zn0.2Cd0.8S-DETA具有很好的产氢活性,为6.69 mmol g^-1 h^-1,分别是Pg-C3N4和Zn0.2Cd0.8S-DETA的16.73和1.44倍.在经过七次循环实验后15%Pg-C3N4/Zn0.2Cd0.8S-DETA仍保持很优异的活性,说明它具有很好的稳定性.通过高分辨XPS中各元素结合能的变化可以看出构成异质结之后电子的流向,从而看出光催化可能的机制为梯形.光照射之后,Pg-C3N4和Zn0.2Cd0.8S-DETA中产生电子-空穴对,电子迁移到导带并在价带留下空穴.当Pg-C3N4与Zn0.2Cd0.8S-DETA复合之后,在它们的接触处会形成内部电场,Zn0.2Cd0.8S-DETA导带上的电子和Pg-C3N4价带上的空穴会在内部电场作用下复合.Zn0.2Cd0.8S-DETA价带上的空穴和Pg-C3N4上的电子分别参与氧化还原反应.梯形机制促使电子和空穴在空间上分离,从而具有强氧化还原性.梯形异质结的形成加快了15%Pg-C3N4/Zn0.2Cd0.8S-DETA复合材料中电子-空穴对的分离效率,并减少了电子-空穴对的复合,从而使其具有很优异的光催化性能和稳定性.  相似文献   

10.
虽然传统的化石燃料依然能够满足当今快速工业化发展对能源的巨大需求,但其固有的不可再生性及其燃烧产物对环境的污染,严重阻碍了其在生产和生活中的广泛使用.因此,可持续清洁能源开发的研究已快速成为人类研究的热点.氢是一种具备高热值、可持续等优点的清洁能源,也兼备成本及污染低等优势.甲酸(FA)以其无毒、低成本、氢含量高等优点,是一种潜在的热门储氢材料,而可见光占太阳光谱的43%左右.因此,开发高效可见光催化剂驱动FA制氢将是一种应对能源危机的有效途径.许多传统光催化剂已被用于可见光催化FA制氢,但制备成本高、过程复杂、条件苛刻及可见光响应差、稳定性和选择性差、有毒气体释放等缺点严重限制了其光催化性能.光催化研究关键之一是实现光生电荷的高效率分离和转移,从而光催化剂光催化性能的提高.Zn3In2S6(ZIS6)因具有强可见光吸收、稳定性好及环保等特点正迅速成为光催化剂半导体的“明星”,常与助催化剂(如贵金属Pt、Au、Pd等)复合形成异质结以促进光生载流子分离和提高其光催化活性,但制备成本高等因素却严重限制其发展.将成本低、化学稳定性好的MoS2与其它半导体耦合也是提高半导体光催化剂性能的有效手段之一,但高温、热处理时间长及有毒气体释放等却成了制约因素.本文选用价格低廉的反应前驱体,采用简单的一锅法水将MoS2紧密地结合到ZIS6的表面,热制备了一系列含有不同质量百分比MoS2的MoS2/Zn3In2S6(MoS2/ZIS6)复合光催化剂,有效降低了制备成本和有毒气体(H2S)的释放.结果表明,可见光照射下(λ>400 nm),MoS2的引入可大大提高ZIS6光生电荷分离效率及制氢活性,尤其以0.5%MoS2/ZIS6性能最优,光催化制氢速率高达74.25μmol·h^-1(量子效率约2.9%),约ZIS6的4.3倍(17.47μmol·h^-1).XRD结果表明,MoS2/ZIS6样品中含有无定型MoS2紧密固定在晶型ZIS6片状结构表面,未影响ZIS6晶型,SEM表征也证实了此结果.随后的TEM、HRTEM及EDX结果也进一步确认了各组成元素的存在和分布.采用XPS对元素化学环境进行了分析,通过S和Mo元素的成键能变化证实了MoS2和ZIS6间的紧密接触.UV-Vis DRS测试表明,MoS2/ZIS6可以利用可见光在适当带隙的基础上进行光催化制氢.通过BET、PL和电化学技术研究了比表面积、光生电荷分离和传递速率等对光催化性能的影响.最终,结合上述表征结果成功阐述了可见光驱动FA制氢的反应机理.  相似文献   

11.
A novel photocatalytic material (Pt,Cd0.8Zn0.2S)/HLaNb2O7 was fabricated by successive intercalation and exchange reactions. The (Pt,Cd0.8Zn0.2S)/HLaNb2O7 possessed a gallery height less than 0.5 nm and showed a broad absorption with wavelength over 370―500 nm. Using (Pt,Cd0.8Zn0.2S)/HLaNb2O7 as catalyst, the photocatalytic H2 evolution was more than 160 cm3·h-1·g-1 in the presence of Na2S as a sacrificial agent under irradiation with wavelength more than 290 nm from a 100-W mercury lamp. Furthermore, the catalyst showed photocatalytic activity even under visible light irradiation.  相似文献   

12.
(CuIn)(x)Zn2(1-x)S2 solid solutions between a ZnS photocatalyst with a wide band gap and CuInS(2) with a narrow band gap showed photocatalytic activities for H(2) evolution from aqueous solutions containing sacrificial reagents SO(3)(2-) and S(2-) under visible-light irradiation (lambda >/= 420 nm). Pt (0.5 wt %)-loaded (CuIn)(0.09)Zn(1.82)S(2) with a 2.3-eV band gap showed the highest activity for H(2) evolution, and the apparent quantum yield at 420 nm amounted to 12.5%. H(2) evolved at a rate of 1.5 L h(-1) m(-2) under irradiation with a solar simulator (AM 1.5). Diffuse reflection and photoluminescence spectra of the solid solutions shifted monotonically to a long wavelength side, as the ratio of CuInS(2) to ZnS increased in the solid solutions. The photocatalytic H(2) evolution depended on the composition as well as the photophysical properties. DFT calculations suggested that the visible-light response should be derived from the contribution of Cu 3d and S 3p orbitals to the valence band and that of In 5s5p and Zn 4s4p orbitals to the conduction band, respectively. The contribution of these orbitals to the energy bands affected the photophysical and photocatalytic properties.  相似文献   

13.
(AgIn)(x)Zn(2(1-x))S(2) solid solutions between ZnS photocatalyst with a wide band gap and AgInS(2) with a narrow band gap showed photocatalytic activities for H(2) evolution from aqueous solutions containing sacrificial reagents, SO(3)(2)(-) and S(2)(-), under visible-light irradiation (lambda >or= 420 nm) even without Pt cocatalysts. Loading of the Pt cocatalysts improved the photocatalytic activity. Pt (3 wt %)-loaded (AgIn)(0.22)Zn(1.56)S(2) with a 2.3 eV band gap showed the highest activity for H(2) evolution, and the apparent quantum yield at 420 nm amounted to 20%. H(2) gas evolved at a rate of 3.3 L m(-2) x h(-1) under irradiation using a solar simulator (AM 1.5). The diffuse reflection and the photoluminescence spectra of the solid solutions shifted monotonically to a long wavelength side as the ratio of AgInS(2) to ZnS increased in the solid solutions. The photocatalytic H(2) evolution depended on the compositions as well as the photophysical properties. The dependence of the photophysical and photocatalytic properties upon the composition was mainly due to the change in the band position caused by the contribution of the Ag 4d and In 5s5p orbitals to the valence and conduction bands, respectively. It was found from SEM and TEM observations that the solid solutions partially had nanostep structures on their surfaces. The Pt cocatalysts were selectively photodeposited on the edge of the surface nanosteps. It was suggested that the specific surface nanostructure was effective for the suppression of recombination between photogenerated electrons and holes and for the separation of H(2) evolution sites from oxidation reaction sites.  相似文献   

14.
开发低成本的半导体光催化剂以实现可见光下高效、持久的光催化分解水产氢化是一个非常具有挑战性的课题.近年来,具有孪晶结构的ZnxCd1-xS(ZCS)固溶体引起了人们的研究兴趣,这主要是由于孪晶相之间形成了同质结,同质结可以通过提高体相光生电子-空穴对的分离效率,从而提高原始硫化物光催化剂的光催化分解水产氢活性.但由于孪晶ZCS固溶体表面超快载流子复合以及活性位点不足,进一步提高其光催化析氢活性还需解决这些不足.负载助催化剂被认为是加速产氢动力学和促进表面光生电子空穴分离最有效策略之一.因此,我们将低成本的类金属Ni3C助催化剂与孪晶ZCS固溶体通过简单的研磨方法结合来实现高效的可见光催化分解水产氢.合成的Zn0.5Cd0.5S-1%Ni3C(ZCS-1)异质结/同质结最高的可见光光催化分解水产氢速率可达783μmol h–1,是纯ZCS的2.88倍.在420 nm时,ZCS和ZCS-1的表观量子效率分别为6.13%和19.25%.这是由于孪晶ZCS固溶体中闪锌矿段和纤锌矿段的同质结连接可以显著提高光生电子空穴对的体相转移和分离.同时,ZCS与金属Ni3C助催化剂间的异质结可以有效地增加孪晶ZCS固溶体的光捕获及表面载流子分离,增强产氢活性位,从而提高催化活性.本文以乙酸镉、乙酸锌和氢氧化钠为原料合成了CdZn(OH),后者与硫代乙酰胺水热合成了孪晶CZS,并用超声研磨方法合成CZS-Ni3C.在可见光下进行了产氢测试,实验结果证实了优化的ZCS-1在Na2S·9H2O和Na2SO3的水溶液中光催化析氢活性最高.经过4次连续的循环反应,ZCS-1二元复合体系展现出良好的稳定性.为深入探讨高效产氢机制,对纳米级ZCS复合材料的光催化物化性能及载流子分离机制进行了表征.通过X射线衍射确定了ZCS和ZCS-1的晶体结构.用高分辨电子显微镜和X射线光电子能谱证实合成了ZCS和Ni3C助催化剂的成功复合.用紫外-可见漫反射光谱法对制备的ZCS和ZCS-1复合样品的光吸收特性进行了表征.结果表明,在ZCS上负载Ni3C以后,样品的可见光吸收能力显著提升.利用稳态及瞬态荧光光谱研究了ZCS-1光催化剂的电荷载流子复合和转移行为.进一步对纯ZCS和ZCS-1复合光催化剂的瞬态光电流响应(I-t曲线)进行了研究,确定了光生载体的分离效率.阻抗是深入研究电荷载流子迁移和界面转移的最有力技术,利用阻抗技术证实ZCS-1界面高效的载流子分离性能.极化曲线结果表明,加入Ni3C可以降低ZCS的产氢过电势,因此加速表面产氢动力学.由此可见,本文所构建的ZCS同质结与Ni3C助催化剂的协同作用可以明显促进体相及表面光生电子空穴对的分离,从而显著增强光催化分解水产氢活性.该文所采用基于ZCS纳米孪晶与异质助催化剂耦合策略可以作为一种通用策略扩展到各种传统半导体的改性,从而极大地推进高效光催化产氢材料的持续进步.  相似文献   

15.
程蕾  张岱南  廖宇龙  范佳杰  向全军 《催化学报》2021,42(1):131-140,后插16-后插21
近年来,光催化CO2还原被视为一种既能解决能源短缺又能减少温室气体,改善人类生存环境的绿色新型技术.然而,由于CO2气体的相对稳定性,构建高催化活性和高选择性的催化体系仍然面临着巨大挑战.锌硫镉固溶体作为一种廉价的固溶类材料,具有吸光范围适宜、化学性质稳定以及能带结构可调控等特点,在光催化还原CO2的方面表现出巨大的潜力.本文发展了一种简单的原位自组装法合成三维分等级花状结构的Cd0.8Zn0.2S,主要包括Cd^2+和Zn^2+离子在含硫氛围下自组装成核状前体,然后以柠檬酸钠作为形貌诱导剂进一步组装生长,同时控制Cd2+/Zn2+摩尔比和反应时间以实现三维分等级花状Cd0.8Zn0.2S的合成.结果表明,三维分等级花状结构的Cd0.8Zn0.2S在光催化还原CO2的过程中表现出优异的催化活性和稳定性.其中,在光照3 h后,CO产量达到41.4μmol g^?1,大约是相同光照条件下Cd0.8Zn0.2S纳米颗粒的三倍(14.7μmol g^?1).此外,三维分等级花状结构的Cd0.8Zn0.2S在光催化过程中展现出对光催化产物CO的较高选择性(89.9%),其中在没有任何牺牲剂或共催化剂作用下的TON为39.6.太赫兹时域光谱(THz-TDS)表明,这种三维分等级花状结构的Cd0.8Zn0.2S相较于Cd0.8Zn0.2S纳米颗粒更有利于对光的吸收,从而提高对光的有效利用率.原位漫反射傅立叶变化红外光谱表征分析揭示了三维分等级花状结构的Cd0.8Zn0.2S在光催化过程中表面吸附物质以及光催化还原中间体的存在及转化.通过实验数据和理论机理预测表明,该种三维分等级花状结构的Cd0.8Zn0.2S具有较高的电流密度和较好的载流子传输能力.基于这种三维的花状结构,使得Cd0.8Zn0.2S具有较大的比表面积和吸附位点,进一步提升体系的CO2吸附性能和光生电子的转移效率,从而有效提高光催化CO2还原的活性.  相似文献   

16.
光催化剂Bi1-xGdxVO4的制备和表征及其光催化分解水   总被引:2,自引:0,他引:2  
通过高温固相法合成了不同组分的光催化剂Bi1-xGdxVO4(x=0, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0), 并用X射线衍射(XRD)、紫外-可见漫反射光谱(DRS)、比表面积分析(BET)、扫描电子显微镜(SEM)对催化剂Bi1-xGdxVO4进行了表征和分析. XRD结果表明, 在Bi1-xGdxVO4中存在两种结构, 当0.3≤x≤1.0时, Bi1-xGdxVO4为四方晶系硅酸锆型结构; 当x=0时, 为单斜晶系白钨矿结构BiVO4; 当0相似文献   

17.
高学友  曾德乾  杨静仁  Ong Wee-Jun  Fujita Toyohisa  何祥龙  刘杰芡  韦悦周 《催化学报》2021,42(7):1137-1146,中插25-中插29
设计与制备高效的光解水催化剂是解决能源问题和环境问题的策略之一.硫化镉因其可在可见光引发下分解水制氢而受到广泛关注,然而光腐蚀严重,过电势高,载流子复合快速以及表面反应动力学缓慢等缺点极大地限制了其在光解水反应中的实际应用.本文采用简单液相法将均匀的Zn0.5Cd0.5S纳米颗粒锚定在超薄Ni(OH)2纳米薄片上,构建紧密的二维/零维异质结构.通过调控Ni(OH)2纳米片的含量,制备出不同Ni(OH)2质量比(3%,5%,7%,9%,11%)的二维/零维Ni(OH)2/Zn0.5Cd0.5S复合材料,并考察其可见光激发的光催化分解水制氢性能.在可见光照射下,Ni(OH)2/Zn0.5Cd0.5S复合材料的光催化性能要大幅度地优于未修饰的Zn0.5Cd0.5S纳米颗粒,甚至远高于贵金属Pt修饰的Zn0.5Cd0.5S.在不同Ni(OH)2含量的纳米复合材料中,7%Ni(OH)2/Zn0.5Cd0.5S具有最高效的产氢性能,产氢速率可达6.87 mmol·h–1·g–1,且在波长为420 nm的表观量子产率为16.8%.在同等条件下,二维/零维7%Ni(OH)2/Zn0.5Cd0.5S复合光催化剂的光催化分解水产氢速率分别约为纯Zn0.5Cd0.5S纳米颗粒和Pt/Zn0.5Cd0.5S光催化剂的43倍和8倍,甚至要高于零维/零维7%Ni(OH)2/Zn0.5Cd0.5S纳米复合材料.7%Ni(OH)2/Zn0.5Cd0.5S复合光催化剂具有优异的光催化产氢循环性能,通过循环反应后样品的X射线衍射,X射线光电子能谱和透射电子显微镜等表征,结果表明Ni(OH)2/Zn0.5Cd0.5S在经过20 h的使用后,其晶体结构、表面化学成分和形貌结构未发生明显改变.通过研究样品的时间分辨荧光光谱,线性扫描伏安响应,光电流性能及电化学交流阻抗等,发现二维Ni(OH)2纳米片的修饰能一定程度降低Zn0.5Cd0.5S的过电势,还能有效促进Zn0.5Cd0.5S的光生电子-空穴的分离和光生电子的转移.本文认为二维/零维Ni(OH)2/Zn0.5Cd0.5S光催化活性的大幅提升主要由于Zn0.5Cd0.5S与Ni(OH)2之间独特且牢固的纳米结构,在该过程中超薄Ni(OH)2纳米片不仅能为Zn0.5Cd0.5S纳米颗粒的负载提供平台,而且作为一种高效的助催化剂,促进光生电子的转移以及为制氢反应提供更多的活性位点.本文可为多功能,高效及低成本的二维-零维异质结构光催化剂的制备及在太阳能转化方面的应用提供一定借鉴.  相似文献   

18.
The reactions between aqueous solutions of M4+ (M = Zr, Hf) and PO3S3- each result in the precipitation of a white gel that can be dried to a powder. Elemental analysis results for the white polycrystalline product yield a stoichiometry of H2M(PO3S)2. These new compounds are characterized by thermal analysis (DSC, TG-MS), vibrational spectroscopy (FT-IR, FT-Raman), 31P MAS NMR spectroscopy, energy-dispersive spectroscopy (EDS), and powder X-ray diffraction (XRD). On the basis of the characterizations and the results of trialkylamine intercalation experiments, we conclude that the H2M(PO3S)2 compounds have a layered structure that is likely similar to that of alpha-H2Zr(PO4)2.H2O. The interlayer spacing for both H2M(PO3S)2 compounds, determined by XRD, is approximately 9.4 A. Our characterization results suggest that the sulfur atom of each PO3S3- group is preferentially pointed into the interlayer region of the compound and is protonated. Two of the many potentially interesting properties of H2Zr(PO3S)2, its ion-exchange capacity and selectivity, are investigated. H2Zr(PO3S)2 is demonstrated to be an effective and recyclable ion-exchange material for both Zn2+(aq) and Cd2+(aq). Mass balance experiments indicate that the removal of Cd2+(aq) and Zn2+(aq) ions by solid H2Zr(PO3S)2 occurs by an ion-exchange process. Ion exchange results in the formation of the new compounds H0.2Cd0.9Zr(PO3S)2 and H0.50Zn0.75Zr(PO3S)2. The extraction of metal ions is monitored by XRD, vibrational spectroscopy, and elemental analysis. H2Zr(PO3S)2 reversibly intercalates Zn2+(aq) ions through three complete cycles of intercalation and deintercalation without any loss of ion-exchange capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号