首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrogel formed by fluoroalkyl double-ended polyethylene glycol (Rf-PEG) micelles was studied to assess its properties to encapsulate a hydrophobic electron spin labeled drug, Chlorambucil–Tempol adduct (CT), and to control and sustain the drug release. The drug loaded hydrogel samples were characterized with variable-temperature dependent EPR experiment, and EPR theoretical lineshape analysis. It was found that CT molecules reside in the hydrophobic Rf-cores/IPDU shells of the Rf-PEG micelles and the maximum molecular-level loading capacity was estimated to be 18.8 mg per gram of the Rf-PEG. It has been known that Rf-PEG hydrogel with certain molecular masses for the fluoroalkyl group and the PEG chain shows properties of sol/gel phase coexistence and surface erosion, which represent the favorable condition for a pharmaceutical depot to control the kinetics of drug release. To evaluate the Rf-PEG’s biocompatibility and kinetics of the drug release, a cell proliferation assay was carried out on human oropharyngeal carcinoma (KB) cells. The results show that Rf-PEG is biocompatible and able to release CT to the cell media with a constant equilibrium concentration independent of the amount of CT loaded hydrogel.  相似文献   

2.
Rf-IPDU-PEGs belong to a class of fluoroalkyl-ended poly(ethylene glycol) polymers (Rf-PEGs), where the IPDU (isophorone diurethane) functions as a linker to connect each end of the PEG chain to a fluoroalkyl group. The Rf-IPDU-PEGs form hydrogels in water with favorable sol-gel coexistence properties. Thus, they are promising for use as drug delivery agents. In this study, we introduce an electron-spin induced 19F relaxation NMR technique to probe the location and drug-loading capacity for an electron-spin labeled hydrophobic drug, CT (chlorambucil-tempol adduct), enclosed in the Rf-IPDU-PEG micelle. With the assistance of molecular dynamics simulations, a clear idea regarding the structures of the Rf-IPDU-PEG micelle and its CT-loaded micelle was revealed. The significance of this research lies in the finding that the hydrophobic drug molecules were loaded within the intermediate IPDU shells of the Rf-IPDU-PEG micelles. The molecular structures of IPDU and that of CT are favorably comparable. Consequently, it appears that this study opens a window to modify the linker between the Rf group and the PEG chain for achieving customized structure-based drug-loading capabilities for these hydrogels, while the advantage of the strong affinity among the Rf groups to hold individual micelles together and to interconnect the micellar network is still retained in hopes of maintaining the sol-gel coexistence of the Rf-PEGs.  相似文献   

3.
The aqueous environment in the gastrointestinal tract frequently requires solubilization of hydrophobic drug molecules in appropriate drug delivery vehicles. An effective uptake/absorption and systemic exposure of a drug molecule entails many processes, one being transport properties of the vehicles through the mucus layer. The mucus layer is a complex mixture of biological molecules. Among them, mucin is responsible of the gel properties of this layer. In this study, we have investigated the diffusion of polyoxyethylene sorbitane monooleate (polysorbate 80), a commonly used nonionic surfactant, in aqueous solution, in mucin solutions at 0.25 and 5 wt %, and in mucus. These measurements were done by using the pulsed field gradient spin echo nuclear magnetic resonance (PGSE-NMR) technique. We conclude that polysorbate 80 is a mixture of non-surface-active molecules that can diffuse freely through all the systems investigated and of surface-active molecules that form micellar structures with transport properties strongly dependent on the environment. Polysorbate 80 micelles do not interact with mucin even though their diffusion is hindered by obstruction of the large mucin molecules. On the other hand, the transport is slowed down in mucus due to interactions with other components such as lipids depots. In the last part of this study, a hydrophobic NMR probe molecule has been included in the systems to mimic a hydrophobic drug molecule. The measurements done in aqueous solution revealed that the probe molecules were transported in a closely similar way as the polysorbate 80 micelles, indicating that they were dissolved in the micellar core. The situation was more complex in mucus. The probe molecules seem to dissolve in the lipid depots at low concentrations of polysorbate 80, which slows down their transport. At increasing concentration of polysorbate 80, the diffusion of the probe molecules increases indicating a continuous dissolution of hexamethyldisilane in the core of polysorbate 80 micelles.  相似文献   

4.
The internal structure of composite gels made of responsive microgel particles inserted into a bulk hydrogel (N-isopropylacrylamide microgel particles in a cross-linked dimethylacrylamide matrix) has been investigated from the diffusion behavior of poly(ethylene glycol) (PEG) probes through the network, in the absence of specific interactions between the diffusing molecules and the system. The effect of the different components has been examined, for example, the size of the probe, the bulk structure, and the microgel nature. Particles were characterized prior to their insertion into the hydrogel in order to describe their properties as a function of size and cross-linker content, thus revealing different swelling behaviors. The biggest effects on the diffusion of the PEG probes were related to the bulk structure, and no major effects were registered by the addition of different microgels into the hydrogel network. We attempt to rationalize this behavior in terms of the composite gel structure and discuss the results in terms of their meaning for controlled drug delivery strategies.  相似文献   

5.
Using nuclear magnetic resonance (NMR) spectroscopy with a pair of pulsed field gradients (PFGs), Stajeskal and Tanner successfully measured molecular diffusion coefficients in solution in 1965. This method has since been used extensively in various applications, especially after the PFG was implemented in commercial NMR probes. Due to the nonuniformity of the PFG and radio frequency (RF) fields, molecules distributed throughout the sample experience different PFG and RF fields and contribute unevenly to the measured diffusion coefficients, resulting in considerable errors in conventional NMR diffusion experiments. By selective excitation of a central sample region with an offset-independent adiabatic inversion pulse and a PFG, a uniform RF field can be assumed, and the PFG can be represented as a linear approximation. Under these conditions, the molecules diffuse as if they were all experiencing the same effective gradient g(e), leading to a Gaussian signal decay as a function of the PFG strength. Quantitative measurement of molecular diffusion coefficients is therefore made possible. From the diffusion coefficient of a 90 % H(2)O/10 % D(2)O sample, it is convenient to calibrate g(e) with a Java program. In a similar way the nonlinearity of the PFG can be corrected.  相似文献   

6.
Avram L  Cohen Y 《Organic letters》2002,4(24):4365-4368
[structure: see text] NMR diffusion measurements were used to probe the role of water molecules in a resorcinarene capsule in a CDCl(3) solution. It was found that the water/resorcinarene ratio affects both the chemical shift and the diffusion coefficient of the water molecules. From the NMR diffusion measurements we could conclude that the major species in the chloroform solution is the hexamer having eight water molecules that are in fast exchange, on the NMR time scale, with the bulk water.  相似文献   

7.
In drug‐delivery systems, drug transport is a key step, but the interpretation of the transport mechanism is still controversial. Here, we investigated a promising hydrogel library loaded with the anticonvulsant drug ethosuximide (ESM). The self‐diffusion coefficient of ESM was measured using two methods: a direct and advanced measurement with a pulsed field gradient spin‐echo (PFGSE) method, using an NMR spectrometer equipped with high‐resolution magic angle spinning (HR‐MAS) probe, and an indirect one based on fitting in vitro drug‐delivery data. Starting from the experimental data a mathematical model without fitted parameters was developed and all the phenomena involved, that is, adsorption and diffusion, were considered. At low drug concentrations, adsorption prevails and consequently the diffusivity in the gels is lower than that in water. At high drug concentrations, where all adsorption sites are saturated, the diffusion in the gels is similar to that in a water solution. This study may pave the way for better device design.  相似文献   

8.
Novel exfoliated polyethylene (PE)/palygorskite nanocomposites prepared by in situ polymerization are characterized by solid‐state nuclear magnetic resonance (NMR). The phase structure and molecular mobility are investigated by a combination of proton and carbon NMR. The results showed that incorporation of small amounts of palygorskite had great influence on the phase structure and molecular mobility. The incorporated palygorskite hindered the crystallization process and introduced motion‐hindered chains in the NMR crystalline and amorphous phase. 13C cross‐polarization and magic‐angle spinning NMR revealed two orthorhombic crystalline phase with different line‐width. The chain mobility of orthorhombic crystalline phase with broad resonance line is obviously hindered compared with the phase with narrow resonance line when the filler is introduced. Additionally, the results of pulsed field gradient NMR technique show those the tortuosities in the nanocomposites are much higher than that in the bulk PE. The self‐diffusion process of probe molecules is also influenced by the palygorksite load. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1363–1371, 2010  相似文献   

9.
Nanoparticulate drug delivery systems offer several advantages over conventional forms of dosing, with polymer nanoparticles prepared from biomaterials being good candidates for use in drug delivery. We selected fluorouracil (5FU) as a model drug because it has been suggested that chitosan might prevent the side effects induced by 5FU. We have exploited the complexation between oppositely charged macromolecules to develop a safe and efficient method of preparation of chitosan bead formulations for use as drug delivery systems. In this study, we examined the effect that the molecular weight of chitosan had on the resulting nanoparticles' properties; the initial concentration of chitosan was held constant, but its molecular weight was decreased through the action of NaNO2. FTIR spectroscopy suggested that no structural change occurred during the depolymerization process. The diameters of the nanoparticles—determined using dynamic light scattering and TEM techniques—decreased as the value of the viscosity of molecular weight (Mv) of chitosan decreased. In addition, we prepared fluorouracil-loaded chitosan nanoparticles and characterized them using NMR spectroscopy. The encapsulation efficiency increased as the value of Mv of chitosan decreased. The particles produced using 55-kDa chitosan had a mean diameter of 70.6 nm and a 66% drug loading.  相似文献   

10.
Aggregation or oligomerization is important for the function of many membrane peptides such as ion channels and antimicrobial peptides. However, direct proof of aggregation and the determination of the number of molecules in the aggregate have been difficult due to the lack of suitable high-resolution methods for membrane peptides. We propose a 19F spin diffusion magic-angle-spinning NMR technique to determine the oligomeric state of peptides bound to the lipid bilayer. Magnetization transfer between chemically equivalent but orientationally different 19F spins on different molecules reduces the 19F magnetization in an exchange experiment. At long mixing times, the equilibrium 19F magnetization is 1/M, where M is the number of orientationally different molecules in the aggregate. The use of the 19F spin increases the homonuclear dipolar coupling and thus the distance reach. We demonstrate this technique on crystalline model compounds with known numbers of molecules in the asymmetric unit cell, and show that 19F spin diffusion is more efficient than that of 13C by a factor of approximately 500. Application to a beta-hairpin antimicrobial peptide, protegrin-1, shows that the peptide is almost completely dimerized in POPC bilayers at a concentration of 7.4 mol %. Decreasing the peptide concentration reduced the dimer fraction. Using a monomer-dimer equilibrium model, we estimate the DeltaG for dimer formation to be -10.2 +/- 2.3 kJ/mol. This is in good agreement with the previously measured free energy reduction for partitioning and aggregating beta-sheet peptides into phospholipid membranes. This 19F spin diffusion technique opens the possibility of determining the oligomeric structures of membrane peptides.  相似文献   

11.
Solid state NMR spectroscopy is inherently sensitive to chemical structure and composition and thus makes an ideal method to probe the heterogeneity of multicomponent polymers. Specifically, NMR spin diffusion experiments can be used to extract reliable information about spatial domain sizes on multiple length scales, provided that magnetization selection of one domain can be achieved. In this paper, we demonstrate the preferential filtering of protons in fluorinated domains during NMR spin diffusion experiments using 1H‐19F heteronuclear dipolar dephasing based on rotational echo double resonance (REDOR) MAS NMR techniques. Three pulse sequence variations are demonstrated based on the different nuclei detected: direct 1H detection, plus both 1H?13C cross polarization and 1H?19F cross polarization detection schemes. This 1H‐19F REDOR‐filtered spin diffusion method was used to measure fluorinated domain sizes for a complex polymer blend. The efficacy of the REDOR‐based spin filter does not rely on spin relaxation behavior or chemical shift differences and thus is applicable for performing NMR spin diffusion experiments in samples where traditional magnetization filters may prove unsuccessful. This REDOR‐filtered NMR spin diffusion method can also be extended to other samples where a heteronuclear spin pair exists that is unique to the domain of interest.  相似文献   

12.
NMR methods provide chemically selective tools, particularly suitable to detect the molecular environment of molecular species in micro-heterogeneous materials. They are consequently applied to solve many questions in colloid science. The present review covers NMR studies of molecular adsorption onto particle surfaces as well as sorption into colloidal particles. Various methods ranging from liquid or solid state spectral analysis over spin relaxation to pulsed field gradient diffusion NMR have been employed in this field, monitoring either the chemical environment or the restricted dynamics of adsorbed or encapsulated guest molecules. Adsorption systems include surfactant layers, stabilizing ligands, small molecules, polymer layers or polyelectrolyte multilayers at the surface of various types of particles. Sorption into colloidal particles and detection of their position in specific compartments of the colloid are particularly relevant in systems employed as colloidal carriers, such as micelles, vesicles, or hollow polymeric capsules. With guest molecules considered as model compounds for drugs these studies have large relevance for the development of nanoparticle drug delivery systems.  相似文献   

13.
The restricted diffusion coefficient of water through porous silica is measured by pulsed field gradient (PFG) NMR as a function of loading in order to develop a model for self-diffusion at full pore filling in sol-gel-made porous silica particles. This model describes the pore or intraparticle diffusion coefficient as a function of particle porosity, tortuosity, and the steric hindrance applied on the molecules by the pore space. The particle morphology is characterized by nitrogen adsorption and an appropriate tortuosity model is chosen in comparison with literature data. To characterize the material, NMR relaxation and diffusion studies at different degrees of pore filling were carried out in relation to the silica/water adsorption isotherm.  相似文献   

14.
In-cell NMR spectroscopy offers a unique opportunity to begin to investigate the structures, dynamics, and interactions of molecules within their functional environments. An essential aspect of this technique is to define whether observed signals are attributable to intracellular species rather than to components of the extracellular medium. We report here the results of NMR measurements of the diffusion behavior of proteins expressed within bacterial cells, and find that these experiments provide a rapid and nondestructive probe of localization within cells and can be used to determine the size of the confining compartment. We show that diffusion can also be exploited as an editing method to eliminate extracellular species from high-resolution multidimensional spectra, and should be applicable to a wide range of problems. This approach is demonstrated here for a number of protein systems, using both (15)N and (13)C (methyl-TROSY) based acquisition.  相似文献   

15.
Pore-space homogeneity of zeolite NaX was probed by pulsed field gradient (PFG) NMR diffusion studies with n-butane as a guest molecule. At a loading of 0.75 molecules per supercage, a wide spectrum of diffusivities was observed. Guest molecules in the (well-shaped) zeolite crystallites were thus found to experience pore spaces of quite different properties. After loading enhancement to 3 molecules per supercage, however, molecular propagation ideally followed the laws of normal diffusion in homogeneous media. At sufficiently high guest concentrations, sample heterogeneity was thus found to be of no perceptible influence on the guest mobilities anymore.  相似文献   

16.
We detail the development of a flexible simulation program (NMR_DIFFSIM) that solves the nuclear magnetic resonance (NMR) spin diffusion equation for arbitrary polymer architectures. The program was used to explore the proton (1H) NMR spin diffusion behavior predicted for a range of geometrical models describing polymer exchange membranes. These results were also directly compared with the NMR spin diffusion behavior predicted for more complex domain structures obtained from molecular dynamics (MD) simulations. The numerical implementation and capabilities of NMR_DIFFSIM were demonstrated by evaluating the experimental NMR spin diffusion behavior for the hydrophilic domain structure in sulfonated Diels‐Alder Poly(Phenylene) (SDAPP) polymer membranes. The impact of morphology variations as a function of sulfonation and hydration level on the resulting NMR spin diffusion behavior were determined. These simulations allowed us to critically address the ability of NMR spin diffusion to discriminate between different structural models, and to highlight the extremely high fidelity experimental data required to accomplish this. A direct comparison of experimental double‐quantum‐filtered 1H NMR spin diffusion in SDAPP membranes to the spin diffusion behavior predicted for MD‐proposed morphologies revealed excellent agreement, providing experimental support for the MD structures at low to moderate hydration levels. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 62–78  相似文献   

17.
It is important to characterize drug-albumin binding during drug discovery and lead optimization as strong binding may reduce bioavailability and/or increase the drug's in vivo half-life. Despite knowing about the location of human serum albumin (HSA) drug binding sites and the residues important for binding, less is understood about the binding dynamics between exogenous drugs and endogenous fatty acids. In contrast to highly specific antibody-antigen interactions, the conformational flexibility of albumin allows the protein to adopt multiple conformations of approximately equal energy in order to accommodate a variety of ligands. Nuclear magnetic resonance (NMR) diffusion measurements are a simple way to quantitatively describe ligand-protein interactions without prior knowledge of the number of binding sites or the binding stoichiometry. This method can also provide information about ligand orientation at the binding site due to buildup of exchange-transferred NOE (trNOE) on the diffusion time scale of the experiment. The results of NMR diffusion and NOE experiments reveal multiple binding interactions of HSA with dansylglycine, a drug site II probe, and caprylate, a medium-chain fatty acid that also has primary affinity for HSA's drug site II. Interligand NOE (ilNOE) detected in the diffusion analysis of a protein solution containing both ligands provides insight into the conformations adopted by these ligands while bound in common HSA binding pockets. The results demonstrate the ability of NMR diffusion experiments to identify ternary complex formation and show the potential of this method for characterizing other biologically important ternary structures, such as enzyme-cofactor-inhibitor complexes.  相似文献   

18.
The so-called "ultrafast" nuclear magnetic resonance (NMR) methods enable the collection of multidimensional spectra within a single scan. These experiments operate by replacing traditional t(1) time increments, with a series of combined radiofrequency-irradiation/magnetic-field-gradient manipulations that spatially encode the effects of the indirect-domain spin interactions. Barring the presence of sizable displacements, the spatial patterns thus imparted can be read out following a mixing period with the aid of oscillating acquisition gradients, leading to a train of t(2)-modulated echoes carrying in their positions and phases the indirect- and the direct-domain spin interactions. Both the initial spatial encoding as well as the subsequent spatial decoding procedures underlying ultrafast NMR were designed under the assumption that spins remain static within the sample during their execution. Most often this is not the case, and motion-related effects can be expected to affect the outcome of these experiments. The present paper focuses on analyzing the effects of diffusion in ultrafast two-dimensional (2D) NMR. Toward this end both analytical and numerical formalisms are derived, capable of dealing with the nonuniform spin manipulations, macroscopic sample sizes, and microscopic displacements involved in this kind of sequences. After experimentally validating the correctness of these formalisms these were used to analyze the effects of diffusion for a variety of cases, including ultrafast experiments on both rapidly and slowly diffusing molecules. A series of prototypical schemes were considered including discrete and continuous encoding modes, constant- and real-time manipulations, homo- and heteronuclear acquisitions, and single versus multiple quantum modalities. The effects of molecular diffusion were also compared against typical relaxation-driven losses as they happen in these various prototypical situations; from all these situations, general guidelines for choosing the optimal ultrafast 2D NMR scheme for a particular sample and condition could be deduced.  相似文献   

19.
An offset-independent adiabatic inversion pulse is used in the diffusion experiment to uniformly excite a sample region that is sufficiently long to ignore the ending effects, yet is short enough to have a homogeneous RF field and to represent the pulsed field gradient with a linear approximation. Under these conditions, the diffusion decay of the peak intensity appears to be Gaussian as a function of the effective gradient field ge as if all the molecules inside the selected region experienced the same ge. Quantitative measurement of molecular diffusion coefficients is therefore made possible.  相似文献   

20.
In this work, the nuclear magnetic resonance (NMR) and IR spectroscopic markers of the complexation between 5-fluorouracil (5-FU) and β-cyclodextrin (β-CD) in solid state and in aqueous solution are investigated. In the attenuated total reflectance(ATR) spectra of 5-FU/β-CD products obtained by physical mixing, kneading and co-precipitation, we have identified the two most promising marker bands that could be used to detect complex formations: the C=O and C-F stretching bands of 5-FU that experience a blue shift by ca. 8 and 2 cm−1 upon complexation. The aqueous solutions were studied by NMR spectroscopy. As routine NMR spectra did not show any signs of complexation, we have analyzed the diffusion attenuation of spin–echo signals and the dependence of the population factor of slowly diffusing components on the diffusion time (diffusion NMR of pulsed-field gradient (PFG) NMR). The analysis has revealed that, at each moment, ~60% of 5-FU molecules form a complex with β-CD and its lifetime is ca. 13.5 ms. It is likely to be an inclusion complex, judging from the independence of the diffusion coefficient of β-CD on complexation. The obtained results could be important for future attempts of finding better methods of targeted anticancer drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号