首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 648 毫秒
1.
The rapid development of DNA capillary electrophoresis (CE) technology has increased the demand of new low viscosity sieving matrices with high separation capacity. The high throughput, resolution and automatic operation of CE systems have stimulated the application of the technique to different kinds of DNA analysis, including DNA sequencing, separation of restriction fragments, PCR products and synthetic oligonucleotides. In addition specific methods for PCR-based mutation assays for the study of known and unknown point mutations have been developed for use in CE. The key component for a large scale application of CE to DNA analysis is the availability of appropriate sieving matrices. This article gives an overview of the linear polymers used as DNA separation matrices with particular emphasis on the polymers that combine high sieving capacity, low viscosity and chemical resistance.  相似文献   

2.
Won JI  Meagher RJ  Barron AE 《Electrophoresis》2005,26(11):2138-2148
We demonstrate the feasibility of end-labeled free-solution electrophoresis (ELFSE) separation of DNA using genetically engineered protein polymers as drag-tags. Protein polymers are promising candidates for ELFSE drag-tags because their sequences and lengths are controllable not only to generate monodisperse polymers with high frictional drag, but also to meet other drag-tag requirements for high-resolution separations by microchannel electrophoresis. A series of repetitive polypeptides was designed, expressed in Escherichia coli, and purified. By performing an end-on conjugation of the protein polymers to a fluorescently labeled DNA oligomer (22 bases) and analyzing the electrophoretic mobilities of the conjugate molecules by free-solution capillary electrophoresis (CE), effects of the size and charge of the protein polymer drag-tags were investigated. In addition, the electrophoretic behavior of bioconjugates comprising relatively long DNA fragments (108 and 208 bases) and attached to uncharged drag-tags was observed, by conjugating fluorescently labeled polymerase chain reaction (PCR) products to charge-neutral protein polymers, and analyzing via CE. We calculated the amount of friction generated by the various drag-tags, and estimated the potential read-lengths that could be obtained if these drag-tags were used for DNA sequencing in our current system. The results of these studies indicate that larger and uncharged drag-tags will have the best DNA-resolving capability for ELFSE separations, and that theoretically, up to 233 DNA bases could be sequenced using one of the protein polymer drag-tags we produced, which is electrostatically neutral with a chain length of 337 amino acids. We also show that denatured (unfolded) polypeptide chains impose much greater frictional drag per unit molecular weight than folded proteins, such as streptavidin, which has been used as a drag-tag before.  相似文献   

3.
In spite of the significant progresses in the field of replaceable sieving matrices for separating DNA in capillary electrophoresis (CE), an intense research activity is still going on to improve the separation of large size DNA sequencing fragments. There are evidences, both from experimental and theoretical sides that the resolution of these fragments, at the single base, requires the use of sieving matrices comprised of long chain linear polymers. In the separation of DNA fragments by CE are of upmost importance: (i) the complete solubility of the polymer, (ii) the linearity of the chain, (iii) the achievement of ultrahigh viscosity in dilute solutions. The aim of this work is the synthesis of ultrahigh-molecular-weight polymers which possess the three requirements mentioned above by employing a nonconventional method. We demonstrate that the sieving performance of polyacrylamide is directly correlated to its intrinsic viscosity.  相似文献   

4.
Capillary electrophoresis (CE) is currently the preferred format for both DNA sequencing and small DNA fragment analysis. The present study provides a simple revision of the procedure used for CE of DNA with a commercial DNA sequencing apparatus from Applied Biosystems. The revision is electrophoretic conditioning of the sieving matrix (typically POP-6) before sample injection. The effects of this preconditioning are revealed during subsequent analyses performed without replenishing the sieving matrix. The primary effect of preconditioning is to increase peak separations during a subsequent CE. The preconditioning has the following characteristics: (i) The effect on peak separation progressively increases as the preconditioning time increases to at least 6 h. (ii) The effect on peak separation scales approximately as the product of the preconditioning time and the magnitude of the electrical field (162 - 320 V/cm) during preconditioning. (iii) The preconditioning persists for more than 72 h at zero field. Preconditioning of the matrix substantially improves resolution of fragment analysis in the range of 700-2000 nucleotides. For DNA sequencing, the primary impact of preconditioning is, thus far, extension of the range of low-quality base calls at the end of sequence reading. Matrix preconditioning is a new factor to consider when interpreting data obtained by CE in polymer solutions. The mechanism of preconditioning is not yet known.  相似文献   

5.
We present a nonlinear optimization study of different implementations of the DNA electrophoretic method “End‐labeled Free‐solution Electrophoresis” in commercial capillary electrophoresis systems and microfluidics to improve the time required for readout. Here, the effect of electro‐osmotic counterflows and snap‐shot detection are considered to allow for detection of peaks soon after they are electorphoretically resolved. Using drag tags available in micelle form, we identify a design capable of sequencing 600 bases in 2.8 min.  相似文献   

6.
Separating DNA sequencing fragments without a sieving matrix.   总被引:1,自引:0,他引:1  
The possibility of separating appropriately labeled DNA fragments using free-flow capillary electrophoresis was predicted a few years ago based on simple theoretical arguments. Free-flow separation of double-stranded DNA (dsDNA) fragments in the 100-1000 base range was later demonstrated using a streptavidin label. In this article, we now report that end-labeled free-flow electrophoresis (ELFSE) can also be used to sequence single-stranded DNA (ssDNA). The first 100 bases of a DNA sequencing reaction were read without any sieving matrix when fractionated streptavidin was added to the 5'-end of the ssDNA fragments. These separations required only 18 min and did not require coated capillaries. An analysis of the results indicates that sample injection, analyte-wall interactions and thermal diffusion are the limiting factors at this time. Extrapolating from our data, we predict that several hundred bases could be sequenced in less than 30 min with the proper conditions. ELFSE thus offers an attractive potential alternative to polymer solutions for DNA sequencing in capillaries and microchips.  相似文献   

7.
Polyacrylamide gel electrophoresis (PAGE) is used frequently for isolation and purification of DNA fragments. In the present study, DNA fragments extracted from polyacrylamide gels showed significant band broadening in capillary electrophoresis (CE). A pHY300PLK (a shuttle vector functioning in Escherichia coli and Bacillus subtilis) marker, which contained nine fragments ranging from 80 to 4870 bp, was separated by PAGE, and each fragment was isolated by phenol/chloroform extraction and ethanol precipitation. After extraction from the polyacrylamide gel, the peaks of the isolated DNA fragments exhibited band broadening in CE, where a linear poly(ethylene oxide) was used as a sieving matrix. The theoretical plate numbers of the DNA fragments contained in the pHY300PLK marker were >106 for all the fragments before extraction. However, the DNA fragments extracted from the polyacrylamide gel showed decreased theoretical plate numbers (5–20 times smaller). The degradation of the theoretical plate number was significant for middle sizes of the DNA fragments ranging from 489 to 1360 bp, whereas the largest and smallest fragments (80 and 4870 bp) had no obvious influence. The band broadening was attributed to contamination of the DNA fragments by polyacrylamide fibers during the separation and extraction process.  相似文献   

8.
The analysis, by slab gel electrophoresis, of internucleosomal DNA cleavage or laddering, characteristic of apoptosis in many cell systems, is labour intensive, difficult to automate and best only semi-quantitative. In this report we show that CE, using dilute solutions of hydroxyethylcellulose as a replaceable sieving matrix, can be applied to the relatively rapid analysis of DNA laddering in whole digests of apoptotic rat thymocytes. Also, using the sensitivity of laser-induced fluorescence detection and the highly sensitive nucleic acid stain YO-PRO-1, the CE method reported here can use 1000–2000 fold fewer cells than needed for traditional slab gel methods.  相似文献   

9.
The polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) technique is developed for the detection of point mutations in DNA samples, and is very useful in the research of tumors. The traditional SSCP was carried out with slab gel electrophoresis (SGE), but this is time-consuming and labor-intensive, particularly for clinical diagnoses. We have developed a capillary electrophoresis (CE) method for SSCP detection with a linear polyacrylamide gel solution as the sieving matrix. Twenty colon tumor samples were detected with SSCP-CE and the point mutation in exon 7 of the p53 gene was found in six of the samples. Based on the sequencing results, the accuracy of SSCP-CE was better than that of SSCP-SGE. We hope this rapid and convenient method could be applied in the clinical diagnosis of tumors soon.  相似文献   

10.
B F Liu  Q G Xie  Y T Lu 《Analytical sciences》2001,17(11):1253-1256
It was demonstrated that a capillary electrophoresis (CE) method with a non-gel sieving solution has been developed to identify the orientation of DNA fragments in recombinant plasmids in molecular biology. The influences of the concentration of sieving polymer HEC, the applied electric field strength and sampling on CE separation were analyzed concerning the optimization of separation. YO-PRO-1 was used as a DNA intercalating reagent to facilitate fluorescence detection. Under the chosen conditions (buffer, 1 x TBE containing 1 microM YO-PRO-1 and 1.2% HEC; applied electric field strength, 200 V/cm; electrokinetic sampling: time, 5 s; voltage, -6 kV), three DNA markers (phi 174/HaeIII, pBR322/HaeIII and lambda DNA/HindIII) were tested for further evaluating the relationship between the DNA size and the mobility. The established CE method conjugated with the enzymatic approach was successfully applied to identifying the DNA orientation of recombinant plasmid in transgene operations of a newly cloned gene from Arabidopsis Thaliana.  相似文献   

11.
Song L  Liang D  Fang D  Chu B 《Electrophoresis》2001,22(10):1987-1996
Poly(N,N-dimethylacrylamide) (PDMA) with a molecular mass of 5.2 x 10(6) g/mol has been synthesized and used in DNA sequencing analysis by capillary electrophoresis (CE). A systematic investigation is presented on the effects of different separation conditions, such as injection amount, capillary inner diameter, polymer concentration, effective separation length, electric field and temperature, on the resolution. DNA sequencing up to 800 bases with a resolution (R) limit of 0.5 (and 1,000 bases with a resolution limit of 0.3) and a migration time of 96 min was achieved by using 2.5% w/v polymer, 150 V/cm separation electric field, and 60 cm effective separation length at room temperature on a DNA sample prepared with FAM-labeled--21M13 forward primer on pGEM3Zf(+) and terminated with ddCTP. Ultrafast and fast DNA sequencing up to 420 and 590 bases (R > or = 0.5) were also achieved by using 3% w/v polymer and 40 cm effective separation length with a separation electric field of 525 and 300 V/cm, and a migration time of 12.5 and 31.5 min, respectively. PDMA has low viscosity, long shelf life and dynamic coating ability to the glass surface. The unique properties of PDMA make it a very good candidate as a separation medium for large-scale DNA sequencing by capillary array electrophoresis (CAE).  相似文献   

12.
DNA sequencing and genotyping in miniaturized electrophoresis systems   总被引:4,自引:0,他引:4  
Kan CW  Fredlake CP  Doherty EA  Barron AE 《Electrophoresis》2004,25(21-22):3564-3588
Advances in microchannel electrophoretic separation systems for DNA analyses have had important impacts on biological and biomedical sciences, as exemplified by the successes of the Human Genome Project (HGP). As we enter a new era in genomic science, further technological innovations promise to provide other far-reaching benefits, many of which will require continual increases in sequencing and genotyping efficiency and throughput, as well as major decreases in the cost per analysis. Since the high-resolution size- and/or conformation-based electrophoretic separation of DNA is the most critical step in many genetic analyses, continual advances in the development of materials and methods for microchannel electrophoretic separations will be needed to meet the massive demand for high-quality, low-cost genomic data. In particular, the development (and commercialization) of miniaturized genotyping platforms is needed to support and enable the future breakthroughs of biomedical science. In this review, we briefly discuss the major sequencing and genotyping techniques in which high-throughput and high-resolution electrophoretic separations of DNA play a significant role. We review recent advances in the development of technology for capillary electrophoresis (CE), including capillary array electrophoresis (CAE) systems. Most of these CE/CAE innovations are equally applicable to implementation on microfabricated electrophoresis chips. Major effort is devoted to discussing various key elements needed for the development of integrated and practical microfluidic sequencing and genotyping platforms, including chip substrate selection, microchannel design and fabrication, microchannel surface modification, sample preparation, analyte detection, DNA sieving matrices, and device integration. Finally, we identify some of the remaining challenges, and some of the possible routes to further advances in high-throughput DNA sequencing and genotyping technologies.  相似文献   

13.
The DNA fragment detection focusing technique has further enhanced the sensitivity and information of DNA targets. The DNA fragment detection method was established by capillary electrophoresis with laser‐induced fluorescence detection and restriction endonuclease chromatographic fingerprinting (CE‐LIF‐REF) in our experiment. The silica capillary column was coated with short linear polyarclarylamide (SLPA) using nongel sieving technology. The excision product of various restricted enzymes of DNA fragments was obtained by REF with the molecular biology software Primer Premier 5. The PBR322/BsuRI DNA marker was used to establish the optimization method. The markers were focused electrophoretically and detected by CE‐LIF. The results demonstrate that the CE‐LIF‐REF with SLPA can improve separation, sensitivity and speed of analysis. This technique may be applied to analysis of the excision product of various restricted enzymes of prokaryotic plasmid (pIRES2), eukaryote plasmid (pcDNA3.1) and the PCR product of codon 248 region of gastric cancer tissue. The results suggest that this method could very sensitively separate the excision products of various restricted enzymes at a much better resolution than the traditional agarose electrophoresis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A replaceable polymer matrix, based on the novel monomer N-hydroxyethylacrylamide (HEA), has been synthesized for application in DNA separation by microchannel electrophoresis. The monomer was found by micellar electrokinetic chromatography analysis of monomer partitioning between water and 1-octanol to be more hydrophilic than acrylamide and N,N-dimethylacrylamide. Polymers were synthesized by free radical polymerization in aqueous solution. The weight-average molar mass of purified polymer was characterized by tandem gel permeation chromatography-multiangle laser light scattering. The steady-shear rheological behavior of the novel DNA sequencing matrix was also characterized, and it was found that the viscosity of the novel matrix decreases by more than 2 orders of magnitude as the shear rate is increased from 0.1 to 1000 s(-1). Moreover, in the shear-thinning region, the rate of change of matrix viscosity with shear rate increases with increasing polymer concentration. Poly-N-hydroxyethylacrylamide (PHEA) exhibits good capillary-coating ability, via adsorption from aqueous solution, efficiently suppressing electroosmotic flow (EOF) in a manner comparable to that of poly-N,N-dimethylacrylamide. Under DNA sequencing conditions, adsorptive PHEA coatings proved to be stable and to maintain negligible EOF for over 600 h of electrophoresis. Resolution of DNA sequencing fragments, particularly fragments > 500 bases, in PHEA matrices generally improves with increasing polymer concentration and decreasing electric field strength. When PHEA is used both as a separation matrix and as a dynamic coating in bare silica capillaries, the matrix can resolve over 620 bases of contiguous DNA sequence within 3 h. These results demonstrate the good potential of PHEA matrices for high-throughput DNA analysis by microchannel electrophoresis.  相似文献   

15.
Here, we demonstrate the potential for high-resolution electrophoretic separations of ssDNA-protein conjugates in borosilicate glass microfluidic chips, with no sieving media and excellent repeatability. Using polynucleotides of two different lengths conjugated to moderately cationic protein polymer drag-tags, we measured separation efficiency as a function of applied electric field. In excellent agreement with prior theoretical predictions of Slater et al., resolution is found to remain constant as applied field is increased up to 700 V/cm, the highest field we were able to apply. This remarkable result illustrates the fundamentally different physical limitations of free-solution conjugate electrophoresis (FSCE)-based DNA separations relative to matrix-based DNA electrophoresis. ssDNA separations in "gels" have always shown rapidly declining resolution as the field strength is increased; this is especially true for ssDNA > 400 bases in length. FSCE's ability to decouple DNA peak resolution from applied electric field suggests the future possibility of ultra-rapid FSCE sequencing on chips. We investigated sources of peak broadening for FSCE separations on borosilicate glass microchips, using six different protein polymer drag-tags. For drag-tags with four or more positive charges, electrostatic and adsorptive interactions with poly(N-hydroxyethylacrylamide)-coated microchannel walls led to appreciable band-broadening, while much sharper peaks were seen for bioconjugates with nearly charge-neutral protein drag-tags.  相似文献   

16.
近年来,我国日趋严重的赤潮已给海洋渔业带来了极大的损失,也对人类的健康构成威胁.赤潮毒素可对海洋养殖产生严重的污染,食用贝类所富集的贝类毒素严重损害食用者身体健康.根据其中毒症状,贝类毒素被分为4大类:引起腹泻性中毒(Diarrhetic Shellfish Poisoning,DSP)的贝类毒素;引起麻痹性中毒(Paralytic Shellfish Poisoning,PSP)的贝类毒素;  相似文献   

17.
We have investigated the sample preparation and electrophoresis conditions necessary to prepare DNA sequencing samples appropriate for use with near-infrared (IR) fluorescent labels with dye identification accomplished via lifetime techniques. It was found that several sample preparation protocols required attention to maximize the fluorescence yields of the labeling dyes, such as thermal cycling conditions, choice of counter ion used for the ethanol precipitation step and also, dye-primer versus dye-terminator chemistries. In addition, several different sieving matrices were investigated for their effects on both the fluorescence properties of the labeling dyes and electrophoretic resolution. Extended times used for the high temperature denaturing of duplexed DNA fragments during cycle sequencing produced cleavage products, in which the covalently attached dye to the sequencing primer was released through attack by dithiothreitol (DTT). Even under optimized thermal cycling conditions, free dye was generated that masked readable data from the sequencing traces. Ethanol precipitation was necessary to remove this free dye with the proper choice of counter ion (sodium). The results using different sieving matrices indicated that linear polyacrylamides (LPAs) were appropriate for any fluorescence measurement, since they could readily be replaced between runs minimizing deleterious memory effects associated with cross-linked polyacrylamide gels. After investigation of several different sieving LPAs, the commercially available POP6 was found to be particularly attractive, since it produced good electrophoretic resolution, single exponential behavior for the near-IR dye series investigated herein, and also, discernible lifetime differences within the dye set. Finally, dye-terminator chemistry was also found to minimize bleeding in the gel matrix produced by large amounts of unextended dye-primer within the gel lane.  相似文献   

18.
Xu Y  Qin W  Li SF 《Electrophoresis》2005,26(3):517-523
A portable capillary electrophoresis (CE) system with a novel potential gradient detection (PGD) was utilized to separate DNA fragments. For the first time it was demonstrated that separation of DNA fragments in polymer solution could be detected by a portable CE system integrated with PGD, with a limit of detection (LOD) comparable to that of the CE-ultraviolet (UV) method. Effects of buffer solution, sieving medium, and applied voltage were also investigated. The portable CE-PGD system shows several potential advantages, such as simplicity, cost effectiveness, and miniaturization.  相似文献   

19.
《Electrophoresis》2017,38(7):1044-1052
Capillary electrophoresis is an important technique for the characterization of monoclonal antibodies (mAbs), especially in the pharmaceutical context. However, identification is difficult as upscaling and hyphenation of used methods directly to mass spectrometry is often not possible due to separation medium components that are incompatible with MS detection. Here a CE‐MS method for the analysis of mAbs is presented analyzing SDS‐complexed samples. To obtain narrow and intensive peaks of SDS‐treated antibodies, an in‐capillary strategy was developed based on the co‐injection of positively charged surfactants and methanol as organic solvent. For samples containing 0.2% (v/v) of SDS, recovered MS peak intensities up to 97 and 95% were achieved using cetyltrimethylammonium bromide or benzalkonium chloride, respectively. Successful removal of SDS was shown in neutral coated capillaries but also in a capillary with a positively charged coating applying reversed polarity. The usefulness of this in‐capillary strategy was demonstrated also for other proteins and for antibodies dissolved in up to 10% v/v SDS solution, and in other SDS‐containing matrices, including the sieving matrix used in a standard CE‐SDS method and gel‐buffers applied in SDS‐PAGE methods. The developed CE‐MS approaches enable fast and reproducible characterization of SDS‐complexed antibodies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号