首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
p-Tolyl mercury thiocyanate and α-naphthyl mercury thiocyanate react with Co(NCS)22py and form a bimetallic pink compound of formula (py)2(SCN)2Co(NCS)2Hg2R2 (R = p-tolyl and α-naphthyl group). On heating this compound in vacuum a blue compound (SCN)2Co(NCS)2Hg2R2 is formed. Nickel analogues (SCN)2Ni(NCS)2Hg2R2 are formed by direct reaction of p-tolyl or α-naphthyl mercury thiocyanate with nickel thiocyanate. (SCN)2Co(NCS)2Hg2R2 and (SCN)2Ni(NCS)2Hg2R2 act as Lewis acids and form complexes with bases. The Lewis acids and their complexes with various bases have been characterized by elemental analyses, molar conductance, molecular weight, magnetic moment, infrared and electronic spectral studies. These studies reveal that both the Lewis acids are monomers. In (SCN)2Co(NCS)2Hg2R2 the CO(II) has tetrahedral geometry, where as in (SCN)2Ni(NCS)2Hg2R2 the Ni(II) has octahedral geometry through elongated axial bondings with SCN-groups of other molecules. Thiocyanate bridging of the type R-Hg-SCN-M [M = Co(II), Ni(II)] is present in the compounds. Pyridine and dimethylsulphoxide form adducts with these compounds by coordinating at Co(II) or Ni(II). The thiocyanate bridge is retained in these complexes. 2-2′bipyridyl ruptures the thiocyanate bridging in both the Lewis acids and forms cationic-anionic complexes of the type [M(L-L)3][RHg(SCN)2]2. In both the type of complexes Co(II) and Ni(II) possess octahedral environment. The “softness” values have been used in a novel manner in proposing the structure of the complexes.  相似文献   

2.
Crystal structures of Pb(MoO2)2(PO4)2 and Ba(MoO2)2(PO4)2 were determined. Both compounds contain the molybdyl group MoO2. The monoclinic unit-cell parameters are a = 6.353(7), b = 12.289(4), c = 11.800 Å, β = 92°56(6), and Z = 4 for the lead salt and a = 6.383(8), b = 7.142(7), c = 9.953(8) Å, β = 95°46(8), and Z = 2 for the barium salt. P21c is the common space group. The R values are respectively R = 0.027 and R = 0.031 for 1964 and 1714 independent reflections. The frameworks built up by a three-dimensional network of monophosphate PO4 and molybdyl MoO2 groups are similar, characterized mainly by corner-sharing PO4 and MoO6 polyhedra. Two oxygen atoms of each MoO6 group are bonded to the molybdenum atom only as in other molybdyl salts.  相似文献   

3.
Phase equilibria in the Ba3(VO4)2-K2Ba(MoO4)2 and Pb3(VO4)2-K2Pb(MoO4)2 systems have been investigated. In the first system, a continuous series of substitutional solid solutions with the palmierite structure is formed, and in the second one, the polymorphic transition in lead orthovanadate at 100°C restricts the extent of the palmierite-type solid solution to 10–100 mol % K2Pb(MoO4)2. Original Russian Text ? V.D. Zhuravlev, Yu.A. Velikodnyi, A.S. Vinogradova-Zhabrova, A.P. Tyutyunnik, V.G. Zubkov, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 10, pp. 1746–1748.  相似文献   

4.
A three-dimensional (3D) cobalt phosphate: Co5(OH2)4(HPO4)2(PO4)2 (1), has been synthesized by hydrothermal reaction and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic techniques. The title compound is a template free cobalt phosphate. Compound 1 exhibits a complex net architecture based on edge- and corner-sharing of CoO6 and PO4 polyhedra. The magnetic susceptibility measurements indicated that the title compound obeys Curie-Weiss behavior down to a temperature of 17 K at which an antiferromagnetic phase transition occurs.  相似文献   

5.
A novel malonate-bridged copper (II) compound of formula {[Cu4(4,4′-bpy)8(mal)2(H2O)4](ClO4)2(H2O)4(CH3OH)2}n (4,4′-bpy = 4,4′-bipyridine; mal = malonate dianion) has been prepared and structurally characterized by X-ray crystallography. This compound exhibits a novel three-dimensional network being composed of Cu-4,4′-bipyridine layers which are pillared by malonate bridge ligands. The copper(II) ions has two different coordination environment.  相似文献   

6.
The reactivity of bis(dimethylamido) complexes of phenyl- and hydridogallium with ammonia, dimethylamine and 1,1-dimethylhydrazine is described. Synthesis of the starting gallium hydride, [HGa(NMe2)2]2, was achieved in nearly quantitative yield from the reaction of HGaCl2(quinuclidine) with LiNMe2. In neat ammonia or methylamine at room temperature both dimethylamido ligands in [HGa(NMe2)2]2 were substituted by a single equivalent of NH3 or MeNH2 to produce amorphous (HGaNH)n or (HGaNMe)n, respectively. In contrast, the reaction of [PhGa(NMe2)2]2 with neat Me2NNH2, at room temperature consumed two equivalents of the substituted hydrazine to form [PhGa(NHNMe2)2]2 in a 73% yield. Single crystal X-ray crystallographic analyses of [HGa(NMe2)2]2 and [PhGa(NHNMe2)2]2 establish that in the solid state both compounds adopt a cyclic Ga-N-Ga-N structure with a crystallographic center of symmetry located at the center of the ring.  相似文献   

7.
The enthalpy of the reaction: Pt(PPh3)2 (CH2CH2)(cryst.) + C(CN)2C(CN)2 (g) → Pt(PPh3)2 {C(CN)2C(CN)2}(cryst.) + CH2 CH2 (g) has been determined as ΔH298=?155.8±8.0 kJ·mol?1, from solution calorimetry. The interpretation, that the platinumethylene bond is much weaker than the platinumtetracyanoethylene bond, is contrary to conclusions drawn recently from electron emission spectroscopic studies, but in agreement with available structural data.  相似文献   

8.
Raman and FTIR spectra of guanidinium zinc sulphate [C(NH2)3]2Zn(SO4)2 are recorded and the spectral bands assignment is carried out in terms of the fundamental modes of vibration of the guanidinium cations and sulphate anions. The analysis of the spectrum reveals distorted SO42− tetrahedra with distinct S–O bonds. The distortion of the sulphate tetrahedra is attributed to Zn–O–S–O–Zn bridging in the structure as well as hydrogen bonding. The CN3 group is planar which is expressed in the twofold symmetry along the C–N (1) vector. Spectral studies also reveal the presence of hydrogen bonds in the sample. The vibrational frequencies of [C(NH2)3]2 and HC(NH2)3 are computed using Gaussian 03 with HF/6-31G* as basis set.  相似文献   

9.
The reactions of lanthanide tris(borohydrides) Ln(BH4)3(thf)3 (Ln = Sm or Nd) with 2 equiv. of lithium N,N′-diisopropyl-N′-bis(trimethylsilyl)guanidinate in toluene produced the [(Me3Si)2NC(NPri)2]Ln(BH4)2Li(thf)2 complexes (Ln = Sm or Nd), which were isolated in 57 and 42% yields, respectively, by recrystallization from hexane. X-ray diffraction experiments and NMR and IR spectroscopic studies demonstrated that the reactions afford monomeric ate complexes, in which the lanthanide and lithium atoms are linked to each other by two bridging borohydride groups. The complexes exhibit catalytic activity in polymerization of methyl methacrylate. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 441–445, March, 2007.  相似文献   

10.
The thermally stable solids Re2(CO)8[μ-InRe(CO)5]2 and Re4(CO)123-InRe(CO)5]4 could be obtained by treatment of In with Re2(CO)10 in a bomb tube. A mechanism of the formation of the latter cluster from the first one is proposed. Compared with Re2(CO)8[μ-InRe(CO)5]2, Re4(CO)123_InRe(CO)5]4 shows in polar solvents an unusual high stability, which can be explained by the higher coordination number of In with rhenium carbonyl ligands. Re4(CO)12-[μ3-InRe(CO)5]4 dissolves monomerically in acetone, where as Re2(CO)8[μ-InRe(CO)5]2 dissociates yielding Re(CO)5? anions. Single-crystal X-ray analyses of Re4(CO)123-InRe(CO)5]4 establish the metal skeleton. The central molecular fragment Re4(CO)12 contains a tetrahedral arrangement of four bonded Re atoms [ReRe 302.8 (5) pm]. The triangles of this fragment are capped with a μ3-InRe(CO)5 group each [InRe(terminal) 273.5 (7) pm; InRe (polyhedral) 281.8 (7) pm]. The bridging type of In atoms with the Re4 tetrahedron and the metal skeleton was realized for the first time. By treating Re4(CO)123-InRe(CO)5]4 with Br2 the existence of Re(CO)5 ligands could be proved by isolating BrRe(CO)5.  相似文献   

11.
The objective of the present work was to synthesize mononuclear ruthenium complex [RuCl2(CO)2{Te(CH2SiMe3)2}2] (1) by the reaction of Te(CH2SiMe3)2 and [RuCl2(CO)3]2. However, the stoichiometric reaction affords a mixture of 1 and [RuCl2(CO){Te(CH2SiMe3)2}3] (2). The X-ray structures show the formation of the cis(Cl), cis(C), trans(Te) isomer of 1 and the cis(Cl), mer(Te) isomer of 2. The 125Te NMR spectra of the complexes are reported. The complex distribution depends on the initial molar ratio of the reactants. With an excess of [RuCl2(CO)3]2 only 1 is formed. In addition to the stoichiometric reaction, a mixture of 1 and 2 is observed even when using an excess of Te(CH2SiMe3)2. Complex 1 is, however, always the main product. In these cases the 125Te NMR spectra of the reaction solution also indicates the presence of unreacted ligand.  相似文献   

12.
The X-ray crystal structures of (NH4)2(15-crown-5)3[Cu(mnt)2] (1) and (NH4)2(benzo-15-crown-5)4- [Cu(mnt)2]·0.5H2O (2) were determined. Two single crystals are composed of distinct structures of ammonium-crown ether supramolecular cation and [Cu(mnt)2]2- anion. The triple-decker dication in complex 1 and a sandwich dimmer in complex 2 were observed. X-Band EPR studies on the single crystals of both complex 1 and complex 2 have been carried out at room temperature, which revealed that complex 2 showed a perfect hyperfine structure of Cu whereas that of complex 1 could not be observed. The principal values and direction cosines of the principal axes of the g and A tensors were computed by a least-squares fitting procedure. The spin density of Cu(Ⅱ) was estimated according to the principal values of the A tensors and compared well with the results calculated based on DFT method.  相似文献   

13.
Molecular beam deflection studies on (CO2)2 and (OCS)2 indicate that both these species are polar molecules. Structural implications of this are explored in light of previous studies of these systems.  相似文献   

14.
A new binuclear cadmium(II) complex with neutral ligands, 1,2-diaminobenzene (DMB) and dimethylformamide (DMF), [Cd2(Ph(NH2)2)5(DMFA)4](B10H10)2, was synthesized and studied by IR spectroscopy and X-ray diffraction. The crystals are monoclinic, a = 26.198(3) ?, b = 12.742(3) ?, c = 21.658(3) ?, β = 119.985(10)°, Z = 8, space group C2/c. The distorted octahedral environment of Cd is formed by four nitrogen atoms of three DAB molecules and two oxygen atoms of DMF molecules. Three independent DAB molecules perform different functions: one chelates the Cd atom, another is linked to cadmium as a monodentate ligand, and the third one bridges two Cd atoms, thus forming the dimer. The amino groups of the DAB molecules are involved in the N-H⋯O and N-H⋯N hydrogen bonds and in N-H⋯B and N-H⋯H-B specific interactions with the cluster boron anion. Original Russian Text ? E.A. Malinina, V.V. Drozdova, L.V. Goeva, I.N. Polyakova, N.T. Kuznetsov, 2007, published in Zhurnal Neorganicheskoi Khimii, 2007, Vol. 52, No. 6, pp. 922–926.  相似文献   

15.
Thermal degradation of the cluster compound Os3(CO)8(PPh2H)(μ3-S)2 (I) at 125°C leads to decarbonylation and formation of the new ligand bridged hexanuclear cluster Os6(CO)14(μ-PPh2)23-S)34-S) (II) in 11% yield. Space Group: P1, No. 2, a 10.427(5), b 13.552(3), c 17.919(3) Å, α 84.87(2), β 75.41(3), γ 78.43(3)°, V 2399(2) Å3Z = 2, ?calc 2.82 g cm?3. The structure was solved by the heavy atom method and refined (3223 reflections) to the final residuals R = 0.042 and Rw = 0.036. The molecule consists of two sulfido bridged open triosmium clusters which are linked by a bridging sulfido ligand and a bridging diphenylphosphino ligand.  相似文献   

16.
The use of [Cd2(tren)2(dl-alaninato)](ClO4)3·H2O (I) (tren = tris(2-aminoethyl)amine) as an efficient water-compatible Lewis acid catalyst for the allylation of aldehydes in aqueous media was described. The reaction proceeded smoothly to afford the corresponding homoallyl alcohols in up to 96% yield. Additionally, cinnamyltributylstannane was selected as the allylation reagent, the regio- and diastereoselectivity of the reaction favors the formation of the γ-product and the anti isomers, respectively.  相似文献   

17.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

18.
α-Ca3(BN2)2 crystallizes in the cubic system (space group: ) with one type of calcium ions disordered over of equivalent (8c) positions. An ordered low-temperature phase (β-Ca3(BN2)2) was prepared and found to crystallize in the orthorhombic system (space group: Cmca) with lattice parameters: , , and . Structure refinements on the basis of X-ray powder data have revealed that orthorhombic β-Ca3(BN2)2 corresponds to an ordered super-structure of cubic α-Ca3(BN2)2. The space group Cmca assigned for β-Ca3(BN2)2 is derived from by a group-subgroup relationship.DSC measurements and temperature-dependent in situ X-ray powder diffraction studies showed reversible phase transitions between β- and α-Ca3(BN2)2 with transition temperatures between 215 and 240 °C.The structure Sr3(BN2)2 was reported isotypic with α-Ca3(BN2)2 () with one type of strontium ions being disordered over of equivalent (2c) positions. In addition, a primitive () structure has been reported for Sr3(BN2)2. Phase stability studies on Sr3(BN2)2 revealed a phase transition between a primitive and a body-centred lattice around 820 °C. The experiments showed that both previously published structures are correct and can be assigned as α-Sr3(BN2)2 (, high-temperature phase), and β-Sr3(BN2)2 (, low-temperature phase).A comparison of Ca3(BN2)2 and Sr3(BN2)2 phases reveals that the different types of cation disordering present in both of the cubic α-phases () have a directing influence on the formation of two distinct (orthorhombic and cubic) low-temperature phases.  相似文献   

19.
A metal-free hydrogenation of 2-quinolinecarboxylates has been realized by using 5?mol% of B(C6F5)3 as catalyst. A variety of tetrahydroquinolines were obtained in 57–99% yields. An attempt for the asymmetric hydrogenation with chiral boron Lewis acids generated from chiral dienes afforded very low ee’s.  相似文献   

20.
[(ZrO2)0.92(Y2O3)0.08]0.9(TiO2)0.1 (titania-doped yttria stabilized circonia, 10TiYSZ) samples were prepared by solid state reaction from mixtures of 8 mol% yttria-doped ZrO2 (YSZ) and TiO2 and characterized in terms of structure, microstructure, and electrical properties. [(ZrO2)0.97(Y2O3)0.03]0.9(TiO2)0.1 (titania-doped tetragonal zirconia polycrystalline, 10TiTZP) was also prepared for comparison in some specific studies. Ionic transport properties were measured by impedance spectroscopy in air as a function of temperature. DC techniques including electromotive force (EMF) and Ion Blocking measurements (IB) were carried out in order to determine the electronic contribution to the total conductivity. The addition of titania to YSZ induces the tetragonal zirconia phase formation, thus [(ZrO2)0.92(Y2O3)0.08]0.9(TiO2)0.1 is a composite material and is constituted by two solid solutions, titania-doped yttria-stabilized zirconia (67.7 mole fraction) and titania-doped tetragonal zirconia (32.3 mole fraction). A decrease in bulk ionic conductivity, of one order of magnitude, when TiO2 is added to YSZ is observed in the whole temperature range. Furthermore, in the bulk conductivity vs the reciprocal of the temperature plot, a bending (from 550°C to higher temperatures) toward higher activation energies was detected. The bending could indicate the existence mainly of Ti4+-Vö associated pairs with an association energy of 0.43±0.02 eV. It could mean that Ti-O bonds become stronger and shorter and could produce the formation of microdomains of a ZrTiO4-like structure. The addition of titanium is effective in increasing the electronic conductivity under reducing conditions. Conductivity as a function of Po2 and IB results cannot be related to the formation of small polarons during the reduction process. Furthermore, according to the calculations based on the small polaron theory, inconsistent values for the radius of a small polaron (rp) are obtained in both 10TiYSZ and 10TiTZP. However, large polarons can explain the transport properties in these materials under reducing conditions in agreement with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号