首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient reduction of carboxylic acids, esters, and amides with trialkylsilanes is accomplished using a triruthenium carbonyl cluster bearing a bridging acenaphthylene ligand, (mu(3),eta(2):eta(3):eta(5)-acenaphthylene)Ru(3)(CO)(7), as the catalyst. Preactivation of the catalyst by hydrosilanes accelerates the reactions. Sterically small trialkylsilanes are effective in these reactions. Reduction of carboxylic acids and amides efficiently produces the corresponding silyl ethers and amines, respectively. Reduction of esters gives a mixture of silyl and alkyl ethers, but can be controlled by changing the silanes and solvents.  相似文献   

2.
Heteroaromatic amines were N-alkylated with primary alcohols at 150-200 degrees C in the presence of a catalytic amount of various ruthenium complexes to give the corresponding monoalkylated and dialkylated amines in good to high yields. For example, 2-aminopyridine reacted with an excess of ethanol at 180 degrees C for 20 h in the presence of dichlorotris(triphenylphosphine)ruthenium [RuCl(2)(PPh(3))(3)] to give 2-(ethylamino)pyridine (1) and 2-(diethylamino)pyridine (2) in 9% and 70% yields, respectively. On the other hand, when (eta(4)-1,5-cyclooctadiene)(eta(6)-1,3,5-cyclooctatriene)ruthenium [Ru(cod)(cot)] was used as a catalyst, even in the presence of excess ethanol, 1 was obtained in 85% yield with high selectivity. The addition of tertiary phosphines and phosphites to Ru(cod)(cot) increased the yield of the dialkylated amine.  相似文献   

3.
[reaction: see text] An efficient methodology for the reductive alkylation of secondary amine with aldehyde and Et(3)SiH using an iridium complex as a catalyst has been developed. For example, treatment of dibutylamine with butyraldehyde and Et(3)SiH (a 1:1:1 molar amount of amine, aldehyde, and silane) in 1,4-dioxane at 75 degrees C under the influence of a catalytic amount of [IrCl(cod)](2) gave tributylamine in quantitative yield. In this reaction, no reduction of aldehyde took place. It was found that IrCl(3), which is a starting material for preparation of iridium complexes such as [IrCl(cod)](2), acts as an efficient catalyst for the present reductive alkylation of amine. In addition, a cheaper, easy-to-handle, and environmentally friendly reducing reagent such as polymethylhydrosiloxane (PMHS) in place of Et(3)SiH was also useful. Thus, a variety of secondary amines could be alkylated by allowing them to react with aldehydes and PMHS in the presence of an iridium catalyst to afford the corresponding tertiary amines in good to excellent yields. From the deuterium label experiments, it was revealed that silane and water, generated during the formation of enamine by the reaction of amine and aldehyde, seem to behave as a hydrogen source. The catalytic cycle was discussed.  相似文献   

4.
Reported is the development of a novel catalytic cascade reaction facilitating the modular synthesis of cyclic tertiary amines from simple lactam substrates and secondary alcohols. Using a single molecular ruthenium‐triphos catalyst in the presence of molecular hydrogen enabled the versatile formation of various amines in high yield with excellent selectivity. Extending the reaction system to using an alcohol as the hydrogen transfer reagent allowed the reduction of lactams without the need for molecular hydrogen.  相似文献   

5.
Preparation of secondary and tertiary amines from nitroarenes and alcohols   总被引:1,自引:0,他引:1  
Various secondary amines were obtained selectively from the reaction of nitroarenes with primary alcohols in the presence of ruthenium(II) complexes having phosphine-amine ligands as the catalyst. Secondary amines could be further alkylated with a primary alcohol using the same catalyst, but different conditions.  相似文献   

6.
The reaction of hydrosilanes with carbon dioxide and secondary amines or silylamines was studied for the first time. The dependence of the composition and the structure of the products obtained on the nature of the reagents and on the reaction conditions was found. The hydrosilane-carbon dioxide system, unknown previously, can be used as anN-siloxycarbonylating reagent in the synthesis ofO-silylurethanes. A scheme for the formation ofO-silylurethanes was proposed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2309–2312, September, 1996.  相似文献   

7.
Hydroxyapatite‐supported gold nanoparticles (Au/HAP) can act as a highly active and reusable catalyst for the coupling of hydrosilanes with amines under mild conditions. Various silylamines can be selectively obtained from diverse combinations of equimolar amounts of hydrosilanes with amines including less reactive bulky hydrosilanes. This study also highlights the applicability of Au/HAP to the selective synthesis of silylamides through the coupling of hydrosilanes with amides, demonstrating the first example of an efficient heterogeneous catalyst. Moreover, Au/HAP shows high reusability and applicability for gram‐scale synthesis.  相似文献   

8.
The silylation of primary alcohols was achieved using hydrosilanes and a recyclable ruthenium catalyst without additives under mild conditions. Notably, this catalyst system is effective for the silylation of alcohols having haloaryl groups, which were intact during the silylation.  相似文献   

9.
A polymer‐anchored ruthenium(II) catalyst was synthesized and characterized. Its catalytic activity was evaluated for the preparation of primary amides from aqueous hydration of nitriles in neutral condition. A range of nitriles were successfully converted to their corresponding amides in good to excellent yields. The catalyst was also effective in the preparation of secondary amides from the coupling of alcohols and amines. The catalyst can be facilely recovered and reused six times without a significant decrease in its activity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen in the presence of sodium cyanide and acetic acid gives the corresponding alpha-aminonitriles, which are highly useful intermediates for organic synthesis. The reaction is the first demonstration of direct sp(3) C-H bond activation alpha to nitrogen followed by carbon-carbon bond formation under aerobic oxidation conditions. The catalytic oxidation seems to proceed by (i) alpha-C-H activation of tertiary amines by the ruthenium catalyst to give an iminium ion/ruthenium hydride intermediate, (ii) reaction with molecular oxygen to give an iminium ion/ruthenium hydroperoxide, (iii) reaction with HCN to give the alpha-aminonitrile product, H2O2, and Ru species, (iv) generation of oxoruthenium species from the reaction of Ru species with H2O2, and (v) reaction of oxoruthenium species with tertiary amines to give alpha-aminonitriles. On the basis of the last two pathways, a new type of ruthenium-catalyzed oxidative cyanation of tertiary amines with H2O2 to give alpha-aminonitriles was established. The alpha-aminonitriles thus obtained can be readily converted to alpha-amino acids, diamines, and various nitrogen-containing heterocyclic compounds.  相似文献   

11.
A new and efficient chlorination protocol is presented for the preparation of chlorosilanes from hydrosilanes. A variety of chlorinating agents in combination with palladium(II) chloride as the catalyst are examined. Among them, hexachloroethane is found to be the best choice, furnishing the desired product in good to quantitative yields under mild conditions. Various hydrosilanes are used as starting materials to explore the scope of this reaction.  相似文献   

12.
Unsymmetrical secondary and tertiary amines are prepared by the ruthenium catalyzed reaction of alcohols with amines, which provides highly efficient method for synthesis of cyclic amines.  相似文献   

13.
Although the α‐oxygenation of amines is a highly attractive method for the synthesis of amides, efficient catalysts suited to a wide range of secondary and tertiary alkyl amines using O2 as the terminal oxidant have no precedent. This report describes a novel, green α‐oxygenation of a wide range of linear and cyclic secondary and tertiary amines mediated by gold nanoparticles supported on alumina (Au/Al2O3). The observed catalysis was truly heterogeneous, and the catalyst could be reused. The present α‐oxygenation utilizes O2 as the terminal oxidant and water as the oxygen atom source of amides. The method generates water as the only theoretical by‐product, which highlights the environmentally benign nature of the present reaction. Additionally, the present α‐oxygenation provides a convenient method for the synthesis of 18O‐labeled amides using H218O as the oxygen source.  相似文献   

14.
Hindered tertiary nitriles can be hydrolyzed under neutral and mild conditions to the corresponding amides using platinum(II) catalysts with dimethylphosphine oxide or other secondary phosphine oxides (SPOs, phosphinous acids) as ligands. We have found that this procedure also works well for nitriles with acid- or base-sensitive groups, which is unprecedented in terms of yield and selectivity. The catalyst loading can be as low as 0.5 mol %. Amides are isolated as the only product in high yield, and no further hydrolysis to the corresponding acids takes place. Reactions are carried out at 80 degrees C but take place even at room temperature. When enantiopure secondary phosphine oxide ligands are used in the hydrolysis of racemic nitriles, no kinetic resolution is observed, presumably due to racemization of the ligand during the reaction.  相似文献   

15.
The reaction of hydrosilylation of allyl esters XOCH2CH=CH2 (X = MeCO, CF3CO, C3F7CO) and PhOCH2CH=CH2 with hydrosilanes HSiY3 (Y = Cl, OEt) in the presence of the Speier catalyst, the Speier catalyst with additives, and of various nickel complexes was studied. The catalytic hydrosilylation reaction in the presence of the Speier catalyst is accompanied by the reduction. Additives to the Speier catalyst (vinyltriethoxysilane and some ethers) allow to suppress considerably the reduction reaction. In the presence of the studied nickel complexes mainly reduction and isomerization reactions occurred. The best nickel catalysts of hydrosilylation were the mixtures of NiCl2 or Ni(acac)2 with phosphine oxides. In contrast to allyl esters, the hydrosilylation of simple olefins proceeds easier, the content of the product of hydrosilylation in the reaction mixture reaches 94.3%.  相似文献   

16.
Ruthenium-catalyzed silylation of sp3 C-H bonds at a benzylic position with hydrosilanes gave benzylsilanes. For this silylation reaction, Ru3(CO)12 complex showed high catalytic activity. This silylation proceeded at the methyl C-H bond selectively. For this silylation reaction, pyridyl and pyrazolyl groups, and the imino group in hydrazones, can function as a directing group. Several hydrosilanes involving triethyl-, dimethylphenyl-, tert-butyldimethyl-, and triphenylsilanes can be used as a silylating reagent. Coordination of an sp2 nitrogen atom to the ruthenium complex is important for achieving this silylation reaction.  相似文献   

17.
A catalyst system of mononuclear manganese precursor 3 combined with potassium alkoxide served as a superior catalyst compared with our previously reported manganese homodinuclear catalyst 2 a for esterification of not only tertiary aryl amides, but also tertiary aliphatic amides. On the basis of stoichiometric reactions of 3 and potassium alkoxide salt, kinetic studies, and density functional theory (DFT) calculations, we clarified a plausible reaction mechanism in which in situ generated manganese–potassium heterodinuclear species cooperatively activates the carbonyl moiety of the amide and the OH moiety of the alcohols. We also revealed details of the reaction mechanism of our previous manganese homodinuclear system 2 a , and we found that the activation free energy (ΔG) for the manganese–potassium heterodinuclear complex catalyzed esterification of amides is lower than that for the manganese homodinuclear system, which was consistent with the experimental results. We further applied our catalyst system to deprotect the acetyl moiety of primary and secondary amines.  相似文献   

18.
Wendlandt AE  Stahl SS 《Organic letters》2012,14(11):2850-2853
Biomimetic aerobic oxidation of primary benzylic amines has been achieved by using a quinone catalyst. Excellent selectivity is observed for primary, unbranched benzylic amines relative to secondary/tertiary amines, branched benzylic amines, and aliphatic amines. The exquisite selectivity for benzylic amines enables oxidative self-sorting within dynamic mixtures of amines and imines to afford high yields of cross-coupled imine products.  相似文献   

19.
The primary alcohols 1a-e and ethers 4a-d were effectively reduced to the corresponding hydrocarbons 2 by HSiEt(3) in the presence of catalytic amounts of B(C(6)F(5))(3). To the best of our knowledge, this is the first example of catalytic use of Lewis acid in the reduction of alcohols and ethers with hydrosilanes. The secondary alkyl ethers 4j,k enabled cleavage and/or reduction under similar reaction conditions to produce either the silyl ethers 3m-n or the corresponding alcohol 5a upon subsequent deprotection with TBAF. It was found that the secondary alcohols 1g-i and tertiary alcohol 1j, as well as the tertiary alkyl ether 4l, did not react with HSiEt(3)/(B(C(6)F(5))(3) reducing reagent at all. The following relative reactivity order of substrates was found: primary > secondary > tertiary. A plausible mechanism for this nontraditional Lewis acid catalyzed reaction is proposed.  相似文献   

20.
In this article we report that a cationic version of Akiba's BiIII complex catalyzes the reduction of amides to amines using silane as hydride donor. The catalytic system features low catalyst loadings and mild conditions, en route to secondary and tertiary aryl- and alkylamines. The system tolerates functional groups such as alkene, ester, nitrile, furan and thiophene. Kinetic studies on the reaction mechanism result in the identification of a reaction network with an important product inhibition that is in agreement with the experimental reaction profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号