首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The experimentally observed hemi-directed coordination mode in 1D polymeric Pb2+ ferrocenylcarboxylate system is examined computationally for gaining better insights on the structure of polymeric systems. By considering the different size of the ligands such as methylcarboxylate (model system) and ferrocenylcarboxylates (real system), the coordination mode is systematically explored in the complexes 1–6 . As expected due to the possibility of free rotation in the methylcarboxylate systems in solution, it may follow holo-directed geometrical arrangements but interestingly, it shows only hemi-directed geometry as observed in the experimental studies on ferrocenylcarboxylate system (N. Palanisami et al. Science of Advanced Materials, 2014, 6, 2364). The present computational studies predict that the lone pair electrons in Pb2+ play the dictating role for formation of hemi-directed coordination mode in methylcarboxylates as well as in ferrocenylcarboxylates. The directionality of the lone pair electrons makes the remarkable differences in the structural arrangements. Notable difference observed is that the methylcarboxylate shows the linear fashion of hemi-directed coordination whereas ferrocenylcarboxylate shows the zig-zag fashion of hemi-directed coordination. The quantitative and qualitative characteristics of lone pair electrons in reported systems are assessed through NBO analysis thus it shows the s-LP character occupancy in each case varies from 96% to 93% which is the strong evidence for the availability of lone pair electrons in Pb2+ carboxylate systems. Further, frontier molecular orbital analysis, vibrational modes and hydrogen bonding pattern are explored in the complexes 1–6 .  相似文献   

2.
The high pressure behaviour of InI is studied by DFT‐calculations and compared with experimental data. The existence of a 5s2 electron pair in In+ represents an unfavourable bonding situation for high symmetry structures because of effective closed shell repulsion. Since cations with a ns2 electron pair are highly polarizable and the electronic situation is more favourable in the low symmetry structure InI prefers a TlI‐type structure at ambient pressure. A pressure induced transition to the more densely packed high symmetry CsCl‐type structure takes place at about 19 GPa according to our calculations. At ambient pressure the interactions are predominantly ionic. However with increasing pressure the distances between In+ cations in the TlI‐type structure diminish drastically, mainly due to the changing space requirement of the lone electron pair. Apart from ionic interactions further bonding interactions between the In+ cations occur. At elevated pressure the electron localization function (ELF) as well as the band structure diagrams suggest metallic bonding between the In+ within the zigzag chain, i. e. increasing bonding interactions between the In+ cations due to the electron pair and its s‐p‐mixing. At ambient pressure In‐In interactions are rather weak and the space requirement of the lone electron pair mainly determines the characteristic arrangement of the ions. At elevated pressure the In‐In interactions become stronger and stabilise themselves additionally the specific structural arrangement.  相似文献   

3.
The concept of a chemically inert but stereochemically active 6s2 lone pair is commonly associated with Pb(II). We have performed density functional theory calculations on PbO and PbS in both the rocksalt and litharge structures which show anion dependence of the stereochemically active lone pair. PbO is more stable in litharge while PbS is not, and adopts the symmetric rocksalt structure showing no lone pair activity. Analysis of the electron density, density of states and crystal orbital overlap populations shows that the asymmetric electron density formed by Pb(II) is a direct result of anion-cation interactions. The formation has a strong dependence on the electronic states of the anion and while oxygen has the states required for interaction with Pb 6s, sulphur does not. This explains for the first time why PbO forms distorted structures and possesses an asymmetric density and PbS forms symmetric structures with no lone pair activity. This analysis shows that distorted Pb(II) structures are not the result of chemically inert, sterically active lone pairs, but instead result from asymmetric electron densities that rely on direct electronic interaction with the coordinated anions.  相似文献   

4.
《Mendeleev Communications》2021,31(4):570-571
Isovalent Sn4+ dopant cations do not have a significant effect on the ultraviolet photocatalytic activity of anatase (TiO2) regardless of their location in the bulk or at the surfaces of crystallites. This is due to the formation of no charge balance oxygen vacancies VO acting as (e–,h+) recombination centers towards photogenerated electrons and holes upon doping with Sn4+. Nevertheless, the analysis of a sample containing surfacelocated heterovalent Sb3+ ions (isoelectronic with Sn2+) revealed a significant weakening of the negative effect of VO, which can be accounted for by the presence of a stereochemically active lone pair E of 5s electrons in the nearest vicinity of VO.  相似文献   

5.
We report the characterization of the compound [K([2.2.2]crypt)]4[In8Sb13], which proves to contain a 1:1 mixture of [Sb@In8Sb12]3? and [Sb@In8Sb12]5?. The tri‐anion displays perfect Th symmetry, the first completely inorganic molecule to do so, and contains eight equivalent In3+ centers in a cube. The gas‐phase potential energy surface of the penta‐anion has eight equivalent minima where the extra pair of electrons is localized on one In+ center, and these minima are linked by low‐lying transition states where the electron pair is delocalized over two adjacent centers. The best fit to the electron density is obtained from a model where the structure of the 5? cluster lies close to the gas‐phase transition state.  相似文献   

6.
Atoms under pressure undergo a number of modifications of their electronic structure. Good examples are the spontaneous ionization, stabilization of excited-state configurations, and contraction of atomic-shells. In this work, we study the effects of confinement with harmonic potentials on the electronic structure of atoms from H to Ne. Dynamic and static correlation is taken into account with coupled cluster with single and double excitations and CASSCF calculations. Because the strength of harmonic confinement cannot be translated into pressure, we envisioned a “calibration” method to transform confinement into pressure. We focused on the effect of confinement on: (a) changes of electron distribution and localization within the K and L shells, (b) confinement-induced ionization pressure, (c) level crossing of electronic states, and (d) correlation energy. We found that contraction of valence and core-shells are not negligible and that the use of standard pseudopotentials might be not adequate to study solids under extreme pressures. The critical pressure at which atoms ionize follows a periodic trend, and it ranges from 28 GPa for Li to 10.8 TPa for Ne. In Li and Be, pressure induces mixing of the ground state configuration with excited states. At high pressure, the ground states of Li and Be become a doublet and a triplet with configurations 1s22p and 1s22s2p, respectively, which could change the chemistry of Be. Finally, it is observed that atoms with fewer electrons correlation increases, but for atoms with more electrons, the increasing of kinetic energy dominates over electron correlation.  相似文献   

7.
Comprehension of chemical bonding and its intertwined relation with charge carriers and heat propagation through a crystal lattice is imperative to design compounds for thermoelectric energy conversion. Here, we report the synthesis of large single crystal of new p-type cubic AgSnSbTe3 which shows an innately ultra-low lattice thermal conductivity (κlat) of 0.47–0.27 Wm−1 K−1 and a high electrical conductivity (1238 – 800 S cm−1) in the temperature range 294–723 K. We investigated the origin of the low κlat by analysing the nature of the chemical bonding and its crystal structure. The interaction between Sn(5 s)/Ag(4d) and Te(5p) orbitals was found to generate antibonding states just below the Fermi level in the electronic band structure, resulting in a softening of the lattice in AgSnSbTe3. Furthermore, the compound exhibits metavalent bonding which provides highly polarizable bonds with a strong lattice anharmonicity while maintaining the superior electrical conductivity. The electronic band structure exhibits nearly degenerate valence-band maxima that help to achieve a high Seebeck coefficient throughout the measured temperature range and, as a result, the maximum thermoelectric figure of merit reaches to ≈1.2 at 661 K in pristine single crystal of AgSnSbTe3.  相似文献   

8.
The excellent luminescence properties and structural dynamics driven by the stereoactivity of the lone pair in a variety of low-dimensional ns2 metal halides have attracted growing investigations for optoelectronic applications. However, the structural and photophysical aspects of the excited state associated with the lone pair expression are currently open questions. Herein, zero-dimensional Sn-based halides with static stereoactive 5 s2 lone pairs are selected as a model system to understand the correlations between the distinctive lone pair expression and the excited-state structural relaxation and charge carrier dynamics by continuous lattice manipulation. Lattice compression drives 5 s2 lone pair active switching and self-trapped exciton (STE) redistribution by suppressing excited-state structural deformation of the isolated SnBr42− units. Our results demonstrate that the static expression of the 5 s2 lone pair results in a red broadband triplet STE emission with a large Stokes shift, while its dynamic expression creates a sky-blue narrowband emission dominated by the radiative recombination of singlet STEs. Our findings and the photophysical mechanism proposed highlight the stereochemical effects of lone pair expression in controlling light emission properties and offer constructive guidelines for tuning the optoelectronic properties in diverse ns2 metal halides.  相似文献   

9.
Pair energies contributing to the correlation energies of the outer-shell electrons (n = 3) as well as for the 1s2 and 2s2 pairs are computed for the Zn2+ closed-shell ion by means of the variational-perturbation method starting with the sum of one-electron Hartree–Fock operators as the zeroth-order Hamiltonian. The results allow an understanding of the electron correlation for pairs of electrons of the p and d type. For 3p3d pairs it has been found that the correlation energy for the singlet pair of 1D symmetry is lower than for the triplet pair 3D. The 3l-3l′ correlation energies are compared with the MBPT results of Kelly and Ron for Fe. The total correlation energy of the outer shell is ?1.032 a. u.  相似文献   

10.
Herein, a simple electrochemical sensor was fabricated for sensing Hg2+ ions by using electrochemically reduced p‐nitrobenzoic acid molecules modified (ERpNBA) glassy carbon electrode (GCE). The modified electrode was applied for the determination of Hg2+ ions by using differential pulse anodic stripping voltammetry (DPASV). Experimental parameters such as concentration of p‐nitrobenzoic acid used for electrode modification, pH, accumulation time and deposition potential used for the determination of Hg2+ ions were optimized. The strong interaction between the Hg2+ ions and the lone pair of electrons on the nitrogen atoms of ERpNBA molecules leads to highly selective adsorption of Hg2+ ions on the modified electrode. Under the optimum experimental conditions, the sensor showed higher sensitivity and very low detection limit for Hg2+ ions than other metal ions such as Cd2+, Pb2+ and Zn2+ ions. The LOD for Hg2+ ions was 240 pM which is below the guideline value given by the World Health Organization and the earlier reports.  相似文献   

11.
Above‐room‐temperature polar magnets are of interest due to their practical applications in spintronics. Here we present a strategy to design high‐temperature polar magnetic oxides in the corundum‐derived A2BB′O6 family, exemplified by the non‐centrosymmetric (R3) Ni3TeO6‐type Mn2+2Fe3+Mo5+O6, which shows strong ferrimagnetic ordering with TC=337 K and demonstrates structural polarization without any ions with (n?1)d10ns0, d0, or stereoactive lone‐pair electrons. Density functional theory calculations confirm the experimental results and suggest that the energy of the magnetically ordered structure, based on the Ni3TeO6 prototype, is significantly lower than that of any related structure, and accounts for the spontaneous polarization (68 μC cm?2) and non‐centrosymmetry confirmed directly by second harmonic generation. These results motivate new directions in the search for practical magnetoelectric/multiferroic materials.  相似文献   

12.
The quest for new oxides with cations containing active lone‐pair electrons (E) covers a broad field of targeted specificities owing to asymmetric electronic distribution and their particular band structure. Herein, we show that the novel compound BaCoAs2O5, with lone‐pair As3+ ions, is built from rare square‐planar Co2+O4 involved in direct bonding between As3+E and Co2+ dz2 orbitals (Co? As=2.51 Å). By means of DFT and Hückel calculations, we show that this σ‐type overlapping is stabilized by a two‐orbital three‐electron interaction allowed by the high‐spin character of the Co2+ ions. The negligible experimental spin‐orbit coupling is expected from the resulting molecular orbital scheme in O3AsE–CoO4 clusters.  相似文献   

13.
14.
14N and 35Cl NQR spectra have been investigated for 24 organophosphorus compounds using a pulse technique. The electron populations of the nitrogen lone pair orbital and the N? P bond are calculated according to the Townes and Dailey method. The experimental data are interpreted assuming a partial double bond character of the N? P bond due to the pπ? dπ interaction and pπ? σ conjugation of the lone pair electrons of the nitrogen atoms. The effect of the different nature of substituents X on the N? P bond populations is observed in X ? PRn (R2N)3-n molecules (where X is O, S, Se, or lone pair electrons and n = 0, 1, 2). It can be seen from this dependence that the effective electronegativity of the phosphorus atom is largest in selenophosphoramidates and falls in the sequence P?Se > P?S > P?O > P.  相似文献   

15.
The quest for new oxides with cations containing active lone‐pair electrons (E) covers a broad field of targeted specificities owing to asymmetric electronic distribution and their particular band structure. Herein, we show that the novel compound BaCoAs2O5, with lone‐pair As3+ ions, is built from rare square‐planar Co2+O4 involved in direct bonding between As3+E and Co2+ dz2 orbitals (Co As=2.51 Å). By means of DFT and Hückel calculations, we show that this σ‐type overlapping is stabilized by a two‐orbital three‐electron interaction allowed by the high‐spin character of the Co2+ ions. The negligible experimental spin‐orbit coupling is expected from the resulting molecular orbital scheme in O3AsE–CoO4 clusters.  相似文献   

16.
An understanding of the structural features and bonding of a particular material, and the properties these features impart on its physical characteristics, is essential in the search for new systems that are of technological interest. For several relevant applications, the design or discovery of low thermal conductivity materials is of great importance. We report on the synthesis, crystal structure, thermal conductivity, and electronic‐structure calculations of one such material, PbCuSbS3. Our analysis is presented in terms of a comparative study with Sb2S3, from which PbCuSbS3 can be derived through cation substitution. The measured low thermal conductivity of PbCuSbS3 is explained by the distortive environment of the Pb and Sb atoms from the stereochemically active lone‐pair s2 electrons and their pronounced repulsive interaction. Our investigation suggests a general approach for the design of materials for phase‐change‐memory, thermal‐barrier, thermal‐rectification and thermoelectric applications, as well as other functions for which low thermal conductivity is purposefully sought.  相似文献   

17.
Gas-phase elimination reactions of number of N-substituted diacetamides have been studied. The rates of N-phenyl, 4-methoxyphenyl, 4-nitrophenyl, and benzyl diacetamide have been measured between 643–683, 642–693, 673–725, and 555–610 K, respectively. They undergo unimolecular first-order elimination reactions, for which log A = 12.8, 12.9, 12.8, and 11.0 s?1 and Ea = 185.7, 191.4, 193.4, and 143.6 kJ mol?1, respectively. The reactivity of these compounds has been compared with the unsubstituted diacetamide at 600 K. The kinetic data reveals that each of the N-aryldiacetamides is less reactive than the parent molecule. We attribute this observation to the resonance of the lone pair of electrons on the nitrogen with either the two carbonyl oxygen atoms or with the 6π electrons in the aromatic ring which will result in the stabilization of the N-aryldiacetamides related to the parent molecules. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Numerical Hartree-Fock (NHF) calculations have been performed for 332 ground and low-lying excited states of the fifth period atoms Rb through Xe, with our special interest in the states arising from the 5s 24d m , 5s 14d m +1, and 5s 0 4d m +2 configurations of the second row transition metal atoms. Among various properties, orbital energies and mean values ofr of the outermost orbitals of each symmetry are presented as well as total energies. It is discussed in some detail why the second row transition metal atoms have a tendency to prefers 1 d m +1 as the ground configuration in contrast to the preferreds 2 d m configuration in the first row transition metal atoms. Our systematic NHF computations reported in this and the previous papers conclude that the Hartree-Fock method correctly predicts the experimental ground state of the atoms He through Xe with the sole exception for Zr.  相似文献   

19.
The high sensitivity of 15N shielding to the displacement of the lone pair electrons makes it a useful conformational probe for remote parts of a conjugated molecule. Thus, the chemical shifts are observed for different rotamers of enaminones in the slow exchange limit. The interpretation of the 15N chemical shifts in terms of the non-planarity of the E, s-E rotamers is in accord with 13C chemical shifts and 1J(CH) coupling constants.  相似文献   

20.
We have investigated the nature of the interactions of ns2‐cations and the possible structure‐determining role of the ns2electron pair at ambient and high pressure in several AB2X5 (A = K, Rb, Cs, In, Tl; B = Sn, Pb, Sr; X = Cl, Br, I) compounds. Structural parameters are obtained by high pressure x‐ray diffraction as well as by quantum mechanical methods (DFT‐GGA‐calculations). The structural parameters at ambient and high pressure are discussed and compared to those of Tl5Se2I crystallising in the antitype structure. Short cation—cation distances in the NH4Pb2Br5 type structure enable direct cation—cation interactions and the existence of an ns2‐cation in the B‐position is crucial for the stability of these structures. The effect of pressure on the structural parameters of these compounds gives new insights into the interactions of lone pair cations. The pronounced decrease of the cation—cation distances with pressure points to strongly increasing bonding interactions between the lone pair cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号