首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aimed to analyze the chemical compositions in Arabica coffee bean extracts, assess the relevant antioxidant and iron-chelating activities in coffee extracts and instant coffee, and evaluate the toxicity in roasted coffee. Coffee beans were extracted using boiling, drip-filtered and espresso brewing methods. Certain phenolics were investigated including trigonelline, caffeic acid and their derivatives, gallic acid, epicatechin, chlorogenic acid (CGA) and their derivatives, p-coumaroylquinic acid, p-coumaroyl glucoside, the rutin and syringic acid that exist in green and roasted coffee extracts, along with dimethoxycinnamic acid, caffeoylarbutin and cymaroside that may be present in green coffee bean extracts. Different phytochemicals were also detected in all of the coffee extracts. Roasted coffee extracts and instant coffees exhibited free-radical scavenging properties in a dose-dependent manner, for which drip coffee was observed to be the most effective (p < 0.05). All coffee extracts, instant coffee varieties and CGA could effectively bind ferric ion in a concentration-dependent manner resulting in an iron-bound complex. Roasted coffee extracts were neither toxic to normal mononuclear cells nor breast cancer cells. The findings indicate that phenolics, particularly CGA, could effectively contribute to the iron-chelating and free-radical scavenging properties observed in coffee brews. Thus, coffee may possess high pharmacological value and could be utilized as a health beverage.  相似文献   

2.
Coffee has been studied for its health benefits, including prevention of several chronic diseases, such as type 2 diabetes mellitus, cancer, Parkinson’s, and liver diseases. Chlorogenic acid (CGA), an important component in coffee beans, was shown to possess antiviral activity against viruses. However, the presence of caffeine in coffee beans may also cause insomnia and stomach irritation, and increase heart rate and respiration rate. These unwanted effects may be reduced by decaffeination of green bean Arabica coffee (GBAC) by treatment with dichloromethane, followed by solid-phase extraction using methanol. In this study, the caffeine and chlorogenic acid (CGA) level in the coffee bean from three different areas in West Java, before and after decaffeination, was determined and validated using HPLC. The results showed that the levels of caffeine were reduced significantly, with an order as follows: Tasikmalaya (2.28% to 0.097% (97 ppm), Pangalengan (1.57% to 0.049% (495 ppm), and Garut (1.45% to 0.00002% (0.2 ppm). The CGA levels in the GBAC were also reduced as follows: Tasikmalaya (0.54% to 0.001% (118 ppm), Pangalengan (0.97% to 0.0047% (388 ppm)), and Garut (0.81% to 0.029% (282 ppm). The decaffeinated samples were then subjected to the H5N1 neuraminidase (NA) binding assay to determine its bioactivity as an anti-influenza agent. The results show that samples from Tasikmalaya, Pangalengan, and Garut possess NA inhibitory activity with IC50 of 69.70, 75.23, and 55.74 μg/mL, respectively. The low level of caffeine with a higher level of CGA correlates with their higher levels of NA inhibitory, as shown in the Garut samples. Therefore, the level of caffeine and CGA influenced the level of NA inhibitory activity. This is supported by the validation of CGA-NA binding interaction via molecular docking and pharmacophore modeling; hence, CGA could potentially serve as a bioactive compound for neuraminidase activity in GBAC.  相似文献   

3.
Coffee and tea are the most widely consumed beverages worldwide. However, the consumer may be unaware of the exact amount of methyl xanthine (MX, i.e. caffeine [C], theobromine [TB] and theophylline [TH]) consumed, as most of the products do not list the proper amounts. This may lead to serious risks including cardiovascular, kidney and stimulant effects. The aim of the study was to determine the MX amount in ready-to-use beverages (coffee and tea) collected from various outlets in the city of Al-Khobar, Saudi Arabia. Forty different samples of espresso, black coffee and red tea were collected. A fast, reliable and efficient UHPLC–DAD method was developed and validated for MX determination. Total lipids were extracted and fractionated in order to determine glycolipids, phospholipids and neutral lipids. The r2 value for the method was 0.980–0.988 in a linearity range of 0.5–200 ppm. The range for MX (C [0.02–2.39 mg/ml], TB [0.00–0.10 mg/ml] and TH [0.00–0.004 mg/ml]) and total lipids was 1–5 g. The amount of glycolipids (3.1 g) was higher among the lipid fractions followed by phospholipids (1.8 g) and neutral lipids (0.25 g). In general, espresso beverages (20–30 ml) contained high amounts of MX whereas black coffee beverages contained high amount of lipids. Most of the beverages expressed C, TB, TH, lipids or their fractions; however, the product with high amounts of MX and lipids at the same time was espresso (brands Chemistry and Wogard). Although the MX and lipid levels in these beverages well below the allowed limits, care must still be taken, especially when using the beverages with high serving volumes (200–250 ml) or coffee prepared via the filter method i.e. black coffee, using a high temperature for a longer time.  相似文献   

4.
Coffee is a widely consumed beverage, both in Europe, where its consumption is highest, and on other continents. It provides many compounds, including phenolic compounds. The aim of the study was to assess the effect of various brewing methods on the total phenolic content (TPC) in the infusion. Research material comprised commercially available coffees: Instant Arabica and Robusta, freshly ground Arabica and Robusta (immediately prior to the analysis), ground Arabica and Robusta, decaffeinated Arabica, and green Arabica and Robusta. The following preparation methods were used: Pouring hot water over coffee grounds or instant coffee, preparing coffee in a percolator and using a coffee machine. Additional variables which were employed were water temperature (90 or 100 °C) and its type (filtered or unfiltered). In order to determine the impact of examined factors, 225 infusion were prepared. Total phenolic content was determined by the spectrophotometric method using the Folin-Ciocalteu reagent and the obtained results were expressed in mg gallic acid (GAE) per 100 g of brewed coffee. The highest value was obtained for 100% Arabica ground coffee prepared in a coffee percolator using unfiltered water at a temperature of 100 °C: 657.3 ± 23 mg GAE/100 g of infusion. High values were also observed for infusions prepared in a coffee machine, where the highest TPC value was 363.8 ± 28 mg GAE/100 g for ground Arabica. In turn, the lowest TPC was obtained for Arabica green coffee in opaque packaging, brewed with filtered water at a temperature of 100 °C: 19.5 ± 1 mg GAE/100 g of infusion. No significant effect of temperature and water type on the TPC within one type of coffee was observed. Due to its high content of phenolic compounds, Arabica coffee brewed in a coffee percolator should be the most popular choice for coffee drinkers.  相似文献   

5.
Coffee is one of the most often consumed beverages almost all over the world. The multiplicity of beans, as well as the methods and parameters used to brew, encourages the optimization of the brewing process. The study aimed to analyze the effect of roasting beans, the brewing technique, and its parameters (time and water temperature) on antioxidant activity (determined using several in vitro methods), total polyphenols, flavonoids, and caffeine content. The infusions of unroasted and roasted Arabica beans from Brazil, Colombia, India, Peru, and Rwanda were analyzed. In general, infusions prepared from roasted beans had higher antioxidant activity and the content of above-mentioned compounds. The hot brew method was used to obtain infusions with a higher antioxidant activity, while the cold brew with higher caffeine content. The phenolic compound content in infusions prepared using both techniques depended on the roasting process. Moreover, the bean’s origin, roasting process, and brewing technique had a significant effect on the tested properties, in contrary to brewing time and water temperature (below and above 90 °C), which had less impact. The results confirm the importance of coffee brewing optimization.  相似文献   

6.
Coffee cherry is a rich source of chlorogenic acids (CGAs) and caffeine. In this study we examined the potential antioxidant activity and enzyme inhibitory effects of whole coffee cherries (WCC) and their two extracts on α-amylase, α-glucosidase and acetylcholinesterase (AChE) activities, which are targets for the control of diabetes and Alzheimer’s diseases. Whole coffee cherry extract 40% (WCCE1) is rich in chlorogenic acid compounds, consisting of a minimum of 40% major isomers, namely 3-caffeoylquinic acids, 4-caffeoylquinic acids, 5-caffeoylquinic acids, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 4,5-dicaffeoylquinic acid, 4-feruloylquinc acid, and 5-feruloylquinc acid. Whole coffee cherry extract 70% (WCCE2) is rich in caffeine, with a minimum of 70%. WCCE1 inhibited the activities of digestive enzymes α-amylase and α-glucosidase, and WCCE2 inhibited acetylcholinesterase activities with their IC50 values of 1.74, 2.42, and 0.09 mg/mL, respectively. Multiple antioxidant assays—including DPPH, ABTS, FRAP, ORAC, HORAC, NORAC, and SORAC—demonstrated that WCCE1 has strong antioxidant activity.  相似文献   

7.
Thirty-five representative and suitably selected roasted coffee samples were characterised by near-infrared (NIR) spectroscopy and used to prepare the corresponding espresso samples to be subsequently subjected to sensory evaluation by trained panellists. The main purpose was to investigate the relationships between certain crucial sensory attributes of espresso coffees, including perceived acidity, mouthfeel, bitterness and aftertaste, and near-infrared spectra of original roasted coffee samples, in such a way that non-destructive near-infrared reflectance measurements would be used to predict all these sensory properties with a decisive influence from a quality assurance standpoint. Separate calibration models based on partial least squares regression (PLS), correlating NIR spectral data of roasted coffee samples with each sensory attribute of espresso samples studied, were developed. Wavelength selection was also performed applying iterative predictor weighting-PLS (IPW-PLS) in order to take into account only significant and characteristic spectral features, in an attempt to improve the quality of the final regression models constructed. Using IPW-PLS regression, prediction of the four sensory responses modelled was performed with high accuracy, with root mean square errors of the residuals in cross-validation (RMSECV) ranging from 4.7 to 7.0%. Thus, the results provided by the high-quality calibration models proposed in the present study, comparable in terms of accuracy to the evaluations provided by a trained sensory panel, are promising and prove the feasibility of using a similar methodology in on-line or routine applications to predict the sensory quality of unknown espresso coffee samples via their respective NIR roasted coffee spectra.  相似文献   

8.
Nuclear magnetic resonance (NMR) spectroscopy was used for the qualitative and quantitative analysis of aqueous extracts of unroasted and roasted coffee silverskin (CS). Twenty compounds were identified from 1D and 2D NMR spectra, including caffeine, chlorogenic acid (CGA), trigonelline, fructose, glucose, sucrose, etc. For the first time, the presence of trigonelline was detected in CS. Results of the quantitative analysis showed that the total amount of the main components after roasting was reduced by 45.6% compared with values before roasting. Sugars in the water extracts were the main components in CS, and fructose was the most abundant sugar, its relative content accounting for 38.7% and 38.4% in unroasted and roasted CS, respectively. Moreover, 1D NMR combined with 2D NMR technology shows application prospects in the rapid, non-destructive detection of CS. In addition, it was observed by optical microscopy and scanning electron microscopy (SEM) that the morphology of CS changed obviously before and after roasting.  相似文献   

9.
Espresso coffee (EC) is a common coffee preparation technique that nowadays is broadly widespread all over the globe. Its popularity is in part attributed to the intense aroma and pleasant flavor. Many researchers have studied and reviewed the aroma of the coffee, but there is a lack of specific review focused on EC aroma profile even if it is intensively investigated. Thus, the objective of the current review was to summarize the aroma profile of EC and how different preparation variables can affect EC flavor. Moreover, a collection of diverse analytical procedures for volatile analysis was also reported. The findings of this survey showed that the volatile fraction of EC is extremely complex, but just some compounds are responsible for the characteristic aroma of the coffee, such as some aldehyde, ketones, furanones, furans, sulfur compounds, pyrazines, etc. In addition, during preparation, some variables, e.g., temperature and pressure of water, granulometry of the coffee particle, and brew ratio, can also modify the aroma profile of this beverage, and therefore its quality. A better understanding of the aroma fraction of EC and how the preparation variables should be adjusted according to desired EC would assist coffee workers in obtaining a higher quality product.  相似文献   

10.
The simultaneous quantification of two potential genotoxic hydroxymethyl furan derivatives in coffee (furfuryl alcohol and 5‐hydroxymethylfurfural) alongside their carboxylic acid derivatives (2‐furoic acid and 5‐hydroxymethyl furoic acid, respectively) was carried out. Their extraction from ground roasted coffee using sonication, simple shaking or heat‐assisted shaking lead to similar results. A minimum of 97.3% of the four furan derivatives were extracted during the first extraction cycle using water, whereas methanol showed considerably lower extraction efficiency. A simple high‐performance liquid chromatography method coupled with diode array detection was developed for the simultaneous determination and was applied to roasted coffee extracts or brews. No sample pre‐treatment except for centrifugation was needed. The diode array detector was used to assess the purity of the peaks of interest in analyzed samples against authentic standards. The linearity according to Mandel, accuracy (recovery ≥ 89.9%) and precision (inter‐ and intraday relative standard deviation ≤ 4.5%) were checked. The values for the limit of detection and quantification ranged within 0.11–0.76 and 0.35–2.55 μg/mL, respectively. Filtered and espresso brews were analyzed for the four furan derivatives where furfuryl alcohol showed double the concentration of 5‐hydroxymethylfurfural and about ten times the concentrations of 2‐furoic acid or 5‐hydroxymethyl furoic acid.  相似文献   

11.
A non-destructive, fast, simple and reliable Fourier transform mid-infrared attenuated total reflectance spectroscopy (FT-MIR-ATR) method for the selective determination of caffeine and trigonelline in the aqueous extract of green coffee beans was developed and validated. The calibration curves were linear in the range 2000 − 7000 mg/L for caffeine and trigonelline with R2 ≥ 0.9997. The limits of detection (LOD) were 140 and 100 mg/L and the limits of quantification (LOQ) were 470 and 330 mg/L for caffeine and trigonelline, respectively. The precision (% RSD) was 3.0% and 4.3% for caffeine and trigonelline, respectively. The developed method was applied to 20 samples of green coffee beans to determine the two alkaloids. The amount of caffeine and trigonelline in the green coffee beans were found in the range 0.84 − 1.15% (w/w) and 0.83 − 1.13% (w/w), respectively. The accuracy of the developed analytical method was evaluated by spiking standard caffeine and trigonelline to green coffee beans and the average recoveries were 93 ± 5% and 98 ± 4%, respectively. Therefore, the developed FT-MIR-ATR methods can be used for direct determination of the two alkaloids in the green coffee beans.  相似文献   

12.
Coffee husks (Coffea arabica L.) are characterized by exhibiting secondary metabolites such as phenolic compounds, which can be used as raw material for obtaining bioactive compounds of interest in food. The objective of this study is to evaluate different methods for obtaining the raw material and extracting solutions of bioactive compounds from coffee husks. Water bath and ultrasound-assisted extraction methods were used, using water (100%) or ethanol (100%) or a mixture of both (1:1) as extracting solutions and the form of the raw material was in natura and dehydrated. The extracts were evaluated by their antioxidant potential using DPPH radicals, ABTS, and iron reduction (ferric reducing antioxidant power (FRAP)), and later total phenolic compounds, total flavonoids, and condensed tannins were quantified the phenolic majority compounds were identified. It was verified that the mixture of water and ethanol (1:1) showed better extraction capacity of the compounds with antioxidant activity and that both conventional (water bath) or unconventional (ultrasound) methods showed satisfactory results. Finally, a satisfactory amount of bioactive compounds was observed in evaluating the chemical composition (total phenolic compounds, total flavonoids, condensed tannins, as well as the analysis of the phenolic profile) of these extracts. Corroborating with the results of the antioxidant activities, the best extracting solution was generally the water and ethanol mixture (1:1) using a dehydrated husk and water bath as the best method, presenting higher levels of the bioactive compounds in question, with an emphasis on chlorogenic acid. Thus, it can be concluded that the use of coffee husk as raw material to obtain extracts of bioactive compounds is promising. Last, the conventional method (water bath) and the water and ethanol mixture (1:1) stood out among the methods and extracting solutions used for the dehydrated coffee husk.  相似文献   

13.
Rosemary (Rosmarinus officinalis) and basil (Ocimum sanctum Linn) are mostly used as herbal teas, made by steeping whole or ground herbs in boiling water. Hence, it is important to know the effect of boiling time on the bioactivity of these herbs. The effect of different boiling times (5, 10, and 15 min) on the antioxidant and antimicrobial properties, and some selected phenolic compounds of these herbs was examined in this study. Experimental results revealed that basil displayed the highest total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant activity when it was boiled for 5 min, and the lowest TPC was obtained when it was boiled for 15 min. On the other hand, rosemary had the highest TPC, TFC, and antioxidant potential after being boiled for 15 min, while it had the lowest after being boiled for 5 min. There was no growth inhibition of rosemary extracts against gram-negative bacteria, whereas higher growth inhibition was observed against gram-positive bacteria. The MIC and MBC of rosemary ethanolic extract against Listeria monocytogenes were 5 and 5 mg/mL and against B. subtilis were 10 and 10 mg/mL, respectively. While MIC and MBC of methanolic extract against L. monocytogenes were 5 and 5 mg/mL and against Bacillus subtilis were and 5 and 5 mg/mL, respectively. Salicylic acid was the most abundant (324.7 mg/100 g dry weight (dw)) phenolic compound in the rosemary sample boiled for 5 min, and acetyl salicylic acid was the most abundant (122.61 mg/10 g dw) phenolic compound in the basil sample boiled for 15 min.  相似文献   

14.
《Analytica chimica acta》2004,514(1):57-67
Two orthogonal signal correction methods (OSC and DOSC) were applied on a set of 83 roasted coffee NIR spectra from varied origins and varieties in order to remove information unrelated to a specific chemical response (caffeine), which was selected due to its high discriminant ability to differentiate between arabica and robusta coffee varieties. These corrected NIR spectra, as well as raw NIR spectra and three chemical quantities (caffeine, chlorogenic acids and total acidity), were used to develop separate classification models accordingly using the potential functions method as a class-modelling technique in order to evaluate their respective capacities to discriminate between coffee varieties and the influence of these pre-processing methods on the classification of the coffee samples into their corresponding variety class. The transformation of roasted coffee NIR spectra by means of an orthogonal signal correction method, taking into account in this correction a chemical response closely related to the sample origin, prompted a notable improvement in the specificity of the constructed classification models.  相似文献   

15.
Investigation of novel plant‐based agents might provide alternative antibiotics and thus fight antibiotic resistance. Here, we measured the ability of fruit and leaf extracts of Sorbus aucuparia (Sauc ) and endemic Sorbus caucasica var. yaltirikii (Scau ) to inhibit nonreplicative (Klenow Fragment‐KF and Bacillus Large Fragment‐BLF) and replicative (DnaE and PolC) bacterial DNA polymerases along with their antimicrobial, DPPH free radical scavenging activity (RSA), and chemical contents by total phenolic content and HPLC‐DAD analysis. We found that leaf extracts had nearly 10‐fold higher RSA and 5‐fold greater TPC than the corresponding fruit extracts. All extracts had large amounts of chlorogenic acid (CGA) and rutin, while fruit extracts had large amounts of quercetin. Hydrolysis of fruit extracts revealed mainly caffeic acid from CGA (caffeoylquinic acid) and quercetin from rutin (quercetin‐3‐O ‐rutinoside), as well as CGA and derivatives of CGA and p ‐coumaric acid. Plant extracts of Sorbus species showed antimicrobial activity against Gram‐negative microorganisms. Scau leaf extracts exhibited strong inhibition of KF activity. Sauc and Scau leaf extracts also strongly inhibited two replicative DNA polymerases. Thus, these species can be considered a potential source of novel antimicrobial agents specific for Gram‐negative bacteria.  相似文献   

16.
《Analytica chimica acta》2003,493(1):83-94
This work describes a method to simultaneously determine caffeine (CF) and theobromine (TB) in coffee and tea samples using partial least squares (PLS-1). Sample preparation was required to eliminate strong interfering components. High-performance liquid chromatography (HPLC)-found concentrations of caffeine and theobromine (theophylline was not found in any analyzed sample) were used to construct universal calibration matrixes for coffee and tea. Due to the low levels of theobromine when compared to caffeine (up to 1000:1), theobromine addition standard was required to dramatically improve method performance. The method developed did not show statistically significant differences with an HPLC standard technique.  相似文献   

17.
Ribeiro JS  Ferreira MM  Salva TJ 《Talanta》2011,83(5):171-1358
Mathematical models based on chemometric analyses of the coffee beverage sensory data and NIR spectra of 51 Arabica roasted coffee samples were generated aiming to predict the scores of acidity, bitterness, flavour, cleanliness, body and overall quality of coffee beverage. Partial least squares (PLS) were used to construct the models. The ordered predictor selection (OPS) algorithm was applied to select the wavelengths for the regression model of each sensory attribute in order to take only significant regions into account. The regions of the spectrum defined as important for sensory quality were closely related to the NIR spectra of pure caffeine, trigonelline, 5-caffeoylquinic acid, cellulose, coffee lipids, sucrose and casein. The NIR analyses sustained that the relationship between the sensory characteristics of the beverage and the chemical composition of the roasted grain were as listed below: 1 - the lipids and proteins were closely related to the attribute body; 2 - the caffeine and chlorogenic acids were related to bitterness; 3 - the chlorogenic acids were related to acidity and flavour; 4 - the cleanliness and overall quality were related to caffeine, trigonelline, chlorogenic acid, polysaccharides, sucrose and protein.  相似文献   

18.
Summary: Coffee pulp is the main solid residue from the wet processing of coffee berries. Recent stringent measures by Pollution Control authorities, made it mandatory to treat all the solid and liquid waste emanating from the coffee farms. A study was conducted to evaluate the efficiency of an exotic (Eudrilus eugeniae) and a native earthworm (Perionyx ceylanesis) from coffee farm for decomposition of coffee pulp into valuable vermicompost. Exotic earthworms were found to degrade the coffee pulp faster (112 days) as compared to the native worms (165 days) and the vermicomposting efficiency (77.9%) and vermicompost yield (389 kg) were found to significantly higher with native worms. The multiplication rate of earthworms (280%) and worm yield (3.78 kg) recorded significantly higher with the exotic earthworms. The percentage of nitrogen, phosphorous, potassium, calcium and magnesium in vermicompost was found to increase while C:N ratio, pH and total organic carbon declined as a function of the vermicomposting. Vermicompost and vermicasts from native earthworms recorded significantly higher functional microbial group's population as compared to the exotic worms. The study reveals that coffee pulp can be very well used as substrate for vermicomposting using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis).  相似文献   

19.
In this study, sustainable technology microwave-assisted extraction (MAE) in association with green solvents was applied to recover phenolic compounds from spent coffee grounds (SCGs). A design of experiments (DOE) was used for process optimization. Initially, a 24−1 two level Fractional Factorial Design was used and ratios “solvent to solute” and “ethanol to water” were identified as the significant experimental factors. Consequently, Central Composite Design (CCD) was applied to analyze the effects of the significant variables on the response yield, total polyphenols content (TPC), and antioxidant activity (AA) by the DPPH assay method, and quadratic surfaces to optimize those responses were generated. The values of the significant factors of 16.7 (solvent/solute) and 68.9% (ethanol/water) were optimized simultaneously the yield (%) at 6.98 ± 0.27, TPC (mg GAE/g) at 117.7 ± 6.1, and AA (µmol TE/g) at 143.8 ± 8.6 and were in excellent agreement with those predicted from the CCD model. The variations of the compositions of the lipids, caffeine, pentacyclic diterpenes, and FAME as a function of the dominant factor % ethanol in the solvent mixture were analyzed by applying NMR and GC-FID, and the results obtained confirmed their determinative significance.  相似文献   

20.
Not your cup of tea? "Coffee rings" of spherical colloidal particles are left behind after water droplets resting on surfaces have dried out. This controlled evaporation of colloidal solutions can be exploited to deposit material in regular patterns. It is now shown that if spherical colloids are replaced by slightly elongated ones, the coffee ring is not formed and is replaced by an even more uniform deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号