首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlorophyll compounds and their derivatives containing metal or phytyl chain can be used as photosensitizer in photodynamic inactivation of microorganisms (PDI). So, the physicochemical properties and antimicrobial effect of chlorophyll derivatives were investigated: Mg‐chlorophyll (Mg‐Chl), Zn‐chlorophyll (Zn‐Chl), Zn‐chlorophyllide (Zn‐Chlde), Cu‐chlorophyll (Cu‐Chl), pheophytin (Pheo) and pheophorbide (Pheid). The photobleaching experiments showed photostability according to Cu‐Chl > Pheo ∼ Pheid ≫ Zn‐Chl ∼ Zn‐Chlde > Mg‐Chl. This order was discussed in terms of metal and the phytyl chain presences. Pheid and Zn‐Chl in aqueous Tween 80 solution exhibited highest singlet oxygen yield compared with the other derivatives. Chlorophyll derivatives (CD) with phytyl chain was limited by the self‐aggregation phenomenon at high concentrations, even in micellar systems (Tween 80 and P‐123). The antimicrobial effect of CD derivatives was investigated against Staphylococcus aureus, Escherichia coli, Candida albicans and Artemia salina. Pheid showed the best results against all organisms tested, Zn‐Chlde was an excellent bactericide in the dark and Cu‐Chl had no PDI effect. No correlation with CD uptake by microorganisms and darkness cytotoxicity was found. The physicochemical properties allied to bioassays results indicate that Mg‐Chl, Pheo, Zn‐Chl and Pheid are good candidates for PDI.  相似文献   

2.
Traditional photosensitizers (PSs) show reduced singlet oxygen (1O2) production and quenched fluorescence upon aggregation in aqueous media, which greatly affect their efficiency in photodynamic therapy (PDT). Meanwhile, non‐targeting PSs generally yield low efficiency in antibacterial performance due to their short lifetimes and small effective working radii. Herein, a water‐dispersible membrane anchor (TBD‐anchor) PS with aggregation‐induced emission is designed and synthesized to generate 1O2 on the bacterial membrane. TBD‐anchor showed efficient antibacterial performance towards both Gram‐negative (Escherichia coli) and Gram‐positive bacteria (Staphylococcus aureus). Over 99.8 % killing efficiency was obtained for methicillin‐resistant S. aureus (MRSA) when they were exposed to 0.8 μm of TBD‐anchor at a low white light dose (25 mW cm?2) for 10 minutes. TBD‐anchor thus shows great promise as an effective antimicrobial agent to combat the menace of multidrug‐resistant bacteria.  相似文献   

3.
Silver nanoparticles (Ag NPs) of improved thermal stability against long‐term aggregation were prepared using the polystyrene‐b‐poly(4‐vinylpyridine)‐b‐polystyrene (PS‐b‐P4VP‐b‐PS) triblock copolymer as a multidentate ligand. First, PS‐b‐P4VP‐b‐PS was synthesized by sequential reversible addition–fragmentation transfer (RAFT) polymerization of styrene and 4‐vinylpydine using a trithiocarbonate chain transfer agent (CTA). Then Ag NPs were obtained by in situ reduction of silver nitrate using PS‐b‐P4VP‐b‐PS as a multidentate ligand. The obtained Ag NPs were stable in solution for at least 24 h while being heated at 110°C. The effect of the molar ratio of N atoms of the P4VP chain segment and AgNO3 on the stability of Ag NPs was studied, and the results suggested that Ag NPs were very stable even if the molar ratio of N atoms of the P4VP chain segment and AgNO3 was very low. This method is promising to scale up the preparation of metal NPs with good dispersibility and thermal stability, which still remains challenging. To further improve its thermal stability, 1,4‐dibromobutane was used to chemically crosslink the P4VP chain segment in solution. However, the results proved that the crosslink method is infeasible to further improve the thermal stability of Ag NPs in this system.  相似文献   

4.
A well‐defined random copolymer of styrene (S) and chloromethylstyrene (CMS) featuring lateral chlorine moieties with an alkyne terminal group is prepared (P(S‐co‐CMS), = 5500 Da, PDI = 1.13). The chloromethyl groups are converted into Hamilton wedge (HW) entities (P(S‐co‐HWS), = 6200 Da, PDI = 1.13). The P(S‐co‐HWS) polymer is subsequently ligated with tetrakis(4‐azidophenyl)methane to give HW‐functional star‐shaped macromolecules (P(S‐co‐HWS))4, = 25 100 Da, PDI = 1.08). Supramolecular star‐shaped copolymers are then prepared via self‐assembly between the HW‐functionalized four‐arm star‐shaped macromolecules ( P(S‐co‐HW )) 4 and cyanuric acid (CA) end‐functionalized PS (PS–CA, = 3700 Da, PDI = 1.04), CA end‐functionalized poly(methyl methacrylate) (PMMA–CA, = 8500 Da, PDI = 1.13) and CA end‐functionalized polyethylene glycol (PEG–CA, = 1700 Da, PDI = 1.05). The self‐assembly is monitored by 1H NMR spectroscopy and light scattering analyses.  相似文献   

5.
New substituted 5‐(pyridine‐3‐yl)‐1,3,4‐thiadiazoles, their sugar hydrazones and acyclic C‐nucleoside analogs as well as the corresponding thioglycoside derivatives were synthesized. The synthesized compounds were tested for their antimicrobial activity against Escherichia coli, Bacillus subtilis, Staph aureus, Aspergillus niger, and Candida albicans The obtained results indicated that most of tested compounds exhibited moderate to high antimicrobial activity while few compounds were found to exhibit little or no activity against the tested microorganisms.  相似文献   

6.
The efficiency of 5,10,15,20‐tetrakis(1‐methylpyridinium‐4‐yl)porphyrin tetra‐iodide (Tetra‐Py+‐Me) in the photodynamic inactivation of single‐species biofilms of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans and mixed biofilms of S. aureus and C. albicans was evaluated. The effect on the extracellular matrix of P. aeruginosa was also assessed. Irradiation with white light up to an energy dose of 64.8 J cm?2 in the presence of 20 μm of Tetra‐Py+‐Me caused significant inactivation in all single‐species biofilms (3–6 log reductions), although the susceptibility was attenuated in relation to planktonic cells. In mixed biofilms, the inactivation of S. aureus was as efficient as in single‐species biofilms but the susceptibility of C. albicans decreased. In P. aeruginosa biofilms, a reduction of 81% in the polysaccharide content of the matrix was observed after treatment with a 20 μm PS concentration and a total light dose of 64.8 J cm?2. The results show that the Tetra‐Py+‐Me causes significant inactivation of the microorganisms, either in biofilms or in the planktonic form, and demonstrate that polysaccharides of the biofilm matrix may be a primary target of photodynamic damage.  相似文献   

7.
The photoreaction type I/type II pathways mediated by zinc(II) 2,9,16,23‐tetrakis[4‐(N‐methylpyridyloxy)]phthalocyanine (ZnPPc4+) was studied in Candida albicans cells. This photosensitizer was strongly bound to C. albicans cells at short times. After 30 min irradiation, 5 μM ZnPPc4+ produced ~5 log decrease in cell viability. Different probes were used to detect reactive oxygen species (ROS) in cell suspensions (~106 CFU mL?1). Singlet molecular oxygen, O2(1Δg), was observed by the reaction with 9,10‐dimethylanthracene (DMA) and tetrasodium 2,2‐(anthracene‐9,10‐diyl)bis(methylmalonate) (ABMM), whereas the nitro blue tetrazolium (NBT) method was used to sense superoxide anion radical (). Moreover, the effects produced by an anoxic atmosphere and cell suspensions in D2O, as well as the addition of sodium azide and mannitol as ROS trapping were evaluated in the PDI of C. albicans. These investigation indicates that O2(1Δg) is generated in the cells, although a minor extension other radical species can also be involved in the PDI of C. albicans mediated by ZnPPc4+.  相似文献   

8.
A core‐shell hybrid nanocomposites, possessing a hard core of nano titanium dioxide (n‐TiO2) and a soft shell of brushlike polystyrene (PS), were successfully prepared by surface‐initiated atom transfer radical polymerization (ATRP) at 90 °C in anisole solution using CuBr/PMDETA as the catalyst, in the presence of sacrificial initiator. FTIR, 1H NMR, XPS, TEM, SEM, TGA, and DSC were used to determine the chemical structure, morphology, thermal properties, and the grafted PS quantities of the resulting products. TEM images of the samples provided direct evidence for the formation of a core‐shell structure. The thermal stabilities of the grafted polymers were dramatically elevated relative to that of pristine PS according to TGA results. DSC results demonstrated that the TiO2‐PS nanocomposites exhibited higher glass transition temperature (Tg) compared with pristine PS. The molecular weights of the free polymers formed by sacrificial initiator, which were similar to that of surface‐attached polymers were measured by GPC instrument which showed that the molecular weights of PS were well controlled with a relatively narrow polydispersity index (PDI < 1.2). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1782–1790, 2010  相似文献   

9.
The successful synthesis is described for a donor–acceptor rod–coil block copolymer comprising blocks of poly[2,7‐(9,9‐dihexylfluorene)‐alt‐bithiophene] (F6T2) and polystyrene functionalized with fullerene (PS(C60)) (F6T2‐b‐PS(C60)). This new material was obtained by combining Suzuki polycondensation with radical addition fragmentation chain transfer. The block copolymer was characterized by nuclear magnetic resonance, gel permeation chromatography, and optical spectroscopy methods. Photophysical data for (F6T2‐b‐PS(C60)) and a related block copolymer (F6T2‐b‐PS(PCBM)) (PCBM, phenyl‐C61‐butyric acid methyl ester) are reported and their performance as compatibilizers in bulk heterojunction organic solar cells is assessed. It is demonstrated that the addition of the rod–coil block copolymers to the active layer extends the operational stability of organic photovoltaic devices. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 888–903  相似文献   

10.
Photosensitizers (PSs) combined with light are able to generate antimicrobial effects. Ru(II) complexes have been recognized as a novel class of PSs. In this study, we investigated the effectiveness of photodynamic inactivation (PDI) mediated by three Ru(II) polypyridine complexes, 1–3, against four isolates of clinical methicillin‐resistant Staphylococcus aureus (MRSA‐1, MRSA‐2, MRSA‐3 and MRSA‐4). In PDI of a planktonic culture of MRSA‐1, compound 3 showed the highest efficacy, likely owing to its advantageous light absorption, 1O2 quantum yield and bacterial cellular binding. The PDI efficacy of 3 was further evaluated against all other strains and MRSA‐1 biofilms. At appropriate PS concentrations, viability reduction of 100% or 96.83% was observed in planktonic or biofilm forms of MRSA, respectively. The mechanisms of action were investigated using negative staining transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). It was demonstrated that PDI of planktonic bacteria was achieved primarily through damage to the cell envelope. Biofilms were eliminated through both the destruction of their structure and inactivation of the individual bacterial cells. In conclusion, Ru(II) complexes, especially 3, are potential candidates for the effective photodynamic control of MRSA infections.  相似文献   

11.
A series of novel oxadiazino/thiadiazino‐indole and oxadiazole/thiadiazole derivatives of 2‐oxo‐2H‐benzopyran were synthesized and evaluated for their antimicrobial activities against the bacteria Staphylococcus aureus, Salmonella typhi, and Escherichia coli and two fungal species Candida albicans and Aspergillus niger. The antibacterial activities were expressed as minimum inhibitory concentration (MIC50) in microgram per milliliter. The title compounds 4b and 10b revealed promising antibacterial activity whereas 6d , 7d , 9d , and 10b exhibited significantly impressive antifungal activity.  相似文献   

12.
《化学:亚洲杂志》2017,12(7):721-725
Derived from perylenediimide (PDI) building blocks, 3D PDI molecules are considered as a type of promising structure to overcome molecular aggregation, thus improving the performance of organic solar cells. Herein, we report a novel PDI‐based derivative, SCPDT‐PDI4 , with four PDI units connected to a unique spiro core. Attributed to this novel molecular design, SCPDT‐PDI4 exhibits a rigid 3D structure, in which the aggregation tendency of PDI chromophores could be effectively attenuated. Additionally, strong intramolecular charge transfer and high charge mobility are achieved due to the well‐conjugated structure and electron‐rich property of SCPDT. Therefore, fullerene‐free organic solar cells based on SCPDT‐PDI4 and PTB7‐Th achieve a remarkable high efficiency of 7.11 %. Such an excellent result demonstrates the opportunity of SCPDT to be a promising building block for non‐fullerene acceptors.  相似文献   

13.
A series of perylene‐3,4,9,10‐bis(dicarboximide) (PDI) dimers linked through the bay regions was systematically synthesized to examine the electronic structures and photophysical properties in dependence on the distance and orientation between the two PDI units. The spectroscopic and electrochemical measurements suggested that the coupling value of a directly linked PDI dimer (PDI)2 is much larger than those of para‐ and meta‐phenylene‐bridged PDI dimers p‐(PDI)2 and m‐(PDI)2. The width of Davydov splitting was quantitatively evaluated to compare the coupling values between the two PDI units in these dimers by absorption spectroscopy in frozen 2‐methyl‐THF. Excimer formation of PDI dimers induced the strong fluorescence quenching and large red‐shifts. Femtosecond transient absorption revealed a broad absorption derived from an excimer in the range from about 600 nm to the near‐IR region. The rate constants of formation and decay of the excimer are strongly dependent on the coupling values. Time‐resolved measurements on ferrocene‐linked p‐(PDI)2 revealed a competition between the photoinduced processes of electron transfer and excimer formation in PhCN, which is in sharp contrast with the sole electron‐transfer process in toluene.  相似文献   

14.
For future all‐soluble organic thin film transistor (OTFT) applications, a new soluble n‐type air‐stable perylene diimide derivative semiconductor material with (trifluoromethyl)benzyl groups (TC–PDI–F) is synthesized. The film is formed by spin‐coating in air and optimized for OTFT fabrications. The transistor characteristics and air‐stability of the TC–PDI–F OTFTs is measured to investigate the feasibility of using solution‐processed TC–PDI–F for future OTFT applications. For all‐solution OTFT process applications, the transistor characteristics are demonstrated by using TC–PDI–F as an n‐type semiconductor material and liquid‐phase‐deposited SiO2 (LPD–SiO2) as a gate dielectric material. All processes (except material synthesis and electrode deposition) and electrical measurements are conducted in air.  相似文献   

15.
The synthesis of 21‐arm methyl methacrylate (MMA) and styrene star polymers is reported. The copper (I)‐mediated living radical polymerization of MMA was carried out with a cyclodextrin‐core‐based initiator with 21 independent discrete initiation sites: heptakis[2,3,6‐tri‐O‐(2‐bromo‐2‐methylpropionyl]‐β‐cyclodextrin. Living polymerization occurred, providing well‐defined 21‐arm star polymers with predicted molecular weights calculated from the initiator concentration and the consumed monomer as well as low polydispersities [e.g., poly(methyl methacrylate) (PMMA), number‐average molecular weight (Mn) = 55,700, polydispersity index (PDI) = 1.07; Mn = 118,000, PDI = 1.06; polystyrene, Mn = 37,100, PDI = 1.15]. Functional methacrylate monomers containing poly(ethylene glycol), a glucose residue, and a tert‐amine group in the side chain were also polymerized in a similar fashion, leading to hydrophilic star polymers, again with good control over the molecular weight and polydispersity (Mn = 15,000, PDI = 1.03; Mn = 36,500, PDI = 1.14; and Mn = 139,000, PDI = 1.09, respectively). When styrene was used as the monomer, it was difficult to obtain well‐defined polystyrene stars at high molecular weights. This was due to the increased occurrence of side reactions such as star–star coupling and thermal (spontaneous) polymerization; however, low‐polydispersity polymers were achieved at relatively low conversions. Furthermore, a star block copolymer consisting of PMMA and poly(butyl methacrylate) was successfully synthesized with a star PMMA as a macroinitiator (Mn = 104,000, PDI = 1.05). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2206–2214, 2001  相似文献   

16.
Previous studies of perylenediimides (PDIs) mostly utilized the lowest singlet excited state S1. Generation of a triplet excited state (T1) in PDIs is important for applications ranging from photodynamic therapy to photovoltaics; however, it remains a formidable task. Herein, we developed a heavy‐atom‐free strategy to prompt the T1←S1 intersystem crossing (ISC) by introducing electron‐donating aryl (Ar) groups at the head positions of an electron‐deficient perylenediimide (PDI) core. We found that the ISC efficiency increases from 8 to 54 % and then to 86 % by increasing the electron‐donating ability of head‐substituted aryl groups from phenyl (p‐PDI) to methoxyphenyl (MeO‐PDI) and then to methylthioxyphenyl (MeS‐PDI). By enhancing the intramolecular charge‐transfer (ICT) interaction from p‐PDI to MeO‐PDI, and then to MeS‐PDI, singlet oxygen generation via energy‐transfer reactions from T1 of PDIs to 3O2 was demonstrated with the highest yield of up to 80 %. These results provide guidelines for developing new triplet‐generating PDIs and related rylene diimides for optoelectronic applications.  相似文献   

17.
A series of side‐chain‐tethered copolymers containing the N‐(2‐ethylhexyl)‐N′‐(thiophene‐3‐yl)‐3,4:9,10‐perylenebis(dicarboximide) (thiophene‐PDI) moieties and 4,4‐diethylhexyl‐cyclopenta[2,1‐b:3,4‐b′]dithiophene unit were synthesized via Grignard metathesis polymerizations. With the incorporation of pendent perylenebis(dicarboximide) (PDI) moieties as acceptor side chains and thiophene as the donor backbone, the copolymers exhibited the intramolecular donor–acceptor characteristic and displayed a panchromatic absorption ranging from 290 to 1100 nm and ideal bandgaps of 1.49 to 1.52 eV. Due to the coplanarity of PDI moieties, the charge separation and transfer process were more effective and enhanced after photoexcitation. When increased the weight ratio of PC61BM:polymer to 3, the Jsc could be raised significantly. The value of bandgap decreased slightly, and both Voc and Jsc showed an upward trend with the increase of molar ratio of thiophene‐PDI unit from 50% (the copolymer P11) to 75% (the copolymer P13). The polymer/PC61BM devices have shown a significant improvement from 0.45 to 1.66% with a judicious modulation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1978–1988  相似文献   

18.
A mononuclear Cu(II) complex with mixed ligands, formulated as [Cu(hypydc)(dmp)]·H2O (hypydc=4‐hydroxypyridine‐2,6‐dicarboxylate, dmp=2,9‐dimethyl‐1,10‐phenanthroline), was synthesized and well characterized by single crystal X‐ray diffraction analysis, as well as spectroscopic (IR, UV‐Vis), and electrochemical methods. The Cu(II) atom exhibits a distorted square‐pyramidal geometry. Intermolecular O? H···O and C? H···O hydrogen bonds, π‐π stacking interactions and C? H···π interactions seem to be effective in the stabilization of the crystal structure. The complex was also evaluated for its antimicrobial activity using in vitro microdilution methods. Six standard bacteria and a strain of Candida albicans were used for the antimicrobial activities. There was a very strong activity against Candida albicans and significant activities against Enterococcus fecalis, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus, indicating important biological activities of the complex.  相似文献   

19.
A series of N‐(5‐methyl‐2‐hydroxyphenyl)‐(2/3/4/5‐substituted)‐benzaldimines ( I – XIII ) were synthesized using appropriate synthetic route. Their structures were characterized by FT‐IR, UV‐Visible, ESI‐MS, 1H‐ and 13C‐NMR spectroscopic techniques and analytical methods. The crystal structure of N‐(5‐methyl‐2‐hydroxyphenyl)‐3,4‐dimethoxybenzaldimine ( XIII ) was determined by X‐ray diffraction at room temperature. Relationship between the melting points and the structures of the compounds were examined. Antibacterial activities of the compounds were evaluated against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Proteus mirabilis. Antifungal activities were reported for Candida albicans. Some of the Schiff bases showed considerable antimicrobial activity against S. aureus and C. albicans.  相似文献   

20.
A series of N‐(5‐chloro‐2‐hydroxyphenyl)‐(3/4/5‐substituted)‐salicylaldimines ( I – XI ) were synthesized using appropriate synthetic route. Their structures were characterized by FT‐IR, UV‐Visible, ESI‐MS, 1H and 13C NMR spectroscopic techniques and analytical methods. The crystal structure of N‐(5‐chloro‐2‐hydroxyphenyl)‐5‐bromosalicylaldimine ( V ) was determined by X‐ray diffraction at room temperature. Relationship between the melting points and the structures of the compounds was examined. Antimicrobial activity of the compounds was evaluated against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis. Antifungal activities were reported for Candida albicans. Schiff bases showed considerable antimicrobial activity against S. aureus, S. epidermidis and C. albicans. N‐(5‐Chloro‐2‐hydroxyphenyl)‐3‐hydroxy‐salicylaldimine ( II ) has the broadest and highest antimicrobial activity according to the others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号