首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homogeneous p-type cobalt (II) oxide (CoO) nanoparticles were successfully deposited on n-type three-dimensional branched TiO2 nanorod arrays (3D-TiO2) through photochemical deposition and thermal decomposition to form a novel CoO/3D-TiO2 p-n heterojunction nanocomposite. Due to the narrow band gap of CoO nanoparticles (~2.4 eV), the as-synthesized CoO/3D-TiO2 exhibited an excellent visible light absorption. The amounts of deposited CoO nanoparticles obviously influence the hydrogen production rate in the photoelectrochemical (PEC) water splitting. The as-synthesized CoO/3D-TiO2-5 obtains the highest PEC hydrogen production rate of 0.54 mL h?1 cm?2 after five-time CoO deposition cycles (at a potential of 0.0 V vs Ag/AgCl). The photocurrent density of CoO/3D-TiO2-5 is 1.68 mA cm?1, which is ca. 2.5 times greater than that of pure 3D-TiO2. The results showed that the formation of internal electrical-field between the CoO/3D-TiO2 heterojunction, which has a direction from n-type TiO2 to p-type CoO, facilitated the charge separation and transfer and resulted in a high efficiency and stable PEC activity.  相似文献   

2.
刘志锋  鲁雪 《催化学报》2018,39(9):1527-1533
光电化学分解水制氢可以一并解决环境问题和能源危机,因而成为研究热点.由于TiO_2 禁带宽度较大,不能有效吸收太阳光中的可见光,使光电化学分解水制氢的应用受限.g-C_3N_4的禁带宽度约为2.7 e V,能有效吸收可见光,但g-C_3N_4薄膜制备研究较少.我们通过热聚缩合法直接在FTO导电玻璃上制备出g-C_3N_4薄膜,发现其光电化学分解水制氢稳定性不高,选择易制备的TiO_2 作为保护层可以提高g-C_3N_4的耐用性.此外,为提高g-C_3N_4光生电子空穴对的分离能力,依靠Co-Pi对光生空穴的捕获作用而将其覆盖在最外层.因此本文首次制备一种新型的g-C_3N_4/TiO_2 /Co-Pi光阳极用于光电化学分解水制氢,其中g-C_3N_4用作光吸收层,TiO_2 用作保护层,Co-Pi用作空穴捕获层.并在此基础上,通过扫描电子显微镜(SEM),X射线衍射(XRD),紫外可见光谱(UV-Vis)等手段研究了g-C_3N_4/TiO_2 /Co-Pi光阳极的形貌特征和光电化学性能.SEM、EDS和XRD结果表明,g-C_3N_4/TiO_2 /Co-Pi光阳极被成功制备在了FTO导电玻璃上,厚度约为3μm.UV-Vis测试表明,g-C_3N_4的光吸收边约为470 nm,可以有效地吸收可见光,并且g-C_3N_4的框架结构使光多次反射折射增加了光的捕获能力,由此可见,g-C_3N_4能够发挥很好的光吸收层作用.通过对g-C_3N_4光阳极,g-C_3N_4/TiO_2 光阳极和g-C_3N_4/TiO_2 /Co-Pi光阳极的电流电压测试发现,g-C_3N_4/TiO_2 光阳极的光电流密度小于g-C_3N_4光阳极,而g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密在可逆氢电极1.1 V下达到了0.346 mA?cm–2,约为单独g-C_3N_4光阳极的3.6倍.这说明Co-Pi是提升g-C_3N_4光电化学性能的主要因素.电化学阻抗测试结果发现,g-C_3N_4/TiO_2 /Co-Pi光阳极的界面电荷转移电阻小于g-C_3N_4光阳极的,这表明g-C_3N_4/TiO_2 /Co-Pi光阳极界面处载流子转移较快,同时也能促进内部光生电子空穴对的分离,整体性能的提高应该主要归因于Co-Pi对光生空穴的捕获作用.恒电压时间测试展示出g-C_3N_4/TiO_2 /Co-Pi光阳极的光电流密度在2 h测试过程中没有明显下降,表明g-C_3N_4/TiO_2 /Co-Pi光阳极是相当稳定的,具有良好的耐用性,归因于TiO_2 和Co-Pi的共同保护作用,主要归因于TiO_2 层对FTO导电玻璃上的g-C_3N_4薄膜保护,从电化学沉积Co-Pi到所有测试结束.总体而言,g-C_3N_4/TiO_2 /Co-Pi光阳极加强的光电化学性能归因于以下几个因素:(1)g-C_3N_4优异的光吸收能力;(2)TiO_2 稳定的保护提升了g-C_3N_4薄膜的耐用性;(3)Co–Pi对光生空穴的捕获有效促进了光生电子空穴对的分离.  相似文献   

3.
A visible‐light driven photoelectrochemical (PEC) sensor based on aptamer immobilized TiO2‐Fe2O3 nanotubes was proposed for the first time and highly sensitive and selective bisphenol A determination was realized. Taking advantage of the alloy oxide nanotube structure, high surface area, good biocompatibility, superior photoelectrocatalytic performance, a limit of detection toward BPA as low as 1.8×10?11 M with linearity in the range from 1.8×10?11 to 3.2×10?9 M could be achieved. Specificity was greatly exhibited for this aptasensor under 100‐fold excess concentration of estriol, resorcinol, nonylphenol, 2,4‐D, acetamiprid, chlorpyrifos and omethoate. Simultaneously, satisfactory results were obtained in real water sample investigation from industrial plastics and drinking water. A novel visible‐light driven PEC method for highly sensitive and selective detection of BPA was thus established.  相似文献   

4.
The anodic electrochemiluminescence (ECL) of dissolved oxygen with 2‐(dibutylamino) ethanol (DBAE) on platinum electrode has been reported previously by our group. Interestingly, the ECL intensity can be greatly amplified at TiO2 nanoparticles modified platinum electrode (TiO2/Pt), which is due to the catalytic effect of TiO2 nanoparticles to electrochemical oxidation of DBAE. It is the first case to obtain the enhanced ECL from luminophor by electrochemical catalysis of co‐reactant. The enhanced anodic ECL intensity can be quenched by dopamine sensitively. And the ECL intensity versus the logarithm of concentration of dopamine was linear over the 4.0×10?12–1.8×10?8 M (R2=0.9957), with the limit of detection of 2.7×10?12 M (S/N=3).  相似文献   

5.
It was found that in acidic chloride media the complex of Mo(VI) with 1,10‐phenantroline induces catalytic reduction of KClO3. This catalytic effect can be utilized for sensitive differential pulse polarographic determination of Mo(VI) with a low detection limit of 2.9×10?11 M (2.8 ng/L). The optimal Mo(VI) response was obtained at pH 2.8, in the presence of (6–12)×10?5 M 1,10‐phenantroline and 2×10?2 M KClO3. The sensitivity was 1.73 nA/nM and the catalytic response was linear up to 7.5×10?7 M Mo (VI). The interferences from inorganic ions and surface‐active substances were investigated. The results of the determination of Mo(VI) in CRM water sample showed good reproducibility (R.S.D. for standard solution is below 1.2% and for water samples is 8.9%) and accuracy of the elaborated catalytic polarographic method.  相似文献   

6.
A novel TiO2 nanotube array/CdS nanoparticle/ZnO nanorod (TiO2 NT/CdS/ZnO NR) photocatalyst was constructed which exhibited a wide‐absorption (200–535 nm) response in the UV/Vis region and was applied for the photoelectrocatalytic (PEC) degradation of dye wastewater. This was achieved by chemically assembling CdS into the TiO2 NTs and then constructing a ZnO NR layer on the TiO2 NT/CdS surface. Scanning electron microscopy (SEM) results showed that a new structure had been obtained. The TiO2 NTs looked like many “empty bottles” and the ZnO NR layer served as a big lid. Meanwhile the CdS NPs were encapsulated between them with good protection. After being sensitized by the CdS NPs, the absorption‐band edge of the obtained photocatalyst was obviously red‐shifted to the visible region, and the band gap was reduced from its original 3.20 eV to 2.32 eV. Photoelectric‐property tests indicated that the TiO2 NT/CdS/ZnO NR material maintained a very high PEC activity in both the ultraviolet (UV) and the visible region. The maximum photoelectric conversion efficiencies of TiO2 NT/CdS/ZnO NR were 31.8 and 5.98 % under UV light (365 nm) and visible light (420–800 nm), respectively. In the PEC oxidation, TiO2 NT/CdS/ZnO NR exhibited a higher removal ability for methyl orange (MO) and a high stability. The kinetic constants were 1.77×10?4 s?1 under UV light, which was almost 5.9 and 2.6 times of those on pure TiO2 NTs and TiO2 NT/ZnO NR, and 2.5×10?4 s?1 under visible light, 2.4 times those on TiO2 NT/CdS.  相似文献   

7.
Photovoltaic conversion has been achieved by use of chloroplasts (photosynthetic organs) from spinach adsorbed on a nanocrystalline TiO2 film on an indium tin oxide (ITO) glass electrode (chloroplast/TiO2 electrode). The shape of the absorption spectrum of the chloroplast/TiO2 electrode is almost the same that of a dispersion of the chloroplasts. Absorption maxima of the chloroplast/TiO2 electrode observed at 430, 475, and 670 nm were attributed to carotenoid and chlorophyll molecules, suggesting that chloroplasts have been adsorbed by the nanocrystalline TiO2 film on the ITO electrode. The photocurrent responses of chloroplast/TiO2 electrodes were measured by using a solution of 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile as redox electrolyte in the presence or absence of water and 100 mW cm?2 irradiation. The photocurrent of the chloroplast/TiO2 electrode was increased by adding water to the redox electrolyte. The photocurrent responses of chloroplast/TiO2 electrodes irradiated with monochromatic light (680 nm, the absorption band of photosystem II complexed with evolved oxygen) were measured by use of a solution of 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile as redox electrolyte in the presence or absence of water. A chloroplast/TiO2 electrode photocurrent was observed only when the redox electrolyte containing water was used, indicating that the oxygen evolved from water by photosystem II in chloroplasts adsorbed by a nanocrystalline TiO2 film on an ITO electrode irradiated at 680 nm is reduced to water by the catalytic activity of the platinum electrode. The maximum incident photon-to-current conversion efficiency (IPCE) was 0.8 % on irradiation at 670 nm.  相似文献   

8.
The development of well-organized and low-priced photoelectrocatalysts for the clean and efficient water splitting reaction is crucial. In this context, novel nitrogen-doped graphene quantum dots (N-GQDs) with high photoluminescence and upconversion emission have been synthesized as excellent light harvester. Subsequently, ordered hierarchical TiO? nanowires were decorated with upconversion N-GQDs as a photoanode by a simple preparation method to improve the photocatalytic performance in the visible and near-infrared (NIR) regions of solar light, not otherwise absorbable by bare TiO? nanostructures. Moreover, the enhancement of charge transfer efficiency and electron–hole separation according to the energy states of N-GQDs and TiO? are considered for the improved photocatalytic performance of water splitting. N-GQDs/TiO2 shows superior photoelectrocatalytic (PEC) performance, achieving a photocurrent density of 3.0 mA.cm?2 in 1.0 M KOH solution, which is eight times that of unmodified TiO? at an applied voltage of 1.23 V vs. RHE. The high stability and photoelectrocatalytic activity of oxygen evolution reaction in the presence of newly synthesized N-GQDs are confirmed by chronoamperometry, open-circuit potential measurement, and electrochemical impedance spectroscopy. The as-fabricated photoanode provides an increased solar light harvesting from UV–Vis to NIR due to the application of newly synthesized upconversion GQDs, which increase energy conversion with an appealing perspective.  相似文献   

9.
Photocatalysts with well-designed compositions and structures are desirable for achieving highly efficient solar-to-chemical energy conversion. Heterostructured semiconductor photocatalysts with advanced hollow structures possess beneficial features for promoting the activity towards photocatalytic reactions. Here we develop a facile synthetic strategy for the fabrication of Fe2TiO5–TiO2 nanocages (NCs) as anode materials in photoelectrochemical (PEC) water splitting cells. A hydrothermal reaction is performed to transform MIL-125(Ti) nanodisks (NDs) to Ti–Fe–O NCs, which are further converted to Fe2TiO5–TiO2 NCs through a post annealing process. Owing to the compositional and structural advantages, the heterostructured Fe2TiO5–TiO2 NCs show enhanced performance for PEC water oxidation compared with TiO2 NDs, Fe2TiO5 nanoparticles (NPs) and Fe2TiO5–TiO2 NPs.  相似文献   

10.
The effects of sodium chloride, sodium sulfate, and alum (aluminum sulfate) on the performance of a cationic polyacrylamide flocculant in a papermaking suspension consisting of bleached (hardwood: softwood, 50∶50) kraft wood-pulp fibres and anatase (TiO2) were investigated. Sodium chloride and sodium sulfate, 1×10?5 to 1×10?2 M, in the presence of polymer, caused negligible changes in the electrophoretic mobility of the TiO2 and in the first-pass retention of TiO2 (heteroflocculation of TiO2 and fibres). Alum at concentrations from 1×10?5 to 1×10?4 M at pH 4.0 and 4.5 increased retention with polymer; higher alum concentrations resulted in lower retentions. At pH 4.0 the electrophoretic mobility of the TiO2 was positive over the entire range of alum concentrations investigated (1×10?5?3.2×10?3 M) whereas at pH 4.5 the mobility was negative at 1×10?5 M alum and charge reversal was observed at about 4×10?5 M alum. The intrinsic viscosity of the cationic polyacrylamide was decreased by the addition of alum, sodium chloride or sodium sulfate. The effect of alum on the polymer conformation appeared to be that of the non-specific interaction of sulfate ions with a cationic polyelectrolyte. Retention results are discussed in terms of the colloidal stability of TiO2, the adsorption of polyacrylamide on TiO2 and the conformation of adsorbed polymer.  相似文献   

11.
《中国化学快报》2021,32(11):3359-3363
The electrode/electrlyte interface is of great signifance to photoelectrochemical (PEC) water oxidation as the reaction mainly occur here. Herein, we focus on the effect of supercapactance of the electrode/electrlyte interface on the performance of PEC. It is discovered that the supercapacitor on the interface is crucial because it links the charge transport and solution ion adsorption on its two sides. In this study, we demonstrate an approach to promote the performance of TiO2 nanowire array (TiO2 NWs) photoanode in photoelectrochemical cells (PECs) by increasing its supercapacitance. A 2−5 nm carbon layer was coated and the interface supercapacitance increases by about 150 times. This enhances the separation rate of electron-hole pairs by collecting more holes. Meanwhile, it also promotes the water oxidation rate by adsorbing more OH on its surface. As a result, the photocurrent density of C-TiO2 NWs was about 8 times higher than that of its carbon-free counterpart. This approach of increasing the supercapacitance of photoanodes would be attractive for enhancement of the efficiency of PECs and this work demonstrate the importance of supercapacitance of the interface for PECs.  相似文献   

12.
Photocatalysts with well‐designed compositions and structures are desirable for achieving highly efficient solar‐to‐chemical energy conversion. Heterostructured semiconductor photocatalysts with advanced hollow structures possess beneficial features for promoting the activity towards photocatalytic reactions. Here we develop a facile synthetic strategy for the fabrication of Fe2TiO5–TiO2 nanocages (NCs) as anode materials in photoelectrochemical (PEC) water splitting cells. A hydrothermal reaction is performed to transform MIL‐125(Ti) nanodisks (NDs) to Ti–Fe–O NCs, which are further converted to Fe2TiO5–TiO2 NCs through a post annealing process. Owing to the compositional and structural advantages, the heterostructured Fe2TiO5–TiO2 NCs show enhanced performance for PEC water oxidation compared with TiO2 NDs, Fe2TiO5 nanoparticles (NPs) and Fe2TiO5–TiO2 NPs.  相似文献   

13.
In a tannic acid assisted synthesis of mesoporous TiO2, tannic acid was used as a cost effective and non‐toxic template for pore formation. Meanwhile, a gold nanoparticles (Au NPs) deposited TiO2 nanocomposite was coated on an indium tin oxide electrode for the fabrication of a photoelectrochemical (PEC) biosensing system. Upon the formation of anatase structure, the electrode was coated with MoS2 for effective visible light absorption. The mesoporous structure led to an enhanced surface area by improving Au NPs and glucose oxidase adsorption. Incorporation of Au NPs led to an enhanced photonic efficiency due to the generation of Schottky barriers. The obtained nanocomposite was used for the light‐driven, real‐time, and selective PEC glucose sensing. Under visible light irradiation, the enzyme immobilized electrodes yielded significant photocurrent improvement owing to the releasing electron donor H2O2. The obtained PEC biosensor demonstrated acceptable reproducibility and stability with a sensitivity of 4.42 μA mM?1 cm?2 and a low detection limit of 1.2 μM glucose. Also, the linear measurement range was found to be 0.004–1.75 mM glucose. The results indicated that the proposed production method of mesoporous TiO2 will pave the way for a green chemistry based porous material production, along with the extension of the implementation of semiconductors in PEC biosensing systems.  相似文献   

14.
Amorphous TiO2, synthesized from TiCl4 and diluted NH3 solution, was characterized by X-ray diffraction spectrometry, UV–Vis diffused reflectance spectroscopy, Fourier-transformed infrared spectroscopy, and scanning electron microscopy. The powder exhibited high specific surface area at 508 m2/g as measured by the Brunauer-Emmett-Teller method. The pH at point of zero charge of the as-prepared amorphous TiO2 was determined by the pH drift method to be 6.8. The product was studied for its sorption efficiency using two dyes—crystal violet (CV) and malachite green (MG). Studies on the effects of various sorption parameters (contact time, TiO2 dosage, pH of solution, and initial concentration of dye) were carried out in order to find the optimum adsorption conditions for which the results were: contact time ~30 min, TiO2 dosage ~0.05–0.1 g, pH 7–9, and initial concentration <1 × 10?4 M. The adsorption data were analyzed and fitted better with the Langmuir model than the Freundlich model. The maximum adsorption capacities obtained from the Langmuir model were 0.4979 and 0.4075 mmol dye/g TiO2 for CV and MG dye, respectively. In addition, the regeneration and the recyclability of the prepared amorphous TiO2 were also studied. The used adsorbent should be regenerated 10–12 h before reuse in the next cycle for the best result.  相似文献   

15.
Photoelectrochemical (PEC) water splitting is a promising approach for renewable solar light conversion. However, surface Fermi level pinning (FLP), caused by surface trap states, severely restricts the PEC activities. Theoretical calculations indicate subsurface oxygen vacancy (sub-Ov) could release the FLP and retain the active structure. A series of metal oxide semiconductors with sub-Ov were prepared through precisely regulated spin-coating and calcination. Etching X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and electron energy loss spectra (EELS) demonstrated Ov located at sub ∼2–5 nm region. Mott–Schottky and open circuit photovoltage results confirmed the surface trap states elimination and Fermi level de-pinning. Thus, superior PEC performances of 5.1, 3.4, and 2.1 mA cm−2 at 1.23 V vs. RHE were achieved on BiVO4, Bi2O3, TiO2 with outstanding stability for 72 h, outperforming most reported works under the identical conditions.  相似文献   

16.
A platinum (Pt) film coated n-silicon (Pt/n-n+-Si) was modified with nickel(II)-potassium hexacyanoferrate (NiHCF)-graphene sheets (GS) hybrid and used as a photo-electrochemical (PEC) sensor for non-enzyme hydrogen peroxide (H2O2) detection. A NiHCF film was deposited on the surface of GS/Pt/n-n+-Si electrode by chemical method. The structure and composition of the NiHCF film was characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). PEC behavior of the NiHCF-GS/Pt/n-n+-Si electrode was investigated using cyclic voltammetry (CV) under illumination. The modified electrode has been used as PEC sensor for H2O2 detection with a linear range of 2.0 × 10?6–2.9 × 10?3 M and a detection limit of 1.0 × 10?6 M at a signal-to-noise ratio of 3 in a two-electrode cell with a Pt plate as counter electrode. The characteristics of GS layer have been discussed in both the improvement of sensibility and selectivity.  相似文献   

17.
Nano-sized noble metal nanoparticles doped dielectric composite films with large third-order nonlinear susceptibility due to the confinement and the enhancement of local field were considered to be applied for optical information processing devices, such as optical switch or all optical logical gates. In this paper, sol–gel titania thin films doped with gold nanoparticles (AuNPs, ~10 nm in average size) were prepared. AuNPs were firstly synthesized from HAuCl4 in aqueous solution at ~60 °C, using trisodium citrate as the reducing agent, polyvinylpyrrolidone as the stable agent; then the particle size and optical absorption spectra of the AuNPs in aqueous solutions were characterized by transmitting electron microscopy and UV–Vis–NIR spectrometry. Sol–gel 2AuNPs–100TiO2 (in %mol) thin films (5 layers, ~1 μm in thickness) were deposited on silica glass slides by multilayer dip-coating. After heat-treated at 300–1,000 °C in air, the AuNPs–TiO2 thin films were investigated by X-ray diffraction, scanning electron microscopy and atomic force microscopy. The nonlinear optical properties of the AuNPs–TiO2 thin films were measured with the Z-scan technique, using a femtosecond laser (200 fs) at the wavelength of 800 nm. The third-order nonlinear refractive index and nonlinear absorption coefficient of 2AuNPs–100TiO2 films were at the order of 10?12 cm2/W, and the order of 10?6 cm/W, respectively, and the third-order optical nonlinear susceptibility χ(3) was ~6.88 × 10?10 esu.  相似文献   

18.
A novel electrode was prepared by forming TiO2 thin films using a commercially available TiO2 powder (Degussa P25) on graphite plates for water photoelectrocatalytic decontamination. In addition to, for the first time the photoelectrochemical degradation of 3,4‐dichlorophenol was investigated. The effects of applied potential, pH, and initial 3,4‐dichlorophenol concentration on the photoelectrocatalytic (PEC) degradation of 3,4‐dichlorophenol using ultraviolet (UV) illuminated TiO2/graphite (TiO2/C) thin film electrode was examined and discussed. Also, direct photolysis (DP), electrochemical oxidation (EC), photocatalytic (PC) and photoelectrocatalytic (PEC) degradation of 3,4‐dichlorophenol were compared. Results show that the best responses for PEC are obtained at applied potential 1.2 V versus reference electrode, pH 8.0 and initial 3,4‐dichlorophenol concentration 6.7 mg L?1.  相似文献   

19.
A composite of aminosilane-grafted TiO2 (TA) and graphene oxide (GO) was prepared via a hydrothermal process. The TiO2/graphene oxide-based (TA/GO) anode was investigated in an ionic liquid electrolyte (0.7 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2)) in ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPyrNTf2)) at room temperature and in sulfolane (1 M lithium hexafluorophosphate (LiPF6) in tetramethylene sulfolane (TMS)). Scanning and transmission electron microscopy (SEM and TEM) observations of the anode materials suggested that the electrochemical intercalation/deintercalation process in the ionic liquid electrolyte with vinylene carbonate (VC) leads to small changes on the surface of TA/GO particles. The addition of VC to the electrolyte (0.7 M LiNTf2 in MPPyrNTf2 + 10 wt.% VC) considerably increases the anode capacity. Electrodes were tested at different current regimes in the range 5–50 mA g?1. The capacity of the anode, working at a low current regime of 5 mA g?1, was ca. 245 mA g?1, while a current of 50 mA g?1 resulted in a capacity of 170 mA g?1. The decrease in anode capacity with increasing current rate was interpreted as the result of kinetic limits of electrode operation. A much lower capacity was observed for the system TA/GO│1 M LiPF6 in TMS + 10 wt.% VC│Li.  相似文献   

20.
Develop a photocatalyst system for solar energy conversion to electric energy or chemical energy is a topic of great interest for fundamental and practical importance. In this study, nitrogen-doped TiO2 with high hydrogen production by photocatalytic water splitting were prepared by microwave-assisted hydrothermal method using titanium sulfate as precursor in the presence of urea. The nitrogen doped TiO2 prepared in this study was pure anatase phase with a high surface area (372?m2?g?1) and showed a very high hydrogen evolution rate of water splitting reaction under UV light irradiation (4,386?μmol?g?1?h?1) and visible light irradiation (185?μmol?g?1?h?1) which was about 15?times higher than commercial TiO2 (Degussa P25).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号