首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Colloidal poly(2-vinylpyridine)-silica nanocomposite particles can be efficiently prepared by emulsion polymerization at 60 degrees C using a commercial 20 nm aqueous silica sol as the sole stabilizing agent. Unlike previously reported colloidal nanocomposite syntheses, transmission electron microscopy studies indicate very high silica aggregation efficiencies (88-99%). The key to success is simply the selection of a suitable cationic azo initiator. In contrast, the use of an anionic persulfate initiator leads to substantial contamination of the nanocomposite particles with excess silica sol. The cationic azo initiator is electrostatically adsorbed onto the anionic silica sol at submonolayer coverage, which suggests that surface polymerization may be important for successful nanocomposite formation. Moreover, the 2-vinylpyridine can be partially replaced with either styrene or methacrylic comonomers to produce a range of copolymer-silica nanocomposite particles. The poly(2-vinylpyridine)-silica nanocomposite particles have a well-defined core-shell morphology, with poly(2-vinylpyridine) cores and silica shells; mean diameters typically vary from 180 to 220 nm, and mean silica contents range from 27 to 35% by mass.  相似文献   

2.
Exfoliated graphene particles stabilised by the cationic polyelectrolyte polyethyleneimine (PEI) were used in conjunction with an anionic polyelectrolyte, poly(acrylic acid), to construct multilayers using the layer-by-layer technique on a silica substrate. In the first adsorption step, the surface excess of the cationic graphene was dependent on the overall charge on the nanoparticle which in turn can be tuned through modifying solution pH as PEI has weakly ionisable charged amine groups. The adsorbed amount onto the silica surface increased as the solution pH increased. Subsequently, a layer of PAA was adsorbed on top of the cationic graphene through electrostatic interaction. The multilayer could be assembled through this alternate deposition, with the influence of solution conditions investigated. The pH of the adsorbing solutions was the chief determinant of the overall adsorbed amounts, with more mass added at the elevated pH of 9 in comparison with pH 4. Atomic force microscopy confirmed that the graphene particles were adsorbed to the silica interface and that the surface coverage of the disc-like nanoparticles was complete after the deposition of five graphene-polyelectrolyte bi-layers. Furthermore, the graphene nanoparticles themselves could be modified through the consecutive addition of the oppositely charged polymers. A multilayered assembly of negatively charged graphene sheets modified with a bi-layer of PEI and PAA was also deposited on a silica surface with adsorbed PEI.  相似文献   

3.
The efficient synthesis of all-acrylic, film-forming, core-shell colloidal nanocomposite particles via in situ aqueous emulsion copolymerization of methyl methacrylate with n-butyl acrylate in the presence of a glycerol-functionalized ultrafine silica sol using a cationic azo initiator at 60 °C is reported. It is shown that relatively monodisperse nanocomposite particles can be produced with typical mean weight-average diameters of 140-330 nm and silica contents of up to 39 wt %. The importance of surface functionalization of the silica sol is highlighted, and it is demonstrated that systematic variation of parameters such as the initial silica sol concentration and initiator concentration affect both the mean particle diameter and the silica aggregation efficiency. The nanocomposite morphology comprises a copolymer core and a particulate silica shell, as determined by aqueous electrophoresis, X-ray photoelectron spectroscopy, and electron microscopy. Moreover, it is shown that films cast from n-butyl acrylate-rich copolymer/silica nanocomposite dispersions are significantly more transparent than those prepared from the poly(styrene-co-n-butyl acrylate)/silica nanocomposite particles reported previously. In the case of the aqueous emulsion homopolymerization of methyl methacrylate in the presence of ultrafine silica, a particle formation mechanism is proposed to account for the various experimental observations made when periodically sampling such nanocomposite syntheses at intermediate comonomer conversions.  相似文献   

4.
在纳米二氧化硅水分散介质中,借助于正离子单体甲基丙烯酰氧乙基三甲基氯化铵(MTC)与未改性纳米二氧化硅颗粒之间的电荷作用,通过MTC与甲基丙烯酸甲酯(MMA)的自由基共聚合,制备了草莓型的PMMA/SiO2复合微球.整个制备反应过程中,纳米二氧化硅无需表面处理,体系中无需另外加入乳化剂或助乳化剂,微球表面吸附的纳米二氧化硅对颗粒起稳定作用.详细讨论了纳米二氧化硅初始添加量、MTC浓度对复合微球的平均粒径、复合微球中二氧化硅含量及微球形态的影响.动态光散射粒度分布仪(DLS)测得复合微球粒径在180~300 nm之间,热重分析(TGA)表明复合微球中二氧化硅含量介于16.4%~40.8%之间.透射电镜(TEM)显示所得复合微球具有草莓型结构,二氧化硅于表面富集.  相似文献   

5.
A simple approach to the synthesis of clay-silica nanocomposites is presented. Silica nanorings on the edges of clay sheets were synthesized by using a modified St?ber method. Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and fluorescence spectroscopy were employed to characterize the prepared nanocomposites. TEM results show that the average size of the nanorings increases with the growth of silica. XRD results indicate that the layered structures of clay can be found in the nanocomposite and the growth of silica nanorings expands the d spacing of clay platelets. The mechanism of the formation of the nanorings is discussed. The preparation of polystyrene (PS) brushes on the surfaces of silica nanorings by atom-transfer radical polymerization is also reported. The polymer nanocomposite with negatively charged clay surfaces and hydrophobic polymer brushes on the silica nanorings can be used in Pickering emulsions, and PS colloidal particles with clay-silica on the surfaces were prepared.  相似文献   

6.
Silica/poly(methyl methacrylate) nanocomposite latex particles have been synthesized by emulsion polymerization of methyl methacrylate using a nonionic surfactant: nonylphenol poly(oxyethylene) and three different initiators, namely: 2,2′-azobis(2-amidinopropane) dihydrochloride (AIBA), potassium persulfate (KPS) and azobis(isobutyronitrile) (AIBN), being cationic, anionic and nonionic, respectively. A silica sol with an average diameter of 68 nm was used as the seed. The polymerization reaction was conducted under alkaline conditions in order to evaluate the role of the surface charge of the hydrophilic silica on the coating reaction. AIBA was found to be adsorbed on the silica surface owing to electrostatic interactions of the amidine function of the cationic initiator with the silanolate groups of the oxide surface, while the anionic and the nonionic initiators did not adsorb on silica under the same conditions. Nonetheless, whatever the nature of the initiator, polymerization took place on the silica particles as evidenced by transmission electron microscopy. The extent of interaction between the inorganic surface and the polymer particles was quantified by means of ultracentrifugation and a material balance. As much as 65% by weight of the total polymer formed was found to be present at the silica surface using AIBA, while only 40% for KPS and 25% for AIBN was found to cover the silica particles under alkaline conditions. We demonstrate that by using a cationic initiator and by controlling the pH of the suspension it is possible to significantly decrease the amount of free polymer. Coating of the silica particles took place through a kind of in situ heterocoagulation mechanism. Received: 8 December 2000 Accepted: 22 February 2001  相似文献   

7.
Silica nanoparticles are used in various applications including catalysts, paints and coatings. To reach an optimal performance via stability and functionality, in most cases, the surface properties of the particles are altered using complex procedures. Here we describe a simple method for surface modification of silica nanoparticles (SNP) using sequential adsorption of oppositely charged components. First, the SNPs were made cationic by adsorption of a cationic polyelectrolyte. Poly(allylamine hydrochloride) (PAH) and polyethyleneimine (PEI) were chosen as polycations to investigate the difference between a linear and a branched polyelectrolyte. Next, the dispersion of cationic SNPs was combined with an anionic alkyl ketene dimer (AKD) emulsion. Using this approach cationic, hydrophobic silica particle dispersions were produced. Dynamic light scattering, contact angle measurements and atomic force microscopy (AFM) were used for analyzing the particle and coating layer properties. The chosen polyelectrolyte affected the structure of the dispersion. The layer build-up was studied in detail using a quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorption and layer properties of the cationic polyelectrolytes adsorbed on silica as well as the affinity of AKD to this layer were explored. The application possibilities of the modified particle dispersions were demonstrated by preparing paper and silica surfaces with tailored properties, such as elevated surface hydrophobicity, using an ultrathin coating layer.  相似文献   

8.
A new class of poly(vinyl acetate) (PVAc)/silica nanocomposite particles was successfully prepared in aqueous solution through a facile synthetic process. First, vinyl functionalized silica nanoparticles (VFSs) were synthesized using one-step method in aqueous emulsion, and then the vinyl groups located on the surface of VFSs were used to induced in situ polymerization of vinyl acetate. Scanning electron microscopy (SEM) images showed that VFSs and PVAc/silica nanocomposite particles all revealed highly monodispersed and uniform spheres. Especially, PVAc/silica nanocomposite particles obtained from transmission electron microscopy images presented an obvious core–shell structure, and the thickness of PVAc shell grafting on the surface of VFSs core was about 17 nm. In addition, the influence of the hydrolyzed and condensed time of vinyl triethoxysilane on the size and size distribution of VFSs was also investigated. The results of dynamic light scattering and SEM analysis indicated that the size and size distribution of VFSs decreased gradually with the extension of the reaction time from 6 to 48 h. Moreover, the structures and thermal properties of the samples were characterized via FT-IR and heat-flow DSC–TG.  相似文献   

9.
Effects of pH on mechanical properties as well as morphological studies of sol–gel derived in situ silica in polyvinyl chloride-50% epoxidized natural rubber (PVC-ENR50) nanocomposites are reported. In particular, a range of acid concentrations was investigated. These nanocomposites were prepared by solution casting technique and tetraethoxysilane (TEOS) was used as the silica precursor. The prepared nanocomposites were characterized using tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The tensile test indicated that the highest mechanical strength was at 30% TEOS added for the nanocomposite prepared at pH 2.0. At pH 1.0 and 1.5 the maximum tensile strength reading was at 20% TEOS added with value of 24.3 and 24.5 MPa, respectively. SEM and TEM revealed the dispersion of silica particles in the polymer matrix. For nanocomposites prepared at pH 1.0 and 1.5, the silica particles were finely dispersed with the average size of 60 nm until 20% TEOS added. Meanwhile for nanocomposite prepared at pH 2.0, silica particles were homogenously distributed in the polymer matrix with average diameter of 30 nm until 30% TEOS and agglomerated after 30% TEOS loading.  相似文献   

10.
Summary: Polymer latex particles were synthesized in the presence of inorganic particles, which had been organically-modified to promote favorable interactions with growing macromolecules. The organic modification was performed using three different routes: (1) surface covalent grafting of vinyl trialkoxysilanes, (2) surface adsorption of polyethylene glycol-based macromonomers, and (3) bulk modification through ion exchange with cationic monomers or cationic initiators. Two types of mineral particles were studied: commercial and self-prepared silica particles (with diameters from 80 nm to 1 µm), and commercial laponite clay particles with a cation exchange capacity of 0.75 meq · g−1. Emulsion polymerization was performed in the presence of styrene or butyl acrylate monomers. The morphologies of the nanocomposite particles were observed by (cryogenic) transmission electron microscopy and correlated to the organic modification procedure.  相似文献   

11.
Magnetic poly(acrylic acid‐acrylamide‐butyl methacrylate) (P(AAB)) nanocomposite hydrogels were prepared and used as adsorbents for removal and separation of cationic dyes from aqueous solution. These magnetic P(AAB) nanocomposite hydrogels were characterized by scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). It was found that these magnetic P(AAB) nanocomposite hydrogels had magnetic responsive characters. The dynamic swelling, removal, and separation of cationic dye, crystal violet (CV), and basic magenta (BM) by these magnetic nanocomposite hydrogels were studied. The adsorption capacity and isotherm studies of cationic dyes onto magnetic P(AAB) nanocomposite hydrogels have been evaluated. The magnetic P(AAB) nanocomposite hydrogels containing Fe3O4 particles can be easily manipulated in magnetic field for removal and separation of cationic dyes from aqueous solution. Adsorption process agreed very well with the Langmuir and Freundlich models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Submicrometer-sized polystyrene-silica nanocomposite particles have been prepared by alcoholic dispersion polymerization of styrene using commercial alcoholic silica sols of 13 or 22 nm diameter as the sole stabilizing agent. The key to the formation of colloidally stable nanocomposite particles is the selection of a cationic azo initiator (use of nonionic or anionic initiators leads either to the formation of silica-stabilized polystyrene latex particles with very low silica contents or to the precipitation of polystyrene, respectively). Neither surface modification of the silica sol nor the addition of surfactant or polymeric stabilizers is required for successful nanocomposite syntheses. The purified polystyrene-silica nanocomposite particles have relatively narrow particle size distributions, with mean diameters ranging from 331 to 464 nm as judged by disk centrifuge photosedimentometry. Thermogravimetric analyses indicated mean silica contents of 13-26 wt. %, depending on the synthesis conditions. Calcination of the polystyrene-silica nanocomposite particles leads to the formation of hollow silica shells, which indicates a well-defined core-shell morphology for the original nanocomposite particles.  相似文献   

13.
Lightly cross-linked poly(4-vinylpyridine)-silica nanocomposite microgel particles have been recently reported to act as pH-responsive particulate emulsifiers [Fujii, S.; Read, E. S.; Armes, S. P.; Binks, B. P. Adv. Mater. 2005, 17, 1014]. In this work, the synthesis and performance of such nanocomposite microgel particles are studied in more detail. Scanning electron microscopy, dynamic light scattering, nitrogen microanalyses, thermogravimetric analysis, aqueous electrophoresis, and acid-base titration were used to characterize the nanocomposites in terms of their particle size and morphology, polymer and silica contents, surface compositions, and critical swelling pH, respectively. Depending on the polarity of the oil phase and the purity of the nanocomposite particles, either oil-in-water or water-in-oil emulsions could be prepared at pH 8-9, but not at pH 2-3. These emulsions were characterized in terms of their emulsion type, mean droplet diameter, and morphology using electrical conductivity, light diffraction, and both electron and optical microscopy. In some cases, rapid demulsification could be induced by lowering the solution pH: addition of acid led to protonation of the 4-vinylpyridine residues, which imparted cationic microgel character to the nanocomposite particles. Cross-linking of the nanocomposite microgel particles is essential for their optimum performance as a pH-responsive emulsifier, but unfortunately it is not sufficient to allow recycling.  相似文献   

14.
A novel method is proposed to create asymmetrically nanoparticle-supported, monodisperse composite dumbbells. The method consists of the three steps of double soap-free emulsion polymerizations before and after a heterocoagulation. In the first step, soap-free emulsion polymerization was conducted to cover silica cores with cross-linked poly(methyl methacrylate) (PMMA) shells. Then, positively or negatively charged silica nanoparticles were heterocoagulated with the silica-PMMA core-shell particles. In the heterocoagulations, the nanoparticles surface-modified with a cationic silane coupling agent, 3-aminopropyltriethoxysilane, were used as the positively charged ones, and silica nanoparticles without any treatment were used as the negatively charged ones. In the third step, soap-free polymerizations at different pH values were performed to protrude a polystyrene (PSt) bulge from the core-shell particles supporting the charged silica nanoparticles. In the polymerization, the core-shell particles heterocoagulated with the positively charged silica nanoparticles were aggregated in an acidic condition whereas the silica nanoparticles supported on the core-shell particles were dissolved in a basic condition. For the negatively charged silica nanoparticle, a PSt bulge was successfully protruded from the core-shell particle in acidic and neutral conditions without aggregation of the core-shell particles. The protrusion of the PSt bulge became distinctive when the number of heterocoagulated silica nanoparticles per core-shell particle was increased. Additional heterocoagulation experiments, in which positively or negatively charged magnetite nanoparticles were mixed with the asymmetrically nanoparticle-supported composite dumbbells, confirmed direct exposure of silica nanoparticles to the outer solvent phase.  相似文献   

15.
Inorganic/organic nanocomposite systems, in which inorganic particles are encapsulated into the polymer matrix, are new classes of polymeric materials. These materials combine the properties of both components. It means that polymer component with excellent optical property, flexibility and toughness could improve the brittleness of inorganic particles and besides, inorganic particles could increase the strength and modulus of polymers. There are various methods to make these inorganic/organic nanocomposites. One of them is the chemical process, in which polymerization is performed directly in the presence of the inorganic particles. Examples of miniemulsion, suspension or dispersion polymerization can be found in the literature but emulsion polymerization is by far the technique most frequently used.In this work, latex containing nanostructure hybrid of copolymer (styrene, methyl methacrylate, acrylic acid) and inorganic nanoparticles (silica) with core/shell structure was prepared via semi-batch emulsion polymerization. At first, silica nanoparticles were dispersed in water phase in an ultrasound bath to prevent the aggregation of nanoparticles, and then emulsion polymerization was performed in the presence of silica nanoparticles. Related tests and analysis confirmed the success in synthesis of nanostructure hybrids. Induced coupled plasma (ICP) analysis and thermal gravimetric analysis (TGA) showed the presence and amount of silica nanoparticles in the final latex. Dynamic light scattering (DLS) analysis confirmed the presence of 25-35 nm particles in the system and transmission electron microscopy (TEM) showed the core/shell morphology of nanoparticles. It has been shown that with an appropriate surfactant, adjusting the pH of media, using suitable monomers and under controlled conditions, it would be possible to produce stable organic/inorganic composite nanoparticles with core/shell structure. In another attempt and in order to investigate the effect of compatiblizing system, styrene-methyl methacrylate was copolymerized in the presence of modified silica particles with oleic acid as the inorganic dispersed phase at the same condition. Similar characterizations were performed in order to have a worthwhile comparison. The results for the late procedure show the effect of oleic acid in formation of aggregates as the core for polymeric nanocomposite particles.  相似文献   

16.
Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy was used to study the adsorption of charged silica particles onto TiO(2) particles coated with anionic sodium polyacrylate (NaPA) or cationic poly(diallyldimethylammonium) chloride (PDADMAC). To the best of our knowledge, this is the first time that IR spectroscopy has been used to study the interaction of a polymer layer on one particle with a second different particle. The results show that, once adsorbed on the TiO(2) particle, the PDADMAC or the NaPA does not transfer to the silica particles. In the case of NaPA coated TiO(2), positively charged silica particles deposit on the TiO(2) and this is accompanied by a change in the relative intensities of the bands due to COOH and COO(-) groups. From this change in band intensity, it is calculated that only approximately 6% of the COO(-) groups located in the loops and tails bind to the silica particle. This shows that the polymer bridges the two particles through an electrostatic interaction with the outer COO(-) groups. Similarly, in the case of the TiO(2) particles coated with PDADMAC, negatively charged silica deposits on the TiO(2) and this is accompanied by an increase in intensity of the symmetric bending mode of the (+)N(CH(3))(3) group. This change in band intensity arises from the binding of these cationic sites of the polymer to the negative surface sites on the silica.  相似文献   

17.
This article presents a facile, effective, mild synthesis process for well‐defined hollow spheres by using cationic polystyrene (PS) submicro‐particles as templates. In this approach, the cationic PS templates can be first prepared via emulsifier‐free polymerization by using the cationic monomer 2‐(methacryloyloxy) ethyltrimethylammonium chloride as comonomer, then, the silica shells from the sol‐gel process of tetraethoxysilane were coated on the surfaces of template particles via electrostatic interaction, finally the PS was dissolved in situ by modification of the reaction conditions in the same medium to form monodisperse hollow silica spheres with controlled shell thickness. Fourier transform‐infrared spectroscopy, thermogravimetric analysis, Brunauer‐Emmett‐Teller, transmission electron microscopy, and scanning electron microscope measurements were used to characterize these hollow silica spheres. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1332–1338, 2010  相似文献   

18.
用纳米SiO2颗粒与微量氨基酸型两性表面活性剂十二烷基氨基丙酸钠作复合乳化剂, 以正癸烷为油相, 制备了pH响应性O/W型Pickering乳状液. 室温下该乳状液在pH≤4.0 时稳定, 在pH≥6.0时不稳定, 因此, 可以通过改变水相的pH值使乳状液在稳定和破乳之间多次循环. 在酸性水介质中, 氨基酸型两性表面活性剂分子呈阳离子状态, 可通过静电作用吸附到带负电荷的SiO2颗粒表面, 产生原位疏水化作用, 使其转变为表面活性颗粒; 而在中性和碱性水介质中, 氨基酸型两性表面活性剂呈两性或阴离子状态, 不能产生原位疏水化作用, 因而导致乳状液破乳. 相关作用机理通过吸附量、 Zeta电位及接触角等实验数据得以论证. 该刺激-响应性Pickering乳状液在乳液聚合、 油品输送以及燃料生产等领域具有重要的应用价值.  相似文献   

19.
The internal nanomorphologies of two types of vinyl polymer-silica colloidal nanocomposites were assessed using electron spectroscopy imaging (ESI). This technique enables the spatial location and concentration of the ultrafine silica sol within the nanocomposite particles to be determined. The ESI data confirmed that the ultrafine silica sol was distributed uniformly throughout the poly(4-vinylpyridine)/silica nanocomposite particles, which is consistent with the "currant bun" morphology previously used to describe this system. In contrast, the polystyrene/silica particles had a pronounced "core-shell" morphology, with the silica sol forming a well-defined monolayer surrounding the nanocomposite cores. Thus these ESI results provide direct verification of the two types of nanocomposite morphologies that were previously only inferred on the basis of X-ray photoelectron spectroscopy and aqueous electrophoresis studies. Moreover, ESI also allows the unambiguous identification of a minor population of polystyrene/silica nanocomposite particles that are not encapsulated by silica shells. The existence of this second morphology was hitherto unsuspected, but it is understandable given the conditions employed to synthesize these nanocomposites. It appears that ESI is a powerful technique for the characterization of colloidal nanocomposite particles.  相似文献   

20.
The multilayer formation between polyelectrolytes of opposite charge offers possibility for creating new tailored materials. Exchanging one or both components for charged nanofibrillated cellulose (NFC) further increases the variety of achievable properties. We explored this by introducing unmodified, low charged NFC and high charged TEMPO-oxidized NFC. Systematic evaluation of the effect of both NFC charge and properties of cationic polyelectrolytes on the structure of the multilayers was performed. As the cationic component cationic NFC was compared with two different cationic polyelectrolytes, poly(dimethyldiallylammoniumchloride) and cationic starch. Quartz crystal microbalance with dissipation (QCM-D) was used to monitor the multilayer formation and AFM colloidal probe microscopy (CPM) was further applied to probe surface interactions in order to gain information about fundamental interactions and layer properties. Generally, the results verified the characteristic multilayer formation between NFC of different charge and how the properties of formed multilayers can be tuned. However, the strong nonelectrostatic affinity between cellulosic fibrils was observed. CPM measurements revealed monotonically repulsive forces, which were in good correspondence with the QCM-D observations. Significant increase in adhesive forces was detected between the swollen high charged NFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号