首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syzygium brachythyrsum is an important folk medicinal and edible plant in Yunnan ethnic minority community of China, however, little is known about the chemical and bio-active properties. The present study is aimed to identify the bioactive constituents with antioxidant and anti-inflammatory properties by an integrating approach. First, two new bergenin derivatives, brachythol A (1) and brachythol B (2), together with eleven known phenolic compounds (3–13) were isolated from bioactive fractions by phytochemical method. Among these isolated chemicals, five bergenin derivatives, along with 3 phenolics were found in Syzygium genus for the first time. Then, a further chemical investigation based on ultra-high-performance liquid chromatography-Q Exactive Orbitrap mass spectrometry resulted in a total of 107 compounds characterized in the bio-active fractions, including 50 bergenin derivatives, among which 14 bergenin derivatives and 14 phenolics were potential new natural chemicals. Most of the isolated compounds showed obvious antioxidant activities, while compounds 11, 12, and 13 had favorable performance. Eight compounds (2–5, 7, and 9–11) showed good inhibitory activity on nitric oxide (NO) production in macrophage RAW 264.7 cells. The structure–activity correlation analysis indicated that the antioxidation and anti-inflammatory activities enhanced when bergenin was esterified with gallic acid, caffeic acid or ferulic acid. This is the first report of bergenins in Syzygium genus and the richness in new bio-active bergenins and gallic acid derivatives indicated that Syzygium brachythyrsum is a promising functional and medicinal resource.  相似文献   

2.
Carapa guianensis is a tree from Meliaceae family traditionally known as andiroba that has a wide range of biological properties, including therapeutic effects, antioxidant activities, insecticidal and repellent effects that can be used in biotechnological approaches to medicine, agriculture, and cosmetic products. Therefore, we aim to explore the biological activities exhibited by this species and their respective biotechnological applications of interest. For this, a systematic review was carried out following the PRISMA guidelines dated from 1993 to 2022 through the Scopus, Web of Science and Agricultural Research Database (Base de Dados da Pesquisa Agropecuária - BDPA), screened for biological activity/bioactive compounds. A total of 129 studies were included in the PRISMA flow analysis. Biological properties and major bioactive compounds, as well as biotechnological approaches could be identified. The biological activity from C. guianensis could be observed in different vegetative parts through diverse methods of extractions. These activities are mainly due to the unsaturated fatty acids and bioactive compounds, such as the limonoids and a small fraction of phenolic compounds. Gedunin-type limonoids, like gedunin and its derivatives, represent the class of compounds that show the highest bioactivities in different applications.  相似文献   

3.
A search for anticancer agents has prompted the design and synthesis of new chalcone, pyrazoline and pyrimidine derivatives as potential epidermal growth factor receptor (EGFR) kinase inhibitors. These derivatives’ binding affinities were predicted by AutoDock, which showed that chalcone, pyrazoline and pyrimidine derivatives as EGFR-kinase inhibitors have good binding energies, ranging from ?10.91 to ?7.32 kcal/mol. These compounds were synthesized and characterized using elemental analysis (CHN analysis) and spectroscopic techniques (FTIR and NMR). Among the pyrazoline derivatives, 4Aiii has revealed a superior in vitro activity, inhibiting the EGFR kinase even at a low concentration of 0.19 μM compared to the pyrimidine derivative, 5Bii. In contrast, the cytotoxic effect of these derivatives was studied against hormonal and non-hormonal breast cancer cell lines. Most of the pyrazoline derivatives were able to express their cytotoxic effect efficiently against hormonal breast cancer but only one pyrimidine derivative managed to express its activity against hormonal breast cancer.  相似文献   

4.
Shexiang Xintongning tablet (SXXTN) is a traditional Chinese medicine (TCM) preparation for the treatment of coronary heart disease (CHD) angina pectoris. However, due to the complexity of the compounds in SXXTN, the active chemical components responsible for the therapeutic effect are still ambiguous. The purpose of our study was to characterize the chemical profile of SXXTN and quantify the representative chemicals. The high-performance liquid chromatography coupled with time-of-flight mass spectrometry (HPLC-QTOF MS) method and gas chromatograph coupled with mass spectrometry (GC–MS) method were utilized to identify the chemical constituents of SXXTN. A total of 140 compounds including alkaloids, ginsenosides, organic acids, esters, triterpenes, phthalides and amino acid were identified in accordance with their retention times, accurate masses and characteristic MS/MS fragment patterns. Forty-four volatile components were characterized by GC–MS through NIST database matching. In the further research of quantitative analysis, 40 non-volatile compounds and 17 volatile compounds were determined and successfully applied for detecting in 7 batches of SXXTN samples by high performance liquid chromatography coupled with triple-quadrupole tandem mass spectrometry (HPLC-QQQ MS) and gas chromatograph coupled with triple-quadrupole tandem mass spectrometry (GC-QQQ MS) in multiple reaction monitoring (MRM) mode, respectively. The quantitative methods were verified in linearity, precision, repeatability stability and recovery. The above results indicated that the established method was practical and reliable for synthetical quality evaluation of SXXTN. In addition, our study might supplement the chemical evidence for disclosing the material basis of its therapeutic effects.  相似文献   

5.
The docking study on a series of furo[1]benzofuran derivatives with ERα has been demonstrated. The synthesis and characterization of a series of furo[1]benzofuran derivatives were described. All the target compounds were conducted to in vitro for the inhibitory activities against human breast cancer strains T-47D, MCF-7 and toxicity against human liver normal cell strains HL7702 via MTT assay. Most of the target compounds possessed anti-estrogen receptor-dependent breast cancer activities with weak toxicity to healthy cell strains. The preliminary structure–activity relationships were discussed.  相似文献   

6.
《印度化学会志》2023,100(6):100997
Schiff bases are versatile compounds for the design of the ternary complex. An experiment has been made to synthesize two novel complexes of Co(II). Here, The primary ligand, L1 was prepared by the condensation reaction of o-toluidine with 3-formyl chromone or o-toluidine with 3- methylquinolinecarbaldehyde and the secondary ligand which was 8-Hydroxyquinoline. These potent complexes were prepared by condensation of primary and secondary ligands with Cobalt salt. The reaction was performed through the conventional reflux method. The newly synthesized chromone and quinoline derived novel compounds are proposed to have significant antimicrobial activity against selective strains of bacteria and fungi. This can be great opportunity for researchers and the use of biological applications of the synthesized novel compounds can be a part of unique field of research for the future to be focus. Chromone derivative has great biological diversity in the medicinal and pharmaceutical fields. Along with these compounds, quinoline derivatives also have antibacterial, and antifungal activities. The synthesized ligand and complex were characterized by elemental analysis, molecular weight determination, magnetic moment measurement, melting point determination, spectral analysis (IR, UV–Vis, 1H NMR, Mass, etc.), and X-ray diffraction. The synthesized complexes were paramagnetic and non-electrolytic in nature. The Uv–Vis, FTIR, NMR, and Mass spectra suggest the octahedral geometry of the complexes. The synthesized compounds were further evaluated for biological studies against selected bacterial and fungal strains. It has been observed that the antimicrobial activity of most of the complexes are better than that of ligands.  相似文献   

7.
8.
Fructus Psoraleae (FP), the dried ripe fruit of Psoralea corylifolia L., is a popular herbal medicine commonly applied for alleviating osteoporosis and vitiligo. But, until now, the dynamic variations of compounds in P. corylifolia have been less investigated during its growth, storage, and treatment by different temperatures, which is meaningful for guaranteeing the quality of FP. In this study, focused on these questions, with emphasis on the enzyme-driven dynamic transformation of coumarins, ultra-high performance liquid chromatography coupled with photodiode array detector (UHPLC-PDA) method was successfully established for the simultaneous determination of nine compounds. The distribution and accumulation of compounds were discussed and illuminated in different parts of P. corylifolia and samples harvested at different times. The characteristics of compounds' variation in flowers and fruits of P. corylifolia were identified. Through the market survey and quantitative study on FP, positive correlation was speculated between transformation from (iso)psoralenoside to (iso)psoralen via β-glucosidase and storage time, which was further confirmed by accelerated stability test. The effect of treated temperatures (40–210 °C) was unveiled on the enzyme activity and transformation from (iso)psoralenoside to (iso)psoralen in FP. And the focused compounds' transformation was mainly driven by β-glucosidase when the temperature was below 120 °C. Above 120 °C, β-glucosidase was completely inactivated, and the focused compounds' transformation was mediated by high-temperature, also the obvious degradation was found. Our results demonstrated that compounds' transformation characteristics arising from the growth, processing and storage of P. corylifolia are critical factors to ensure the quality of FP.  相似文献   

9.
In this study, a series of trifluoromethyl pyrimidine derivatives 5a-5v were designed and synthesized. All synthetic compounds were original. Bioassay results showed that some of the target compounds were proved to have higher antiviral and antifungal activities than those of commercial agents. Especially, EC50 values of the curative activity of compound 5j and the protection activity of compound 5m were 126.4 and 103.4 µg/mL, respectively, which were lower than that of ningnanmycin. Microscale thermophoresis experiment proved that there was a good interaction between compound 5m and TMV-CP. Meanwhile, the antifungal activity results showed that compound 5u had a significant on in vitro against Rhizoctonia solani (RS) activity, with the EC50 value of 26.0 µg/mL, which was equal to that of azoxystrobin. As well, in vivo experiments on rice leaves showed that compound 5u could effectively control RS, and the effect of 5u on the cell morphology of RS was observed by scanning electron microscopy.  相似文献   

10.
《Arabian Journal of Chemistry》2020,13(12):9145-9165
A series of novel 3, 4-dihydro-3-methyl-2(1H)-quinazolinone derivatives with substituted amine moieties (113) and substituted aldehyde (S) were designed and synthesized by a reflux condensation reaction in the presence of an acid catalyst to get N-Mannich bases. Mannich bases were evaluated pharmacologically for their antioxidant, α-amylase enzyme inhibition, antimicrobial, cell cytotoxicity and anti-inflammatory activities. Most of the compounds exhibited potent activities against these bioassays. Among them, SH1 and SH13 showed potent antioxidant activity against DPPH free radical at IC50 of 9.94 ± 0.16 µg/mL and 11.68 ± 0.32 µg/mL, respectively. SH7, SH10 and SH13 showed significant results in TAC and TRP antioxidant assays, comparable to that of ascorbic acid. SH2 and SH3 showed potent activity in inhibiting α-amylase enzyme at IC50 of 10.17 ± 0.23 µg/mL and 9.48 ± 0.17 µg/mL, respectively, when compared with acarbose (13.52 ± 0.19 µg/mL). SH7 was the most active against gram-positive and gram-negative bacterial strains, SH13 being the most potent against P. aeruginosa by inhibiting its growth up to 80% (MIC = 11.11 µg/mL). SH4, SH5 and SH6 exhibited significant activity against some fungal strains. Among the thirteen synthesized compounds (SH1-SH13), four were screened out based on the results of brine shrimp lethality assay (LD50) and cell cytotoxicity assay (IC50), to determine their anti-cancer potential against Hep-G2 cells. The study was conducted for 24, 48, and 72 h. SH12 showed potent results at IC50 of 6.48 µM at 72 h when compared with cisplatin (2.56 µM). An in vitro nitric oxide (NO) assay was performed to shortlist compounds for in vivo anti-inflammatory assay. Among shortlisted compounds, SH13 exhibited potent anti-inflammatory activity by decreasing the paw thickness to the maximum compared to the standard, acetylsalicylic acid (ASA).  相似文献   

11.
Due to the presence of various phenolic compounds in D.sophia, this plant may have an inhibitory effect on α-Glc and ultimately diabetes control. Therefore, this work aims to scrutinize total phenolic, flavonoid contents, antioxidant capacity, and α-Glc inhibitory activity in aerial parts of methanolic D.sophia extract. The methanolic flower extracts were selected from among aerial parts for the experimental study of anti-diabetic effects by α-Glc inhibitory assays. The flower extracts were also studied by GC/MS to detect the compounds. The total phenolic and flavonoid contents were 21.38 ± 0.93 GAE/g and 96.2 ± 0.20 QE/g, respectively. The IC50 value of flower extract for α-Glc inhibition with mixed (Competitive/non-competitive) mode was found to be 20.34 ± 0.11 mg/ml. Furthermore, in-vivo studies showed that the blood glucose level reduced after consumption of flower extract compared to the control group. Twenty-one compounds were identified by GC/MS technique. These compounds were assessed for high docking scores against α-Glc in silico. Docking score calculations exhibited that the DES-α-Glc complex had a significantly higher binding energy (-6.13 Kcal/mol) than other compounds. The DES-α-Glc complex which displayed a higher docking energy value than the ACR was subjected to MDs studies. The findings of this study suggest that the flower extract of D.sophia can be used as a suitable additive in syrups or foods with anti-diabetic capacity.  相似文献   

12.
13.
Inspired by the wide application of amides in plant pathogens, a series of novel 1-substituted-5-trifluoromethyl?1H?pyrazole-4-carboxamide derivatives were designed and synthesized. Bioassay results indicated that some target compounds exhibited excellent and broad-spectrum in vitro and certain in vivo antifungal activities. Among them, the in vitro EC50 values of Y13 against G. zeae, B. dothidea, F. prolifeatum and F. oxysporum were 13.1, 14.4, 13.3 and 21.4 mg/L, respectively. The in vivo protective activity of Y13 against G. zeae at 100 mg/L was 50.65%. SAR analysis revealed that the phenyl on the 1-position of the pyrazole ring was important for this activity. An antifungal mechanism study of Y13 against G. zeae demonstrated that this compound may disrupt the cell membrane of mycelium, thus inhibiting the growth of fungi. These mechanistic study results were inconsistent with those for traditional amides and may provide a novel view for deep study of this series of pyrazole carboxamide derivatives.  相似文献   

14.
Halogenated inhibitors showed robust, reversible, and selective monoamine oxidase-B (MAO-B) inhibitory efficacy in candidates that were derived from them. Our team has previously synthesized and assessed a panel of halogenated chalcones and coumarin for the study on MAO-B inhibition. The aim of this study was to build GA-MLR based QSAR models and predictive 3D Pharmacophore models, as well as to investigate the relationship between halogenated derivatives and MAO-B inhibitory activity. The robust statistical significance in the parameter (R2 = 0.78 and Q2 = 0.69) was demonstrated. Best Hypo1 contains one hydrophobic and two aromatic rings. The lead molecule for quantum mechanics was performed, and it was revealed that it would bind to proteins and provide stability. To determine the stability of the ligand-enzyme complex, a thorough molecular dynamics analysis of the lead compounds was accomplished.  相似文献   

15.
Vanadate and vanadium compounds exist in many environmental, biological and clinical matrices, and despite the need only limited progress has been made on the analysis of vanadium compounds. The vanadium coordination chemistry of different oxidation states is known, and the result of the characterization and speciation analysis depends on the subsequent chemistry and the methods of analysis. Many studies have used a range of methods for the characterization and determination of metal ions in a variety of materials. One successful technique is high performance liquid chromatography (HPLC) that has been used mainly for measuring total vanadium level and metal speciation. Some cases have been reported where complexes of different oxidation states of vanadium have been separated by HPLC. Specifically reversed phase (RP) HPLC has frequently been used for the measurement of vanadium. Other HPLC methods such as normal phase, anion-exchange, cation-exchange, size exclusion and other RP-HPLC modes such as, ion-pair and micellar have been used to separate selected vanadium compounds. We will present a review that summarizes and critically analyzes the reported methods for analysis of vanadium salts and vanadium compounds in different sample matrices. We will compare various HPLC methods and modes including sample preparation, chelating reagents, mobile phase and detection methods. The comparison will allow us to identify the best analytical HPLC method and mode for measuring vanadium levels and what information such methods provide with regard to speciation and quantitation of the vanadium compounds.  相似文献   

16.
A series of novel thiazolidine-4-one derivatives was synthesized by reacting 1,4-disubstituted hydrazine carbothioamides with diethyl azodicarboxylate. The structures were confirmed by spectroscopic data as well as single-crystal X-ray analyses. The antiproliferative activity of the synthesized compounds was investigated against four human cancer cell lines using an MTT assay. Compounds 5d, 5e, and 5f revealed the most potent antiproliferative activity with GI50 values ranging from 0.70 µM to 1.20 µM, compared to doxorubicin GI50 value = 1.10 µM. Compounds 5d, 5e, and 5f were further investigated for their inhibitory activities against CDK2 and EGFR as potential targets for their molecular mechanism. Compounds 5e and 5f have showed potent inhibitory activity to CDK2 enzyme with IC50 values of 18 and 14 nM, which is more potent than the reference dinaciclib (IC50 = 20 nM). Moreover, compounds 5e and 5f were the most potent EGFR inhibitors, with IC50 values of 93 and 87 nM, respectively, compared to the reference erlotinib (IC50 = 70 nM). In addition, the most potent derivatives were tested for their apoptotic activity against caspases 3, 8, and 9, and the results showed that compounds 5d, 5e, and 5f revealed a greater increase in active caspases 3,8 and 9 than doxorubicin. Also, compounds 5d, 5e, and 5f elevated cytochrome C levels in the MCF-7 human breast cancer cell line by about 15.5, 15.8, and 16.5 times, respectively. Finally, a molecular docking study was performed to investigate the binding sites of these compounds within the active sites of CDK2 and EGFR targets, and the results confirmed that the most potent CDK2 and EGFR inhibitor 5h also have showed the highest docking score.  相似文献   

17.
The Camellia sinensis plant provides a wide diversity of black, green, oolong, yellow, brick dark, and white tea. Tea is one of the majorly used beverages across the globe, succeeds only in the water for fitness and pleasure. Generally, green tea has been preferred more as compared to other teas due to its main constituent e.g. polyphenols which contribute to various health benefits. The aim of this updated and comprehensive review is to bring together the latest data on the phytochemistry and pharmacological properties of Camellia sinensis and to highlight the therapeutic prospects of the bioactive compounds in this plant so that the full medicinal potential of Camellia sinensis can be realised. A review of published studies on this topic was performed by searching PubMed/MedLine, Scopus, Google scholar, and Web of Science databases from 1999 to 2022. The results of the analysed studies showed that the main polyphenols of tea are the four prime flavonoids catechins: epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), and epicatechin (EC) along with the beneficial biological properties of tea for a broad heterogeneity of disorders, including anticancer, neuroprotective, antibacterial, antiviral, antifungal, antiobesity, antidiabetes and antiglaucoma activities. Poor absorption and low bioavailability of bioactive compounds from Camellia sinensis are limiting aspects of their therapeutic use. More human clinical studies and approaching the latest nanoformulation techniques in nanoparticles to transport the target phytochemical compounds to increase therapeutic efficacy are needed in the future.  相似文献   

18.
The phytochemical investigation on the chemical constituents of dichloromethane-methanol (1:1) stem-bark extract of Cola lateritia K. Schum. (Sterculiaceae) led to the isolation and characterization of five pentacyclic triterpenoids, one fatty acid and two phytosteroids. The compounds were identified as heptadecanoic acid (1), maslinic acid (2), betulinic acid (3), lupenone (4), lupeol (5), friedelin (6), β-stigmasterol (7) and ß-sitosterol-3-O-ß-D-glucoside (8). Their structures were determined by NMR analysis (1H, 13C, DEPT-135, COSY, HMBC and HSQC), high-resolution mass spectrometry (HR-ESI-MS) and comparisons with published data in the literature. This work, to the best of our knowledge, is the first isolation and identification of these compounds in pure forms from Cola lateritia. Also, compounds 13 are reported for the first time from Cola genus. In vitro antibacterial activity of the isolated compounds (18) and the crude extract were evaluated against Bacillus subtilis, Staphylococcus epidermidis, Enterococcus faecalis, Mycobacterium smegmatis, Staphylococcus aureus, Enterobacter cloacae, Klebsiella oxytoca, Proteus vulgaris, Klebsiella pneumonia, Escherichia coli, Proteus mirabilis and Klebsiella aerogenes with streptomycin, nalidixic acid and ampicillin as standard antibacterial drugs. Compound 2 was active against E. faecalis (MIC = 18.5 µg/mL), and it was 6.9 and 28 times lower and active than that of streptomycin (MIC 128 µg/mL) and nalidixic acid (MIC > 512 µg/mL) respectively. All the isolated compounds and crude extract showed significant activities against the tested bacterial strains.  相似文献   

19.
Heterocyclic compounds occupy an important position in chemistry because of their wide range of uses in drug design, photochemistry, agrochemicals, and other fields. Indole and indazole scaffolds are available from natural and synthetic sources, and molecules containing these scaffolds have been shown to have various biological effects, including anti-inflammatory, antibacterial, antiviral, antifungal, analgesic, anticancer, antioxidant, anticonvulsant, antidepressant, and antihypertensive activities. Indole and indazole molecules bind to receptors with high affinity, and thus are useful for the study of bioactive compounds involved in multiple pathways. In this review, we highlight the antihypertensive activity and the mechanisms of action of indole and indazole derivatives. In addition, structure–activity relationship studies of the antihypertensive effect are presented.  相似文献   

20.
Conjugate polymers provide the possibility of exploiting both the chemical and physical attributes of the polymers for membrane-based gas separation. The presence of delocalized π electrons provides high chain stiffness with low packing density, thus making the membrane a rigid structure that favors facilitated transport. Historically, the polymeric membranes were constrained by the tradeoff relationship between gas permeability and gas selectivity. So, different methods were investigated to prepare the membranes that can overcome the limitation. In recent years, electroconductive polymeric membranes have gained attention with their enhanced transportation properties combining the separation behavior depending on both molecular size discrimination as well as the facilitated transport. They offer better selectivity toward polar gases such as CO2 because of the increased solubility. This review is aimed to provide a literature survey on gas separation using conjugate polymers such as polyaniline, polypyrrole, and some derivatives of polythiophenes. It contains various methods used by different researchers to enhance the gas separation properties of the membranes with improved mechanical and thermal stability such as changing the morphology and membrane preparation methods. In addition, it provides the pros and cons of various factors affecting the conjugate polymer membrane performance. The major challenges and future work that can be done in improving the transportation properties through the membrane to achieve viable membranes are also discussed so that they can be used for commercial and practical applications in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号