首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 392 毫秒
1.
《Liquid crystals》2001,28(7):1009-1015
Chiral non-symmetric dimeric liquid crystals consisting of a cholesteryl ester moiety as chiral entity and a biphenyl aromatic core, interconnected through n-butyl (C4) or n-pentyl (C5) parity alkylene spacers, have been synthesized and investigated for their liquid crystalline properties. All the dimers exhibit enantiotropic mesophases. The first member of the dimers having the C4 central spacer exhibit only the chiral nematic (N*) mesophase, while the higher homologues also show smectic A (SmA) and twist grain boundary (TGB) mesophases. The dimers of the other series containing the C5 central spacer also have stable SmA, TGB and N* mesophases, except for the first which does not show the TGB phase. Both series of compounds show a weak odd-even effect with terminal alkyl chain substitution, while the spacer length has a marked influence on the phase transition temperatures.  相似文献   

2.
Some new unsymmetrical dimers consisting of a cholesteryl ester moiety, covalently linked to either a 4'-(2,3-difluoro-4-n-octyloxy) biphenyloxy or a 4'-(2,3-difluoro-4-n-decyloxy) biphenyloxy through odd-even parity paraffinic central spacers, have been synthesized and investigated for their mesomorphic behaviour. Except for one, all the dimers exhibit enantiotropic smectic A, twist grain boundary (TGB) and chiral nematic mesophases. Five of the eight unsymmetrical dimers synthesized show a chiral smectic C (SmC*) phase. Interestingly in some of the compounds the SmC* exists over a wide temperature range including room temperature. Among the eight compounds, a dimer having a C7 central paraffinic spacer and a C8 alkoxy terminal chain shows an enantiotropic twist grain boundary with SmC* blocks (TGBC*) phase. It appears that the variation in the length of the spacer has a remarkable influence on the phase transition temperatures as well as on the mesomorphic behaviour.  相似文献   

3.
Optical studies of smectic phases have been performed in homogeneously oriented samples of chiral 4-(2'-methylbutyl) phenyl-4'-n-octylbiphenyl-4-carboxylate (CE8). The helix structure has been found in smectic phases C, I and J, but not in the smectic G phase. Two chiral phases have been found between SI* and SG phases. Up to now one of them has not been observed. The pitch of the helix has been measured in all of the twisted smectic phases, including the SJ* phase. The existence of the helix in this phase suggests that the correlations between smectic layers are not very strong.  相似文献   

4.
The synthesis and characterization of cholesterol-based dimesogenic bidentate ligands and their Cu(II) and Pd(II) metallomesogens are reported in detail. To understand structure-property relationships in these materials the terminal alkoxy chains and the central metal atom have been varied. Our studies reveal that chiral dimesogenic bidentate ligands with n -butyloxy chains exhibit smectic A (SmA), twist grain boundary and chiral nematic (N * ) mesophases while substitution with either n -decyloxy or 3,7-dimethyloctyloxy chains also show a ferroelectrically switchable chiral smectic C (SmC * ) mesophase. The metal complexes with n -butyloxy chains show only the SmA phase whereas higher chain length derivatives exhibit N * phase irrespective of the metal atom present. The ligands are thermally stable whereas their metal complexes, especially Pd(II) systems, seem to be heat sensitive. Spontaneous polarization, response time and tilt angle measurements have been carried out in the smectic C * phase of the two ligands.  相似文献   

5.
A series of novel calamatic liquid crystals based on a polar benzo[c]cinnoline moiety were efficiently prepared through a facile route. Rich smectic mesophases were induced by the monoalkylated and dialkylated molecular design, including highly ordered smectic mesophases in the rectangular and hexagonal orders. Dialkylated phenylbenzocinnoline derivatives showed a very wide temperature range over 150°C for smectic C (SmC) phase, while the monoalkylated ones only presented the low-ordered mesophases, which exhibited a bilayer structure in crystalline phase. From pronounced reversible redox waves in a cyclic voltammogram and low-lying lowest unoccupied molecular orbital level of about ?3.2 eV indicated possible electron-transporting behaviour. In addition, a switching behaviour originating from ferroelectricity in SmC* induced by chiral dopant was observed.  相似文献   

6.
Among unsymmetric oligomesogens, chiral dimers formed by connecting a cholesteryl ester fragment with various aromatic mesogenic cores through a polymethylene spacer have been attracting much attention due to their remarkable thermal behaviour. In particular, dimers containing a diphenylacetylene segment having an alkoxy chain have shown interesting mesomorphic behaviour. In view of this a new series of unsymmetric dimers consisting of a diphenylacetylene moiety having an alkyl chain and a cholesteryl ester unit joined through a paraffinic spacer have been synthesized and their liquid crystalline properties characterized. The lengths of the central methylene spacer (C3, C4, C5 and C7) as well as that of the alkyl chain (n-butyl, n-pentyl, n-hexyl and n-heptyl) have been varied to establish structure-property relationships. These investigations have revealed that all the dimers exhibit smectic A, twist grain boundary and chiral neamtic (N*) phases with the exception of one of the dimers for which only the N* phase was observed. Some differences in the mesomorphic properties of the unsymmetric dimers containing odd or even parity methylene spacers have been observed. The majority of dimers having an even (C4) parity paraffinic spacer show a blue phase while the dimers with odd (C3, C5 and C7) parity spacers exhibit the chiral smectic (SmC*) phase. In some cases, the SmC* phase exists well below (-60°C) and above room temperature.  相似文献   

7.
The synthesis and characterization of cholesterol-based dimesogenic bidentate ligands and their Cu(II) and Pd(II) metallomesogens are reported in detail. To understand structure-property relationships in these materials the terminal alkoxy chains and the central metal atom have been varied. Our studies reveal that chiral dimesogenic bidentate ligands with n-butyloxy chains exhibit smectic A (SmA), twist grain boundary and chiral nematic (N*) mesophases while substitution with either n -decyloxy or 3,7-dimethyloctyloxy chains also show a ferroelectrically switchable chiral smectic C (SmC*) mesophase. The metal complexes with n-butyloxy chains show only the SmA phase whereas higher chain length derivatives exhibit N* phase irrespective of the metal atom present. The ligands are thermally stable whereas their metal complexes, especially Pd(II) systems, seem to be heat sensitive. Spontaneous polarization, response time and tilt angle measurements have been carried out in the smectic C* phase of the two ligands.  相似文献   

8.
We report the synthesis and mesomorphic behaviour of alkoxybiphenyl resorcylate and vanillate derivatives with a chiral moiety obtained from chloro analogues of L-leucine, L-valine and L-isoleucine. The compounds have been characterized by NMR spectroscopy and the mesophases studied by DSC and optical microscopy. In the synthesized compounds, an enantiotropic chiral smectic C phase over a wide temperature range has been observed. Changes in the phase behaviour caused by structural variations in the core and the optically active alkyl chain are also discussed.  相似文献   

9.
The biphenylyl esters of the 4-n-alkoxyphenylpropiolic acids are a unique family of liquid-crystalline materials. In particular, when the biphenyl moiety of the compounds carries a chiral end-group, many optically active mesophases are created which exhibit unusual structures and physical properties. For instance, when the chiral group attached to the biphenyl moiety is 1-methylheptyl then Abrikosov, twist grain boundary smectic A* and antiferroelectric smectic C* phases are observed. The wide variety of chiral phases and electrochiral properties exhibited by this family of materials makes them ideal candidates for exploring chirality in the liquid-crystalline state. These investigations allow us to contrast and compare chirality dependent phenomena in liquid crystals, thereby producing a broader view of the concept of chirality in organized fluids than is traditionally presented.  相似文献   

10.
A homologous series of fluoro-substituted chiral liquid crystals derived from (S)-lactic acid and alkoxyethanols were prepared for investigation. Mesophases and their corresponding transition temperatures were identified by polarized optical microscopy and differential scanning calorimetry. The compounds exhibit a broad temperature range in the ferroelectric chiral smectic C (SmC*) phase; in particular, compounds with shorter alkyl chain lengths have an SmC* phase at ambient temperature. The physical properties of the ferroelectric SmC* phase, such as switching current, spontaneous polarization, optical tilt angle and electro-optical response, were also measured. The effects of fluoro substituent on the mesophases and physical properties of the chiral liquid crystals are discussed.  相似文献   

11.
The electro-optic and complex dielectric behaviour of an antiferroelectric liquid crystal 4-(1-methylheptyloxycarbonyl)phenyl 4'-(n-butanoyloxyprop-1-oxy)biphenyl-4-carboxylate, having chiral SmCA* and hexatic smectic phases, have been investigated. Complex dielectric permittivities were measured as a function of frequency, d.c. bias field and temperature. Spontaneous polarization was measured by the current reversal technique; tilt angle was measured under a polarizing microscope using a low frequency electric field. The electro-optic properties and dielectric behaviour of the material are compared with results obtained by DSC and polarizing optical microscopy. Dielectric relaxation processes in SmCA* and hexatic smectic phases were determined. The dielectric strength at the SmCA* to hexatic smectic phase transition is discussed in terms of coupling between the long range bond orientational order and smectic C director. It seems from the results of spontaneous polarization and dielectric relaxation spectroscopy that the material might possess an additional phase between the SmCA* and hexatic smectic I* phases.  相似文献   

12.
Some new unsymmetrical dimers consisting of a cholesteryl ester moiety, covalently linked to either a 4′-(1,3-difluoro-4-n-octyloxy) biphenyloxy or a 4′-(2,3-difluoro-4-n-decyloxy) biphenyloxy through odd-even parity paraffinic central spacers, have been synthesized and investigated for their mesomorphic behaviour. Except for one, all the dimers exhibit enantiotropic smectic A, twist grain boundary (TGB) and chiral nematic mesophases. Five of the eight unsymmetrical dimers synthesized show a chiral smectic C (SmC*) phase. Interestingly in some of the compounds the SmC* exists over a wide temperature range including room temperature. Among the eight compounds, a dimer having a C7 central paraffinic spacer and a C8 alkoxy terminal chain shows an enantiotropic twist grain boundary with SmC* blocks (TGBC*) phase. It appears that the variation in the length of the spacer has a remarkable influence on the phase transition temperatures as well as on the mesomorphic behaviour.  相似文献   

13.
We propose a simple phenomenological model which is able to account for the various twist grain boundary (TGB) phases, including the recently discovered undulating twist grain boundary-C* (UTGBC*) phase. In the UTGBC* phase, the smectic C* (SmC*)-like blocks and the grain boundaries separating them undulate to form a two-dimensional square lattice perpendicular to the TGB helix axis. We treat the grain boundaries separating adjacent smectic blocks as interfaces with an anisotropic interfacial tension. At moderate chiral strengths we find a TGBA-TGBC-SmC* sequence. As the chiral strength is increased this goes to the sequence TGBA-UTGBC*-SmC*. Such sequences have been observed experimentally.  相似文献   

14.
Chiral non-symmetric dimeric liquid crystals consisting of a cholesteryl ester moiety as chiral entity and a biphenyl aromatic core, interconnected through n-butyl (C4) or n-pentyl (C5) parity alkylene spacers, have been synthesized and investigated for their liquid crystalline properties. All the dimers exhibit enantiotropic mesophases. The first member of the dimers having the C4 central spacer exhibit only the chiral nematic (N*) mesophase, while the higher homologues also show smectic A (SmA) and twist grain boundary (TGB) mesophases. The dimers of the other series containing the C5 central spacer also have stable SmA, TGB and N* mesophases, except for the first which does not show the TGB phase. Both series of compounds show a weak odd-even effect with terminal alkyl chain substitution, while the spacer length has a marked influence on the phase transition temperatures.  相似文献   

15.
We investigated the correlation between orientational order and microscopic organization of the molecules in smectic A and chiral (racemic) smectic C phases by means of solid-state C-13 NMR, powder X-ray diffraction, and electrooptical measurements. The compounds under investigation are 4-((S)-2-methyloctanoyl)phenyl 4'-nonylbiphenyl-4-carboxylate ((S)-MONBIC) and its corresponding racemic compound ((S, R)-MONBIC). Static C-13 NMR indicates that: (1) the orientational angle of the tail with respect to the magnetic field decreases slightly both in the SA and S*C phases as decreasing temperature, and (2) the angle of the core with respect to the field decreases in the SA phase but increases in the S*C phase as decreasing temperature. Analysis of C-13 T1 reveals that the dynamic molecular deformation for the core part can occur near the transition. We discuss the dynamic molecular deformation in comparison with the reorientation of the director at the SA to S*C transition. Based on the experimental results, we propose the structural model in which describes the microscopic organization of the molecules in the mesophases.  相似文献   

16.
4-[(S)-2-Methylbutoxycarbonyl]phenyl 4-[(4-n-alkoxy-2,3,5,6-tetrafluorophenyl)ethynyl]benzoates have been prepared from the starting material 1-pentafluorophenyl-2-trimethylsilylacetylene. Polarizing microscope textural observation and DSC measurements of the phase transitions of these novel compounds showed that they were liquid crystals with chiral smectic C phase (S*C), smectic A(SA) and cholesteric (Ch) phases. The effects of the alkoxy chain length on the transition temperatures and enthalpies were also studied.  相似文献   

17.
The effects of a second branched alkyl chain, lateral substitution, and double chiral centres on the phase transition and spontaneous polarization of the ferroelectric liquid crystal having a 2-methylalkanoyl group have been investigated. The introduction of another branched alkyl chain away from the 2-methylalkanoyl group causes a sharp SC*-SA transition peak and also enhances the ferroelectric properties in the SC* phase. Since the order within the layers is liquid-like in the SC* phase, the alkyl chain branching away from both the chiral centre and a polar group affects the overall motion of the molecule in the SC* phase. In the system of a compound with double chiral centres, the existence of the chiral centre in the 2-methylalkanoyl group affects the phase transition temperatures and the magnitude of the spontaneous polarization in the SC* phase. On the other hand, the existence of the chiral centre in the 2-methylbutyl group only affects the stability of a more highly ordered smectic phase appearing below the SC* phase.  相似文献   

18.
In this paper,a series of chiral non-symmetrical liquid crystals(nBA-chol)consisting of a cholesteryl ester moiety as chiral entity and a biphenyl aromatic core with different terminal alkyl chain has been synthesized and investigated for their liquid crystalline properties.Effects of numbers of methylene units in the terminal alkyl chain on the phase transition temperatures and on the temperature-dependent pitch lengths of the chiral liquid crystals have been studied.The long terminal alkyl chain tends ...  相似文献   

19.
A novel chiral twin material, (R)-bis[5-octyloxy-2-(4-octyloxyphenoxycarbonyl)phenyl] 3-methyladipate, has been prepared, where two mesogenic parts are connected laterally by a spacer possessing a chiral centre. A weaker helical structure, in particular in the chiral smectic C (S*c) phase, was found to be induced by the laterally-connected twin material than by the analogous terminally-connected twin material. If laterally-connected chiral twin molecules prefer to stay in the smectic layer structure so that the two mesogenic parts exist in the same smectic layer, the twist interaction between adjacent layers cannot be produced by direct correlation of motion and directions of two mesogenic parts. Thus, the helical structure in the S*c phase induced by laterally-connected chiral twin molecules becomes weak. An analogous laterally-branched 'monomeric' compound, (S)-5-octyloxy-2-(4-octyloxyphenoxycarbonyl)phenyl 3-methyl-pentanoate, has also been prepared, and the induced helical structures compared.  相似文献   

20.
ABSTRACT

New liquid crystals categorised as cholesteryl dimers have been successfully synthesised through the reaction between cholesteryl 4-(prop-2-ynyloxy)benzoate moieties with n-azido(cholesteryloxy-carbonyl)alkane. All the dimers display enantiotropic mesophases. Whilst the odd-numbered dimers exhibit chiral nematic (N*), twisted grain boundary (TGB) and chiral smectic C (SmC*) phases, the even-numbered members from the same series show chiral smectic A and C. A detailed inspection on mesophase reveals that the chiral centres and the bent conformation of the odd-numbered members are essential for the induction of TGB phase. However, upon decreasing the temperature, the ratio of the transition temperatures (TSmC*-SmA*/TSmA*-I) is found to be 0.95, which indicate the second order transition according to the McMillan’s molecular theory. In addition, the X-ray diffraction study supports the presence of the smectic A phase on the even members rather than the N* by the appearance of the Bragg diffraction peaks at 190°C. A comparison study with the other analogues in which the cholesterol entity is substituted by azobenzene or biphenyl tails has been carried out to assess the relationship between the molecular structure and mesomorphic behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号