首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium complexes bearing dianionic amine bis(phenolate) ligands are described. Reactions of ligand precursors H(2)O(2)NN(Me), H(2)O(2)NN(Py) or H(2)O(2)NO(Me) [H(2)O(2)NN(Me)=Me(2)NCH(2)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2); H(2)O(2)NN(Py)=(2-C(5)H(4)N)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2); H(2)O(2)NO(Me)=MeOCH(2)CH(2)N-(CH(2)-2-HO-3,5-C(6)H(2)((t)Bu)(2))(2)] with 2.2 molar equivalents of (n)BuLi in diethylether afford (Li(2)O(2)NN(Me))(2) (1), (Li(2)O(2)NN(Py))(2) (2) and (Li(2)O(2)NO(Me))(2) (3) as tetra-nuclear lithium complexes. The crystalline solids of partially hydrolyzed product, (LiO(HO)NN(Py)) (4), were obtained from recrystallization of 2 in diethylether solution for three months. The synthesis of (LiO(HO)NO(Me))(2) (5) was carried out at ambient temperature by carefully layering a solution of water in hexane on top of a solution of 3 in Et(2)O. Crystalline solids of were obtained after two months. Molecular structures are reported for compounds 1, 3, 4 and 5. Compounds 1-3 show excellent catalytic activities toward the ring-opening polymerization of L-lactide in the presence of benzyl alcohol.  相似文献   

2.
A series of new diiron azadithiolate (ADT) complexes (1-8), which could be regarded as the active site models of [FeFe]hydrogenases, have been synthesized starting from parent complex [(μ-SCH(2))(2)NCH(2)CH(2)OH]Fe(2)(CO)(6) (A). Treatment of A with ethyl malonyl chloride or malonyl dichloride in the presence of pyridine afforded the malonyl-containing complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(6) (1) and [Fe(2)(CO)(6)(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)CH(2) (2). Further treatment of 1 and 2 with PPh(3) under different conditions produced the PPh(3)-substituted complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(5)(PPh(3)) (3), [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CCH(2)CO(2)Et]Fe(2)(CO)(4)(PPh(3))(2) (4), and [Fe(2)(CO)(5)(PPh(3))(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)CH(2) (5). More interestingly, complexes 1-3 could react with C(60) in the presence of CBr(4) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) via Bingel-Hirsch reaction to give the C(60)-containing complexes [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CC(C(60))CO(2)Et]Fe(2)(CO)(6) (6), [Fe(2)(CO)(6)(μ-SCH(2))(2)NCH(2)CH(2)O(2)C](2)C(C(60)) (7), and [(μ-SCH(2))(2)NCH(2)CH(2)O(2)CC(C(60))CO(2)Et]Fe(2)(CO)(5)(PPh(3)) (8). The new ADT-type models 1-8 were characterized by elemental analysis and spectroscopy, whereas 2-4 were further studied by X-ray crystallography and 6-8 investigated in detail by DFT methods.  相似文献   

3.
Photodissociation of 3-(methylthio)propylamine and cysteamine, the chromophores of S atom containing amino acid methionine and cysteine, respectively, was studied separately in a molecular beam at 193 nm using multimass ion imaging techniques. Four dissociation channels were observed for 3-(methylthio)propylamine, including (1) CH(3)SCH(2)CH(2)CH(2)NH(2)-->CH(3)SCH(2)CH(2)CH(2)NH+H, (2) CH(3)SCH(2)CH(2)CH(2)NH(2)-->CH(3)+SCH(2)CH(2)CH(2)NH(2), (3) CH(3)SCH(2)CH(2)CH(2)NH(2)-->CH(3)S+CH(2)CH(2)CH(2)NH(2), and (4) CH(3)SCH(2)CH(2)CH(2)NH(2)-->CH(3)SCH(2)+CH(2)CH(2)NH(2). Two dissociation channels were observed from cysteamine, including (5) HSCH(2)CH(2)NH(2)-->HS+CH(2)CH(2)NH(2) and (6) HSCH(2)CH(2)NH(2)-->HSCH(2)+CH(2)NH(2). The photofragment translational energy distributions suggest that reaction (1) and parts of the reactions (2), (3), (5) occur on the repulsive excited states. However, reaction (4), (6) occur only after the internal conversion to the electronic ground state. Since the dissociation from an excited state with a repulsive potential energy surface is very fast, it would not be quenched completely even in the condensed phase. Our results indicate that reactions following dissociation may play an important role in the UV photochemistry of S atom containing amino acid chromophores in the condensed phase. A comparison with the potential energy surface from ab initio calculations and branching ratios from RRKM calculations was made.  相似文献   

4.
The synthesis and characterization of the novel systems [Zn(2)(H(2)N(CH(2))(2)NH(2))(5)][(Zn(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(H(2)O)].9H(2)O (1), [Cd(2)(H(2)N(CH(2))(2)NH(2))(5)][(Cd(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(Br)].9H(2)O (2), and [Zn(2)(H(2)N(CH(2))(2)NH(2))(5)][(Zn(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(Cl)].9H(2)O (3) have been described. These materials represent a new class of solids that have been prepared by combining conventional coordination compounds with spherical polyoxovanadate clusters. The isomorphous structures of these hybrid solids consist of two-dimensional arrays of container cluster molecules [V(18)O(42)(X)] (X = H(2)O, Br-, Cl-) interlinked by the transition metal complex moieties [M(H(2)N(CH(2))(2)NH(2))(2)] (M = Zn, Cd). These compounds contain an unprecedented complex cation, [M(2)(H(2)N(CH(2))(2)NH(2))(5)](4+). Crystal data for 1: C(9)H(46)N(9)O(26)V(9)Zn(2), monoclinic space group P2(1)/m (No. 11), a = 12.3723(7) A, b = 20.9837(11) A, c = 15.8379(8) A, beta = 97.3320(10) degrees, Z = 4.  相似文献   

5.
The crystal structures of (H(3)C)(2)O, H(2)SiCl(2) and an adduct of these were determined by low-temperature X-ray crystallography on crystals grown in situ at low temperatures on a diffractometer. The adduct of (H(3)C)(2)O and H(2)SiCl(2) has the composition [(H(3)C)(2)O.H(2)SiCl(2)](2) and contains a four-membered Si(2)O(2) ring, with the Cl atoms pointing to the outside and the Si-H functions pointing to the inner side of the ring. The Si(2)O(2) ring has two longer and two shorter SiO bonds and thus deviates from a square. Quantum chemical calculations give a geometry for [(H(3)C)(2)O.H(2)SiCl(2)](2) which has D(2h) symmetry and allow to obtain an estimate for the adduct formation energies, which are -13.4 kJ mol(-1) for the formation of the mono adduct [(H(3)C)(2)O + H(2)SiCl(2)-->(H(3)C)(2)O.H(2)SiCl(2)], -14.4 kJ mol(-1) for the dimerization of two mono adducts [(H(3)C)(2)O.H(2)SiCl(2)-->[(H(3)C)(2)O.H(2)SiCl(2)](2)] and -41.2 kJ mol(-1) for the reaction 2 (H(3)C)(2)O + 2 H(2)SiCl(2)-->[(H(3)C)(2)O.H(2)SiCl(2)](2). The results are used to rationalize the strongly reduced reactivity of H(2)SiCl(2) towards nucleophilic substitution reactions in (H(3)C)(2)O at low temperatures.  相似文献   

6.
Dinuclear Ti(IV), Zr(IV), and Ce(IV) oxo and peroxo complexes containing the imidodiphosphinate ligand [N(i-Pr(2)PO)(2)](-) have been synthesized and structurally characterized. Treatment of Ti(O-i-Pr)(2)Cl(2) with KN(i-Pr(2)PO)(2) afforded the Ti(IV) di-μ-oxo complex [Ti{N(i-Pr(2)PO)(2)}(2)](2)(μ-O)(2) (1) that reacted with 35% H(2)O(2) to give the peroxo complex Ti[N(i-Pr(2)PO)(2)](2)(η(2)-O(2)) (2). Treatment of HN(i-Pr(2)PO)(2) with Zr(O-t-Bu)(4) and Ce(2)(O-i-Pr)(8)(i-PrOH)(2) afforded the di-μ-peroxo-bridged dimers [M{N(i-Pr(2)PO)(2)}(2)](2)(μ-O(2))(2) [M = Zr (3), Ce (4)]. 4 was also obtained from the reaction of Ce[N(i-Pr(2)PO)(2)](3) with 35% H(2)O(2). Treatment of (Et(4)N)(2)[CeCl(6)] with 3 equiv of KN(i-Pr(2)PO)(2) afforded Ce[N(i-Pr(2)PO)(2)](3)Cl (5). Reaction of (Et(4)N)(2)[CeCl(6)] with 2 equiv of KN(i-Pr(2)PO)(2) in acetonitrile, followed by treatment with Ag(2)O, afforded the μ-oxo-bridged complex [Ce{N(i-Pr(2)PO)(2)}Cl](2)[μ-N(i-Pr(2)PO)(2)](2)(μ-O) (6). 6 undergoes ligand redistribution in CH(2)Cl(2) in air to give 5. The solid-state structures of [K(2){N(i-Pr(2)PO)(2)}(2)(H(2)O)(8)](n) and complexes 1-6 have been determined.  相似文献   

7.
The spontaneous formation of the heteroligated complex [PtCl(kappa(2)-Ph(2)PCH(2)CH(2)SMe)(Ph(2)PCH(2)CH(2)SPh)]Cl (8 a) by a novel ligand rearrangement process has been observed. By using the weak-link approach, the relative arrangement of the alkyl and aryl groups can be controlled by abstraction of chloride from 8 a to form the closed complex [Pt(kappa(2)-Ph(2)PCH(2)CH(2)SMe)(kappa(2)-Ph(2)PCH(2)CH(2)SPh)][BF(4)](2) (5) and reopening using halide ions to form semi-open complexes [PtX(kappa(2)-Ph(2)PCH(2)CH(2)SMe)(Ph(2)PCH(2)CH(2)SPh)]BF(4) (8 b; X=Cl(-)) and (8 c; X=I(-)). Analogous procedures using Ph(2)PCH(2)CH(2)SMe and 1,4-(Ph(2)PCH(2)CH(2)S)(2)C(6)H(4) lead to heteroligated bimetallic complexes 7 and 9, illustrating that this ligand rearrangement process can be used as a tool for the assembly of complementary metallosupramolecular structures.  相似文献   

8.
[Na(2)(thf)(4)(P(4)Mes(4))] (1) (Mes = 2,4,6-Me(3)C(6)H(2)) reacts with one equivalent of [NiCl(2)(PEt(3))(2)], [NiCl(2)(PMe(2)Ph)(2)], [PdCl(2)(PBu(n)(3))(2)] or [PdCl(2)(PMe(2)Ph)(2)] to give the corresponding nickel(0) and palladium(0) dimesityldiphosphene complexes [Ni(eta(2)-P(2)Mes(2))(PEt(3))(2)] (2), [Ni(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (3), [Pd(eta(2)-P(2)Mes(2))(PBu(n)(3))(2)] (4) and [Pd(eta(2)-P(2)Mes(2))(PMe(2)Ph)(2)] (5), respectively, via a redox reaction. The molecular structures of the diphosphene complexes 2-5 are described.  相似文献   

9.
For studying O- and Cl-loss predissociation mechanisms of OClO (A(2)A(2)), we calculated O- and Cl-loss dissociation potential energy curves (adiabatic minimum-energy dissociation paths) of several low-lying doublet and quartet states at the CASPT2 level and located the MECPs (minimum energy crossing points) for many pairs of the potential energy surfaces (PESs) at the CASPT2 and CASSCF levels. On the basis of our calculation results (including the spin-orbit couplings at the MECPs), we predict three processes for O-loss predissociation of A(2)A(2) and four processes for Cl-loss predissociation of A(2)A(2). The most favorable process for O-loss predissociation is OClO (A(2)A(2)) → A(2)A(2)/1 (2)B(2) MECP → 1 (2)B(2) (1 (2)A') → O ((3)P(g)) + ClO (X(2)Π) (the first O-loss limit), and the needed energy for this process from X(2)B(1) is 2.92 eV. The most favorable process for Cl-loss predissociation is OClO (A(2)A(2)) → A(2)A(2)/1 (2)B(2) MECP → TS1 (1 (2)B(2)) → 1 (2)B(2)/1 (2)A(1) MECP → Cl ((2)P(u)) + O(2) (X(3)Σ(g)(-)) (the first limit), and the needed energy is 3.08 eV. In the previously suggested mechanisms (processes), the A(2)A(2) state was considered to go to the important 1 (2)B(2) state via 1 (2)A(1) (A(2)A(2) → 1 (2)A(1) → 1 (2)B(2)). In the present study we have found that the A(2)A(2) state can directly go to 1 (2)B(2) (at the located A(2)A(2)/1 (2)B(2) MECP the CASPT2 energy (relative to X(2)B(1)) and CASSCF spin-orbit coupling are 2.92 eV and 61.3 cm(-1), respectively). We have compared our processes (A(2)A(2) → 1 (2)B(2) → ...) with the processes (A(2)A(2) → 1 (2)A(1) → 1 (2)B(2) → ...) suggested in the previous MRCI studies and rewritten by us using our calculation results. Energetically the MRCI process for O-loss predissociation (to the first limit) is only slightly (0.13 eV) more favorable than our process, and the MRCI processes for Cl-loss predissociation (to the first and second limits) need the same energies as our processes. By considering the probabilities of radiationless transitions, the MRCI processes are less favorable than our processes since the MRCI processes proceed via more PES/PES crossings (more MECPs). The experimental facts concerning the photodissociation are explained.  相似文献   

10.
A series of novel double salts of silver(I) were isolated by dissolving Ag(2)C(2) in a concentrated aqueous solution of R(F)CO(2)Ag (R(F) = CF(3), C(2)F(5)) and AgBF(4). Different ancillary solvento ligands such as H(2)O, CH(3)CN, and C(2)H(5)CN were found to affect the crystallization process that led to the assembly of various silver(I) cages with embedded C(2)(2-) ions. 2Ag(2)C(2) x 12CF(3)CO(2)Ag x 5H(2)O (1) consists of two independent C(2)@Ag(7) cages, each having the shape of a basket with a square base. Ag(2)C(2) x 6CF(3)CO(2)Ag x 3CH(3)CN (2) contains a zigzag chain of edge-sharing triangulated dodecahedra, and 4Ag(2)C(2) x 23CF(3)CO(2)Ag x 7C(2)H(5)CN x 2.5H(2)O (3) features an unusual double-walled silver column constructed from the fusion of four different kinds of irregular polyhedra. Ag(2)C(2) x 10C(2)F(5)CO(2)Ag x 9.5H(2)O (4), Ag(2)C(2) x 9C(2)F(5)CO(2)Ag x 3CH(3)CN x H(2)O (5), and Ag(2)C(2) x 6C(2)F(5)CO(2)Ag x 2C(2)H(5)CN (6) all contain an edge-sharing double cage with each single cage in the shape of a square antiprism, a capped square antiprism, and a triangulated dodecahedron, respectively.  相似文献   

11.
We have structurally and magnetically characterized a total of 12 complexes based on the Single-Molecule Magnet (SMM) [MnIII6O2(sao)6(O2CH)2(MeOH) 4] (1) (where sao2- is the dianion of salicylaldoxime or 2-hydroxybenzaldeyhyde oxime) that display analogous structural cores but remarkably different magnetic behaviors. Via the use of derivatized oxime ligands and bulky carboxylates we show that it is possible to deliberately increase the value of the spin ground state of the complexes [Mn6O2(Me-sao)6(O2CCPh3)2(EtOH)4] (2), [Mn6O2(Et-sao)6(O2CCMe3)2(EtOH)5] (3), [Mn6O2(Et-sao)6(O2CPh2OPh)2(EtOH)4] (4), [Mn6O2(Et-sao)6(O2CPh4OPh)2(EtOH)4(H2O)2] (5), [Mn6O2(Me-sao)6(O2CPhBr)2(EtOH)6] (6), [Mn6O2(Et-sao)6(O2CPh)2(EtOH)4(H2O)2] (7), [Mn6O2(Et-sao)6{O2CPh(Me)2}2(EtOH)6] (8), [Mn6O2(Et-sao)6(O2C11H15)2(EtOH)6] (9), [Mn6O2(Me-sao)6(O2C-th)2(EtOH)4(H2O)2] (10), [Mn6O2(Et-sao)6(O2CPhMe)2(EtOH)4(H2O)2] (11), and [Mn6O2(Et-sao)6(O2C12H17)2(EtOH)4(H2O)2] (12) (Et-saoH2 = 2-hydroxypropiophenone oxime, Me-saoH2 = 2-hydroxyethanone oxime, HO2CCPh3 = triphenylacetic acid, HO2CCMe3 = pivalic acid, HO2CPh2OPh = 2-phenoxybenzoic acid, HO2CPh4OPh = 4-phenoxybenzoic acid, HO2CPhBr = 4-bromobenzoic acid, HO2CPh(Me)2 = 3,5-dimethylbenzoic acid, HO2C11H15 = adamantane carboxylic acid, HO2C-th = 3-thiophene carboxylic acid, HO2CPhMe = 4-methylbenzoic acid, and HO2C12H17 = adamantane acetic acid) in a stepwise fashion from S = 4 to S = 12 and, in-so-doing, enhance the energy barrier for magnetization reorientation to record levels. The change from antiferromagnetic to ferromagnetic exchange stems from the "twisting" or "puckering" of the (-Mn-N-O-)3 ring, as evidenced by the changes in the Mn-N-O-Mn torsion angles.  相似文献   

12.
The ligands KS(2)CN(Bz)CH(2)CH(2)N(Bz)CS(2)K (K(2)L(1)), N(CH(2)CH(2)N(Me)CS(2)Na)(3) (Na(3)L(2)), and the new chelates {(CH(2)CH(2))NCS(2)Na}(3) (Na(3)L(3)) and {CH(2)CH(2)N(CS(2)Na)CH(2)CH(2)CH(2)NCS(2)Na}(2) (Na(4)L(4)), react with the gold(I) complexes [ClAu(PR(3))] (R = Me, Ph, Cy) and [ClAu(IDip)] to yield di-, tri-and tetragold compounds. Larger metal units can also be coordinated by the longer, flexible linker, K(2)L(1). Thus two equivalents of cis-[PtCl(2)(PEt(3))(2)] react with K(2)L(1) in the presence of NH(4)PF(6) to yield the bimetallic complex [L(1){Pt(PEt(3))(2)}(2)](PF(6))(2). The compounds [NiCl(2)(dppp)] and [MCl(2)(dppf)] (M = Ni, Pd, Pt; dppp = 1,3-bis(diphenylphosphino)propane, dppf = 1,1'-bis(diphenylphosphino)ferrocene) also yield the dications, [L(1){Ni(dppp)}(2)](2+) and [L(1){Ni(dppf)}(2)](2+) in an analogous fashion. In the same manner, reaction between [(L'(2))(AuCl)(2)] (L'(2) = dppm, dppf; dppm = bis(diphenylphosphino)methane) and KS(2)CN(Bz)CH(2)CH(2)N(Bz)CS(2)K yield [L(1){Au(2)(L'(2))}(2)]. The molecular structures of [L(1){M(dppf)}(2)](PF(6))(2) (M = Ni, Pd) and [L(1){Au(PR(3))}(2)] (R = Me, Ph) are reported.  相似文献   

13.
Interaction of PdCl(2)(MeCN)(2) with 2 equiv of (S(P))-(t)BuPhP(O)H (1H) followed by treatment with Et(3)N gave [Pd((1)(2)H)](2)(micro-Cl)(2) (2). Reaction of 2 with Na[S(2)CNEt(2)] or K[N(PPh(2)S)(2)] afforded Pd[(1)(2)H](S(2)CNEt(2)) (3) or Pd[(1)(2)H)[N(PPh(2)S)(2)] (4), respectively. Treatment of 3 with V(O)(acac)(2) (acac = acetylacetonate) and CuSO(4) in the presence of Et(3)N afforded bimetallic complexes V(O)[Pd(1)(2)(S(2)CNEt(2))](2) (5) or Cu[Pd(1)(2)(S(2)CNEt(2))](2) (6), respectively. X-ray crystallography established the S(P) configuration for the phosphinous acid ligands in 3 and 6, indicating that 1H binds to Pd(II) with retention of configuration at phosphorus. The geometry around Cu in 6 is approximately square planar with the average Cu-O distance of 1.915(3) A. Treatment of 2 with HBF(4) gave the BF(2)-capped compound [Pd((1)(2)BF(2))](2)(micro-Cl)(2) (7). The solid-state structure of 7 containing a PdP(2)O(2)B metallacycle has been determined. Chloride abstraction of 7 with AgBF(4) in acetone/water afforded the aqua compound [Pd((1)(2)BF(2))(H(2)O)(2)][BF(4)] (8) that reacted with [NH(4)](2)[WS(4)] to give [Pd((1)(2)BF(2))(2)](2)[micro-WS(4)] (9). The average Pd-S and W-S distances in 9 are 2.385(3) and 2.189(3) A, respectively. Treatment of [(eta(6)-p-cymene)RuCl(2)](2) with 1H afforded the phosphinous acid adduct (eta(6)-p-cymene)RuCl(2)(1H) (10). Reduction of [CpRuCl(2)](x)() (Cp = eta(5)-C(5)Me(5)) with Zn followed by treatment with 1H resulted in the formation of the Zn(II) phosphinate complex [(CpRu(eta(6)-C(6)H(5)))(t)BuPO(2))](2)(ZnCl(2))(2) (11) that contains a Zn(2)O(4)P(2) eight-membered ring.  相似文献   

14.
A new series of complexes with the general formula (n-Bu4N)2[M2O2(micro-Q)2(dmit)2] (where M = Mo, W; Q = S, Se; dmit = 1,3-dithiole-2-thione-4,5-dithiolate) have been prepared. Fragmentation of the trinuclear cluster (n-Bu4N)2[Mo3(micro3-S)(micro-S2)3(dmit)3] in the presence of triphenylphosphine (PPh3) gives the dinuclear compound (n-Bu4N)2[Mo2O2(micro-S)2(dmit)2] [(n-Bu4N)2[2]], which is formed via oxidation in air from the intermediate (n-Bu4N)2[Mo3(micro3-S)(micro-S)3(dmit)3] [(n-Bu4N)2[1]] complex. Ligand substitution of the molybdenum sulfur bridged [Mo2O2(micro-S)2(dimethylformamide)6]2+ dimer with the sodium salt of the dmit dithiolate also affords the dianionic compound (n-Bu4N)2[2]. The whole series, (n-Bu4N)2[Mo2O2(micro-Se)2(dmit)2] [(n-Bu4N)2[3]], (n-Bu4N)2[W2O2(micro-S)2(dmit)2] [(n-Bu4N)2[4]], (n-Bu4N)2[W2O2(micro-Se)2(dmit)2] [(n-Bu4N)2[5]], and (n-Bu4N)2[Mo2O2(micro-S)2(dmid)2] [(n-Bu4N)2[6]; dmid = 1,3-dithiole-2-one-4,5-dithiolate], has been synthesized by the excision of the polymeric (Mo3Q7Br4)x phases with PPh3 or 1,2-bis(diphenylphosphanyl)ethane in acetonitrile followed by the dithiolene incorporation and further degradation in air. Direct evidence of the presence of the intermediates with the formula [M3Q4(dmit)3]2- (M = Mo, W; Q = S, Se) has been obtained by electrospray ionization mass spectrometry. The crystal structures of (n-Bu4N)2[1], (PPh4)2[Mo2O2(micro-S)2(dmit)2] [(PPh4)2[2]; PPh4 = tetraphenylphosphonium], (n-Bu4N)2[2], (n-Bu4N)2[4], (PPh4)2[W2O2(micro-Se)2(dmit)2] [(PPh4)2[5]], and (n-Bu4N)2[6] have been determined. A detailed study of the gas-phase behavior for compounds (n-Bu4N)2[2-6] shows an identical fragmentation pathway for the whole family that consists of a partial breaking of the two dithiolene ligands followed by the dissociation of the dinuclear cluster.  相似文献   

15.
The multigram syntheses of the protio ligands (2-NC(5)H(4))CH(2)N(CH(2)CH(2)NHSiMe(2)R)(2) (R = Me, H(2)N(2)NN' 3; R = (t)Bu, H(2)N(2)NN() 4) are described via reactions of the previously reported (2-NC(5)H(4))CH(2)N(CH(2)CH(2)NH(2))(2) (1). A new synthesis of 1 is reported starting from 2-aminomethylpyridine and N-tosylaziridine, proceeding via (2-NC(5)H(4))CH(2)N(CH(2)CH(2)NHTs)(2) (2). Reaction of H(2)N(2)NN' or H(2)N(2)NN* with (n)BuLi gives good yields of the dilithiated derivatives Li(2)N(2)NN' and Li(2)N(2)NN*. Reaction of H(2)N(2)NN' or H(2)N(2)NN* with [MCl(2)(CH(2)SiMe(3))(2)(Et(2)O)(2)] gives the cis-dichloride complexes [MCl(2)(L)] (L = N(2)NN', M = Zr 7 or Hf 8; L = N(2)NN(), M = Zr 9). The corresponding reactions of H(2)N(2)NN' or H(2)N(2)NN* with [Zr(NMe(2))(4)] afford the bis(dimethylamide) derivatives [Zr(NMe(2))(2)(L)] (L = N(2)NN' 10 or N(2)NN* 11). All of these protonolysis reactions proceed smoothly and in good yields. Attempts to prepare the titanium complexes [Ti(X)(2)(N(2)NN')] (X = Cl or NMe(2)) were unsuccessful. The X-ray crystal structures of (2-NC(5)H(4))CH(2)N(CH(2)CH(2)NHTs)(2).EtOH, [ZrCl(2)(N(2)NN')].0.5C(6)H(6), [Zr(NMe(2))(2)(N(2)NN')], and [Zr(NMe(2))(2)(N(2)NN*)] are reported.  相似文献   

16.
The reactions of Zr(NR(2))(4) (1, R = Me; 2, R = Et) with an asymmetrical tridentate pincer type pyrrole ligand precursor [C(4)H(2)NH(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))] and treatment of the derivatives with either PhNCS or PhNCO have been carried out and characterized. Reacting Zr(NR(2))(4) (1, R = Me; 2, R = Et) with [C(4)H(2)NH(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))] generates Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NR(2))(2) (3, R = Me; 4, R = Et) in high yield along with the elimination of 2 equiv of dimethylamine or diethylamine, respectively. Interestingly, while changing the solvent from Et(2)O to CH(2)Cl(2), the complex Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))][C(4)H(2)N(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))]Cl (5) is produced by undergoing C-Cl bond cleavage. Furthermore, reaction of either 3 or 4 with 1 or 2 equiv of PhNCS or PhNCO yields Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NMe(2))[PhNC(NMe(2))S] (6), Zr[C(4)H(2)N(2-CH(2)N(t)Bu)(5-CH(2)NMe(2))](NEt(2))[PhNC(NEt(2))O] (7) and Zr[C(4)H(2)N(2-CH(2)NH(t)Bu)(5-CH(2)NMe(2))][PhNC(NEt(2))O](3) (8), respectively. All the aforementioned complexes were characterized by (1)H and (13)C NMR spectrometry and the molecular structures of 5, 6, and 8 have been determined by single-crystal X-ray diffractometry. Complexes 4, 5, and 7 initiated the ethylene polymerization in the presence of MAO as the co-catalyst.  相似文献   

17.
The synthesis of new dinuclear manganese(IV) complexes possessing the [Mn(IV)(2)(mu-O)(2)(mu-O(2)CMe)](3+) core and containing halide ions as terminal ligands is reported. [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](2)[MnCl(4)] (1; bpy = 2,2'-bipyridine) was prepared by sequential addition of [MnCl(3)(bpy)(H(2)O)] and (NBzEt(3))(2)[MnCl(4)] to a CH(2)Cl(2) solution of [Mn(3)O(4)(O(2)CMe)(4)(bpy)(2)]. The complex [Mn(IV)(2)O(2)(O(2)CMe)Cl(bpy)(2)(H(2)O)](NO(3))(2) (2) was obtained from a water/acetic acid solution of MnCl(2).4H(2)O, bpy, and (NH(4))(2)[Ce(NO(3))(6)], whereas the [Mn(IV)(2)O(2)(O(2)CR)X(bpy)(2)(H(2)O)](ClO(4))(2) [X = Cl(-) and R = Me (3), Et (5), or C(2)H(4)Cl (6); and X = F(-), R = Me (4)] were prepared by a slightly modified procedure that includes the addition of HClO(4). For the preparation of 4, MnF(2) was employed instead of MnCl(2).4H(2)O. [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](2)[MnCl(4)].2CH(2)Cl(2) (1.2CH(2)Cl(2)) crystallizes in the monoclinic space group C2/c with a = 21.756(2) A, b = 12.0587(7) A, c = 26.192(2) A, alpha = 90 degrees, beta = 111.443(2) degrees, gamma = 90 degrees, V = 6395.8(6) A(3), and Z = 4. [Mn(2)O(2)(O(2)CMe)Cl(H(2)O)(bpy)(2)](NO(3))(2).H(2)O (2.H(2)O) crystallizes in the triclinic space group Ponemacr; with a = 11.907(2) A, b = 12.376(2) A, c = 10.986(2) A, alpha = 108.24(1) degrees, beta = 105.85(2) degrees, gamma = 106.57(1) degrees, V = 1351.98(2) A(3), and Z = 2. [Mn(2)O(2)(O(2)CMe)Cl(H(2)O)(bpy)(2)](ClO(4))(2).MeCN (3.MeCN) crystallizes in the triclinic space group Ponemacr; with a = 11.7817(7) A, b = 12.2400(7) A, c = 13.1672(7) A, alpha = 65.537(2) degrees, beta = 67.407(2) degrees, gamma = 88.638(2) degrees, V = 1574.9(2) A(3), and Z = 2. The cyclic voltammogram (CV) of 1 exhibits two processes, an irreversible oxidation of the [MnCl(4)](2)(-) at E(1/2) approximately 0.69 V vs ferrocene and a reversible reduction at E(1/2) = 0.30 V assigned to the [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](+/0) couple (2Mn(IV) to Mn(IV)Mn(III)). In contrast, the CVs of 2 and 3 show only irreversible reduction features. Solid-state magnetic susceptibility (chi(M)) data were collected for complexes 1.1.5H(2)O, 2.H(2)O, and 3.H(2)O in the temperature range 2.00-300 K. The resulting data were fit to the theoretical chi(M)T vs T expression for a Mn(IV)(2) complex derived by use of the isotropic Heisenberg spin Hamiltonian (H = -2JS(1)S(2)) and the Van Vleck equation. The obtained fit parameters were (in the format J/g) -45.0(4) cm(-)(1)/2.00(2), -36.6(4) cm(-)(1)/1.97(1), and -39.3(4) cm(-)(1)/1.92(1), respectively, where J is the exchange interaction parameter between the two Mn(IV) ions. Thus, all three complexes are antiferromagnetically coupled.  相似文献   

18.
The synthesis and coordination chemistry of two chiral tetradentate pyridylimine Schiff base ligands are reported. The ligands were prepared by the nucleophilic displacement of both bromides of 1,3-bis(bromomethyl)benzene (2) or 3,5-bis(bromomethyl)toluene (3) by the anion of (S)-valinol, followed by capping of both amine groups with pyridine-2-carboxaldehyde. Both ligands react with CoCl(2) and NiCl(2) to give [M(2)L(2)Cl(2)](2+) complexes. Remarkably, neither fluoride nor bromide ions can act as bridging ligands. The formation of [Co(2)((S)-3)(2)Cl(2)](2+) is highly diastereoselective, and X-ray crystallography shows that both metal centers in the [Co(2)((S)-3)(2)Cl(2)](CoCl(4)) complex adopt the lambda configuration (crystal data: [Co(2)(C(31)H(40)N(4)O(2))(2)Cl(2)](CoCl(4)).(CH(3)CN)(3), monoclinic, P2(1), a = 11.595(2) A, b = 22.246(4) A, c = 15.350(2) A, V = 3705(1) A(3), beta = 110.643(3) degrees, Z = 2). Structurally, the dinuclear complex can be viewed as a helicate with the helical axis running perpendicular to the [Co(2)Cl(2)] plane. The reaction of racemic 2 with CoCl(2) was shown by (1)H NMR spectroscopy to yield a racemic mixture of Lambda,Lambda-[Co(2)((S)-2)(2)Cl(2)](2+) and delta,delta-[Co(2)((R)-2)(2)Cl(2)](2+) complexes; that is, a homochiral recognition process takes place. Spectrophotometric titrations were performed by titrating (S)-3 with Co(ClO(4))(2) followed by Bu(4)NCl, and the global stability constants of [Co((S)-3)](2+) (log beta(110) = 5.7), [Co((S)-3)(2)](2+) (log beta(120) = 11.6), and [Co(2)((S)-3)(2)Cl(2)](2+) (log beta(110) = 23.8) were calculated. The results revealed a strong positive cooperativity in the formation of [Co(2)((S)-3)(2)Cl(2)](2+). Variable-temperature magnetic susceptibility curves for [Co(2)((S)-2)(2)Cl(2)](BPh(4))(2) and [Co(2)((S)-3)(2)Cl(2)](BPh(4))(2) are very similar and indicate that there are no significant magnetic interactions between the cobalt(II) centers.  相似文献   

19.
The reactions of [N(3)P(3)Cl(6)] with one, two, or three equivalents of the difunctional 1,2-closo-carborane C(2)B(10)H(10)[CH(2)OH](2) and K(2)CO(3) in acetone have been investigated. These reactions led to the new spiro-closo-carboranylphosphazenes gem-[N(3)P(3)Cl(6-2n)[(OCH(2))(2)C(2)B(10)H(10)](n)] (n=1 (1), 2 (2)) and the first fully carborane-substituted phosphazene gem-[N(3)P(3)[(OCH(2))(2)C(2)B(10)H(10)](3)] (3). A bridged product, non-gem-[N(3)P(3)Cl(4)[(OCH(2))(2)C(2)B(10)H(10)]] (4), was also detected. The reaction of the well-known spiro derivatives [N(3)P(3)Cl(2)(O(2)C(12)H(8))(2)] and [N(3)P(3)Cl(4)(O(2)C(12)H(8))] with the same carborane-diol and K(2)CO(3) in acetone gave the new compounds gem-[N(3)P(3)(O(2)C(12)H(8))(3-n)[(OCH(2))(2)C(2)B(10)H(10)](n)] (n=1 (5) or 2 (6), respectively), without signs of intra- or intermolecularly bridged species. Upon treatment with NEt(3) in acetone, compound 5 was converted into the corresponding nido-carboranylphosphazene. However, the reaction of gem-[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(10)H(10)]] (5) with NEt(3) in ethanol instead of acetone proceeded in a different manner to give the new compound (NHEt(3))(2)[N(3)P(3)(O(2)C(12)H(8))(2)(O)[OCH(2)C(2)B(9)H(10)CH(2)OCH(2)CH(3)]] (7). For compounds with two 2,2'-dioxybiphenyl units, gem-[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(10)H(10)]] (5), (NHEt(3))[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(9)H(10)]] (8), and (NHEt(3))(2)[N(3)P(3)(O(2)C(12)H(8))(2)(O)[OCH(2)C(2)B(9)H(10)CH(2)OCH(2)CH(3)]] (7), a mixture of different stereoisomers may be expected. However, for 5 and 7 only the meso compounds seem to be formed, with the same (R,S)-configuration as in the precursor [N(3)P(3)Cl(2)(O(2)C(12)H(8))(2)]. The reaction of 5 to give 8 seems to proceed with a change of configuration at one phosphorus center, giving a racemic mixture. The crystal structures of the nido-carboranylphosphazenes 7 and 8 have been confirmed by X-ray diffraction methods.  相似文献   

20.
Ring closing metathesis (RCM) using Grubbs' 1st generation catalyst with cis-[L(2)Pt(CH(2)CH(2)CH[double bond, length as m-dash]CH(2))(CH(2)CH(2)CH(2)CH[double bond, length as m-dash]CH(2))] yields a platinacyclooctene which can be hydrogenated to the platinacyclooctane, L(2)Pt(CH(2))(7) [L(2) = Ph(2)PCH(2)CH(2)CH(2)PPh(2) (dppp) or Ph(2)PCH(2)CH(2)PPh(2) (dppe)] in high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号