首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
We applied a fluorescence microscopy method to investigate the possibility of molecular manipulation such as intentional transfer of molecules from one zeolite crystal to another. Photophysical and photochemical processes of guest species incorporated in the zeolites were exploited as indicator reactions in order to yield a luminescence color characteristic of individual zeolite particles. Two types of migration mechanisms were observed: a through-space diffusional-transfer mode between separated zeolite crystals and a molecular injection process from a loaded crystal to another unloaded crystal, both in contact. A preferential direction of guest migration was found to exist for a few cases: for instance, aromatics such as phenanthrene and chrysene migrate from the sodium form of zeolite X (Na+-X) to thallium-exchanged zeolite X (Tl+-X). On the other hand, the migration-assisted formation of charge-transfer complexes between electron-donating arenes such as phenanthrene and chrysene, and electron-accepting 1,2,4,5-tetracyanobenzene, both incorporated into separate zeolite Na+-X crystals, takes place as a result of the migration of the donors. The fluorescence microscopy method utilizing photochemistry in zeolites was found to be a powerful technique for the qualitative investigation of the intercrystalline migration and possibly applicable to the observation of particleto-particle molecular manipulation processes.  相似文献   

2.
We measured the fluorescence decays and spectra of perylene adsorbed from solution into zeolite X crystals of 2-3 microm in diameter at the level of individual crystals by the application of a microscopy method coupled with a single photon counting apparatus and a multichannel spectrophotometer. We found that both decays and spectra are particle-dependent, i.e. a particle-to-particle difference was observed for the fluorescence decay curves at a fixed loading level along with a particle-dependent spectral change due to the various contribution of excimer emission band relative to those of three monomers. These findings are due to a non-homogeneous distribution which is confirmed by the various emission intensities of perylene-loaded zeolite crystals observed by fluorescence microscopy. Previously, a homogeneous distribution of the guest between zeolite crystals has been just taken for granted and not justified by experiment. The present result suggests that commonly employed collective measurements such as UV-VIS absorption and emission spectroscopies, IR and Raman spectroscopies, and NMR of bulk zeolite powders provide only averaged results and may sometimes suffer from acquiring precise molecular level pictures.  相似文献   

3.
The kinetics of adsorption by sodium, ammonium, calcium and magnesium forms of zeolite Y from aqueous solutions containing 25% w/v of either one or an equimolar mixture of glucose (G) and fructose (F) have been studied batch-wise at 50 degrees C. The adsorption of aqueous pure G was fast, while that of aqueous pure F depended on the cationic form, approaching that of G on the Mg-Y, and slowing down in the sequence of Mg2+ > NH4+ > Ca2+ > Na+ of the cations. The adsorption behavior from solutions containing both G and F indicated significant hindering effects of F on G on Na-Y. Na-Y and Mg-Y did not exhibit rate-based selectivity, while Ca-Y an NH4-Y adsorbed G faster than F. Addition of CaCl2 to the mixture of Ca-Y and aqueous solution of G and F improved the separation, by hindering the adsorption of F. Addition of NH4Cl to the mixture of the sugar solution and NH4-Y, on the other hand, had a negative effect on the separation. NH4-Y was found to be desorbing about 30% of the adsorbed sugars and this value was found to be around 50% for Ca-Y. Re-adsorption experiments resulted in similar or somewhat higher percentages of amounts adsorbed compared to adsorption on fresh samples. Both NH4-Y and Ca-Y were found to be re-adsorbing around 50% of the sugars they adsorbed on fresh samples.  相似文献   

4.
ZSM-5 crystals and glass plates tethered with trimethylpropylammonium iodide and sodium butyrate, respectively, (denoted as Z+, Z-, G+, and G-, respectively) were prepared. Treatment of G- with Z+ suspended in ethanol results in monolayer assembly of Z+ on G- (G-/Z+) with high surface coverage. The zeolite crystals have a strong tendency to closely pack and align with the b-axis normal to the glass plate, despite large positive zeta potentials. Subsequent treatment of G-/Z+ with Z- leads to second-layer assembly of Z- on G-/Z+ (G-/Z+/Z-), but with rather poor coverage. Sequential treatment of G+ with poly(sodium 4-styrenesulfonate)(Na+PSS-), poly(diallyldimethylammonium chloride) (PDDA+Cl-), and Na+PSS- followed by Z+ yields glass plates assembled with monolayers of Z+ with very high surface coverage through the composite polyelectrolyte linkers (G+/PSS-/PDDA+/PSS-/Z+). The zeolite crystals also have a strong tendency to closely pack and align with the b-axis perpendicular to the substrate plane. The binding strength between the zeolite crystals and glass plates is much higher in G+/PSS-/PDDA+/PSS-/Z+ than in G-/Z+. Repetition of the sequential PSS-/PDDA+/PSS-/Z+ layering for five cycles yields glass plates assembled with pentalayers of ZSM-5 crystals [G+/(PSS-/PDDA+/PSS-/Z+)(5)]. The observed degrees of coverage and alignment of zeolite crystals in each layer were very high up to the third layers despite the nonuniformity of the sizes and shapes of the zeolite crystals used in this study. This report thus demonstrates the feasibility of layer-by-layer assembly of micrometer-sized zeolite crystals on glass through electrostatic interaction between surface-bound, full-fledged ionic centers, especially by use of polyelectrolyes as the linkers.  相似文献   

5.
Examples of contact radical-ion-pair (CRIP) formation from excited charge-transfer (CT) complexes are described. The reduced absorption and emission spectra of the CT complexes formed between hexamethylbenzene, pentamethylbenzene, and durene donors and 1,2,4,5-tetracyanobenzene (TCNB) in 1,2-dichloroethane (DCLE) exhibit a mirror image relationship, suggesting that each set of spectra describes transitions between the same two states. It was concluded that a CRIP is produced immediately upon excitation of the CT complex and that relaxation of the CRIP includes only minor geometry changes and changes in solvent polarization. In contrast to these results, the reduced absorption and emission spectra of the mesitylene (MES)/TCNB CT complex in DCLE are distinctly different and do not display a mirror image relationship. Time-resolved emission decay traces reveal the presence of an initial intermediate species that contributes approximately 10% of the total steady-state emission. The emission spectrum of this initial species mirrors the absorption spectrum of the MES/TCNB complex. In the MES/TCNB complex, excitation does not lead directly to the CRIP, and the relaxation of the excited complex must include an electronic component in addition to changes in geometry and solvation. The implications of these results on the applicability of golden-rule expressions of electron transfer are discussed.  相似文献   

6.
The composite ion exchangers were tested for their ability to remove UO2 2+ from aqueous solutions. Polyacrylonitrile (PAN) composites having natural zeolite, clinoptilolite, and synthetic zeolite, zeolite X, were used as an adsorbents. The influences of pH, U(VI) concentration, temperature and contact time on the sorption behavior of U(VI) were investigated in order to gain a macroscopic understanding of the sorption mechanism. The optimum adsorption conditions were determined for two composites. The sorption behaviors of uranium on both composites from aqueous systems have been studied by batch technique. Parameters on desorption were also investigated to recover the adsorbed uranium.  相似文献   

7.
The adsorption of Ar, H2, O2, N2 and CO on (H,Na)-Y zeolite (Si/Al = 2.9, H+/Na+ approximately 5) has been studied at variable-temperature (90-20 K) and sub-atmospheric pressure (0-40 mbar) by FTIR spectroscopy. Unprecedented filling conditions of the zeolite cavities were attained, which allowed the investigation of very weakly adsorbed species and of condensed, liquid-like or solid-like, phases. Two pressure regimes were singled out, characterized by: (i) specific interaction at low pressure of the probe molecules (P) with the internal Br?nsted and Lewis sites, and (ii) multilayer adsorption at higher pressure. In the case of CO the perturbation of the protonic sites located inside the sodalite cages was also observed. As the molecule is too large to penetrate the sodalite cage, the perturbation is thought to involve a proton jump tunneling mechanism. The adsorption energy for the (HF)OH...P (P = Ar, H2, O2, N2 and CO) specific interaction involving the high frequency Br?nsted acid sites exposed in the supercages was derived following the VTIR (variable temperature infrared spectroscopy) method described by E. Garrone and C. Otero Areán (Chem. Soc. Rev., 2005, 34, 846).  相似文献   

8.
Optimized geometries and vibrational frequencies are calculated for Ca(+)-X and Y-Ca(+)-X complexes (X, Y = H2O, N2, CO2, O2, and O), required for understanding the chemistry of calcium in the upper atmosphere. Both MP2 and B3LYP optimizations were performed employing 6-311+G(2d,p) basis sets. In some cases a number of different orientations had to be investigated in order to determine the one of lowest energy, and in cases involving O and O2, different spin states also had to be considered. In order to establish accurate energetics, RCCSD(T) single-point energy calculations were also employed, using aug-cc-pVQZ basis sets. Accurate dissociation energies for the Ca(+)-X and X-Ca(+)-Y species are derived and discussed. Comparison with available experimental results is made where possible.  相似文献   

9.
A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400-750 nm region allowed extracting localized information on the nature and amount of chemical species formed upon detemplation at the single particle level. It has been found by means of polarized light dependent UV-Vis absorption measurements that the progressive growth of molecules follows the orientation of the straight channels of ZSM-5 crystals. Oligomerizing template derivatives lead to the subsequent build-up of methyl-substituted benzenium cations and more extended coke-like species, which are thermally stable up to ~740 K. Complementary confocal fluorescence emission spectra showed nearly equal distribution of these molecules within the entire volume of the thermally treated zeolite crystals. The strongest emission bands were appearing in the orange/red part of the visible spectrum, confirming the presence of large polyaromatic molecules.  相似文献   

10.
This article describes the preparation and the physico-chemical characterization of a new host-guest system consisting of zeolite beta nanoparticles as host and mitoxantrone as guest. The resulting host-guest system mitoxantrone@beta is characterized in terms of morphology (transmission electron microscopy, dynamic light scattering), structure (powder wide-angle X-ray diffraction, nitrogen sorption), surface charge (ξ-potential measurements), and optical properties (UV-visible absorption, steady-state fluorescence). Mitoxantrone@beta particles are monodisperse in size with a mean diameter centered around 100 nm. Mitoxantrone guest molecules are adsorbed at the micropore entrances of zeolite host. Resulting nanoparticles retrieve the interesting optical properties of guest molecules with a fluorescence emission band in the near-infrared region. Mitoxantrone loading is comparatively evaluated by three different means (elemental analysis, direct and indirect UV-visible absorption studies) showing a loading level of 6.8 μmol/g. Mitoxantrone@beta nanoparticles also show a noticeable cytotoxic effect when applied to cancer cells.  相似文献   

11.
Synthesis of the ionic dye, tris(2,2'-bipyridyl) ruthenium(II) chloride (Ru(bpy) 3 2+.2Cl (-)) within the supercages of a highly hydrophobic zeolite Y is reported. Use of the neutral precursor Ru(bpy)Cl 2(CO) 2 allowed for high loading levels of Ru(bpy) 3 2+ (1 per 7 and 25 supercages). The emission quenching of the Ru(bpy) 3 2+-zeolite crystals dispersed in polydimethoxysiloxane (PDMS) films by dissolved oxygen in water was examined. The quenching data as a function of oxygen concentration was fit to a linear Stern-Volmer plot ( R2 = 0.98). Using the Stern-Volmer plot as calibration, changes in concentration of dissolved oxygen due to reaction with glucose in the presence of glucose oxidase was monitored. Human monocyte-derived macrophages internalized the submicron-sized Ru(bpy) 3 2+-zeolite crystals, and intracellular oxygen concentrations initiated by zymosan-mediated oxidative burst could be monitored by measuring the emission from Ru(bpy) 3 2+ by confocal fluorescence microscopy.  相似文献   

12.
The use of methyl tertiary butyl ether (MTBE) as a gasoline additive has resulted in serious environmental problems following spills and leaks, primarily due to MTBE's high solubility in water. Remediation technologies have involved air stripping, advanced oxidation, and sorption on granular activated carbons (GAC). Hydrophobic zeolites, such as silicalite, dealuminated Y, mordenite, and beta, have been of interest in recent studies for the removal of MTBE from water. Some of these materials have shown a better performance than GAC particularly in the microg/L range. We made Monte Carlo and molecular dynamics simulations of the adsorption of pure MTBE in silicalite, mordenite, and zeolite beta with different Na+ loadings at room temperature to reveal the factors affecting the adsorption process. The results show that although the three zeolites studied here have similar pore volumes, the pore structure of zeolite beta causes a significant difference on the predicted amount of MTBE adsorbed. It was found that the position of the Na+ cations has an important effect at lower pressures. Within the range of [Na+] studied, the amount of Na+ was not found to be critical on the adsorption capacity of any of the zeolites studied, except at very low pressures in silicalite and zeolite beta.  相似文献   

13.
通过原位水热合成方法直接制备出不同载Ce量的Ce(Ⅳ)-X分子筛,并考察了其对模拟汽油中噻吩的吸附性能。采用粉末X射线衍射(XRD)、傅里叶变换红外(FT-IR)、紫外-可见漫反射(UV-vis DRS)、全谱直读等离子体原子发射光谱(ICP-AES)、氮气吸附和NH3程序升温热脱附(NH3-TPD)等方法对分子筛进行表征。结果表明,合成分子筛均具备典型的X型分子筛结构,同时Ce(Ⅳ)被较好地引入到分子筛的骨架结构中;载Ce分子筛的酸性大于X分子筛,而且Ce(Ⅳ)-X分子筛的酸性随着Ce掺杂量的增加而增强。吸附实验表明,载Ce分子筛对噻吩的吸附性能明显好于X分子筛。其中,n(Ce)/n(Si)=0.05的分子筛脱硫效果最佳,饱和吸附容量达到52.541 9 mg/g。再生实验表明,加热再生的Ce(Ⅳ)-X分子筛对噻吩仍具有理想的吸附效果。n(Ce)/n(Si)=0.05的分子筛再生后饱和吸附容量为47.512 1 mg/g,约为新鲜吸附剂的90.43%。  相似文献   

14.
It was shown that Na zeolites of A and X types are unstable under the conditions of hydrothermal synthesis and are easily recrystallized to form other zeolites with more compact crystal structures and higher Si/Al ratios. Zeolite X is recrystallized to phillipsite (zeolite P), and zeolite A is recrystallized to phillipsite from gels with the SiO2/Al2O3 ratio equal to 2 and to socialite from gels with SiO2/Al2O3 < 2 (zeolite J). The nucleation of secondary zeolite phases occurs as the result of rearrangement and decomposition of the lattice of primary crystals.Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 10, pp. 2415–2418, October, 1996.  相似文献   

15.
水在NanZSM-5型分子筛中吸附的研究: 分子模拟   总被引:1,自引:0,他引:1  
利用分子动力学(MD)模拟退火的方法和巨正则系综Monte Carlo模拟方法(GCMC)研究了水在NanZSM-5型分子筛中的吸附行为, 计算结果与文献中报道的实验结果吻合较好. 在此基础上, 进一步预测了水在不同硅铝比的NanZSM-5型分子筛中的吸附性质, 计算结果显示: 分子筛骨架上的硅铝比会显著影响水分子的吸附量和吸附等温线, 随着硅铝比的降低, 水的吸附量增加; 水分子的吸附位置是在钠离子和铝原子的周围, 平均每个钠离子周围吸附4个水分子, 而当水的吸附量增大时, 水分子与分子筛骨架上的氧原子之间发生了氢键作用; 在吸附量相同的条件下, 水的吸附热随着硅铝比的降低而升高.  相似文献   

16.
In this work, we report the luminescence behavior of Eu(3+)-exchanged zeolite L microcrystals annealed at different temperatures. SEM and XRD techniques were employed to characterize the samples. UV-vis absorption spectroscopy and luminescence spectroscopy were used to study the luminescence properties of the annealed materials. It is shown that Eu(3+)-exchanged zeolite L crystals are structurally stable at 800 °C, and that its structure is completely collapsed when annealed at 1100 °C. Calcination of Eu(3+)-exchanged zeolite L crystals at 700 °C leads to a strong violet-blue emission, while a strong red emission is observed when the sample is annealed at 1100 °C.  相似文献   

17.
Pt/Cs-BEA materials prepared by a classical ion-exchange procedure using two Cs-BEA supports with different Cs loadings, and a reference acidic Pt/H-BEA, have been studied to investigate the effect of the framework basicity (evaluated by FT-IR of adsorbed CO2) on the state of platinum species after the initial steps (introduction of Pt complex by ion-exchange and subsequent calcination) of the preparation procedure. DR-UV data revealed that the framework basicity affects the structure of the Pt2+ complexes introduced as countercations in the zeolite by ion exchange. FT-IR spectra of adsorbed CO indicated that zeolite basicity rules the fate of platinum species in the subsequent calcination. Hence, in Pt/H-BEA essentially well dispersed Ptδ+ (4≥δ≥1) are present, while PtO x particles progressively prevail as the basic character of the zeolite increases.  相似文献   

18.
Various MX (M = Cd, Zn, and Mn, X = S and Se) semiconductor quantum dots (QDs) were prepared in zeolite Y. While the QDs are readily expelled from zeolite interior upon exposure of the MX QD-incorporating zeolite Y ([MX]-Y) to the ambient atmosphere due to moisture adsorption, they remain tightly confined within zeolites even after exposure to the moist atmosphere for several weeks when the surfaces were silylated with various silylating agents. This methodology will facilitate the characterization of the zeolite-encapsulated QDs and the application of QD-incorporating zeolites.  相似文献   

19.
Confocal fluorescence microscopy was employed to selectively visualize the dispersion and orientation of zeolite ZSM‐5 domains inside a single industrially applied fluid catalytic cracking (FCC) catalyst particle. Large ZSM‐5 crystals served as a model system together with the acid‐catalyzed fluorostyrene oligomerization reaction to study the interaction of plane‐polarized light with these anisotropic zeolite crystals. The distinction between zeolite and binder material, such as alumina, silica, and clay, within an individual FCC particle was achieved by utilizing the anisotropic nature of emitted fluorescence light arising from the entrapped fluorostyrene‐derived carbocations inside the zeolite channels. This characterization approach provides a non‐invasive way for post‐synthesis characterization of an individual FCC catalyst particle in which the size, distribution, orientation, and amount of zeolite ZSM‐5 aggregates can be determined. It was found that the amount of detected fluorescence light originating from the stained ZSM‐5 aggregates corresponds to about 15 wt %. Furthermore, a statistical analysis of the emitted fluorescence light indicated that a large number of the ZSM‐5 domains appeared in small sizes of about 0.015–0.25 μm2, representing single zeolite crystallites or small aggregates thereof. This observation illustrated a fairly high degree of zeolite dispersion within the FCC binder material. However, the highest amount of crystalline material was aggregated into larger domains (ca. 1–5 μm2) with more or less similarly oriented zeolite crystallites. It is clear that this visualization approach may serve as a post‐synthesis quality control on the dispersion of zeolite ZSM‐5 crystallites within FCC particles.  相似文献   

20.
Thorium(IV) removal from aqueous solutions by erionite and X zeolite was investigated. The Th(IV) uptake at different thorium nitrate concentrations (from 0.25 to 25 mM) was evaluated. The thorium content in the aqueous solution was determined by neutron activation analysis. Th(IV) retained by zeolites was 1.7 and 3.7 meq/g for erionite and X zeolite. In order to explain the thorium sorption process in both zeolites, ion exchange mechanism was considered. It was found that thorium sorption behavior is strongly dependent of the type of zeolite, the separation factor for Mexican erionite was αTh(IV) Na(I)<1, this zeolite shows preference for Na(I) rather than for Th(IV), however, by X zeolite, αTh(IV) Na(I)~1, this value suggested an approximately ideal ion exchange behavior. The effect of pH on thorium sorption was also considered. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号