首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
制备一系列包含或不包含铜、钼组分的Ni/γ-Al2O3催化剂,并对其进行表征和性能测试。考察了铜、钼负载量,浸渍顺序(包括连续浸渍和共浸渍),反应条件对脂肪酸甲酯加氢脱氧反应性能的影响。根据TG数据,使用过的20Ni-6Cu/γ-Al2O3催化剂其热失重小于20Ni/γ-Al2O3催化剂,这表明,铜的引入能够有效抑制反应过程中催化剂表面的积炭行为。对于20Ni-6Cu/γ-Al2O3和20Ni-6Cu-nMo/γ-Al2O3(n=2、5、8和12)催化剂,NH3-TPD分析结果显示,钼物相的引入对载体γ-Al2O3的酸性位有着显著影响,当钼负载量达到5%时,可以观察到一个新的酸位对应于中强酸位。铜和钼修饰过的催化剂其催化性能要高于Ni/γ-Al2O3催化剂。从XPS的分析可以看出,催化剂中的铜主要以正二价形式存在,钼主要以正四价和正六价形式存在,而且不同的浸渍顺序会影响催化剂表面活性组分的实际含量。此外,脂肪酸甲酯的转化率和烷烃产品的收率也和所制备出来的催化剂的浸渍顺序有关。在所有的催化剂中,使用连续浸渍(先浸渍镍铜组分、浸渍钼组分)所制备的三金属20Ni-6Cu-5Mo/γ-Al2O3催化剂展现了优异的催化性能。在适宜的反应条件下(350 ℃,2.5 MPa,WSHV=2.0 h-1,H2/oil ratio=1250 mL/mL),脂肪酸甲酯的转化率和烷烃产品的收率分别达到98.4%和94.2%。  相似文献   

2.
硫化态K—Mo合成低碳醇催化剂的制备条件和载体效应研究   总被引:3,自引:0,他引:3  
用浸渍法制备以KCl为助剂的ZrO_2、γ-Al_2O_3和SiO_2负载硫化态钼基催化剂,研究了钼和助剂钾两种组分浸渍顺序、助剂含量、载体差别以及浸渍溶液的酸碱性对催化剂上CO加氢合成低碳混合醇性能的影响。ZrO_2按先钼后钾、γ-Al_2O_3和SiO_2则按相反的顺序浸渍两种组分、且K/Mo原子比分别为0.5,0.8和1.0制备催化剂,其合成醇活性最佳。由于载体性质的差异,K-Mo/SiO_2、特别是K-Mo/ZrO_2的合成醇活性强烈依赖于钾助剂含量。而K-Mo/SiO_2在较宽的钾含量范围内,其活性差别不明显。适当选择较高碱性的浸渍溶液制备K-Mo/γ-Al_2O_3催化剂,有利于醇活性的提高。  相似文献   

3.
本文用电子探针分析法研究了制备Mo—Co—Ni/γ-Al_2O_3加氢脱硫催化剂的浸渍条件对Co,Ni,Mo在γ-Al_2O_3上分布的影响。观察了浸渍液浸透程度和孔壁对溶质的吸附作用。控制浸渍液的用量和浓度,可在γ-Al_2O_3粒子上同时调节活性组份含量的分布和活性组份间原子比的分布,得到了两种活性组份原子比比较均匀,而活性组份含量分布不同的催化剂模型。以过量浸渍液浸渍时,观察到组份Mo和组份Co,Ni间浸渍的次序对Co,Ni在γ-Al_2O_3上的分布有明显影响。  相似文献   

4.
采用电子探针显微分析的EDX和XPS、拉曼光谱等技术研究了不同制备方式对Ni和W在γ-Al_2O_3颗粒上的分布与化学状态的影响。实验表明,浸渍时间是影响组分分布均匀程度的主要因素。Ni和W在γ-Al_2O_3上存在竞争吸附,调节浸渍时间或分浸顺序可以制备出Ni,W分布情况不同的催化剂。单组分Ni浸渍γ-Al_2O_3容易形成表面NiAl_2O_4;Ni和W共浸,NiAl_2O_4的形成受到W的抑制,抑制程度因浸渍方式不同而异。湿浸方式制备的催化剂,W主要以聚钨酸的WO_3形式存在,共存的Ni有抑制单核钨酸WO_3生成的作用。干燥方式不同,对催化剂表面NiAl_2O_4生成量的影响也不相同。微反活性实验表明,无论催化剂制备方式如何,Ni-W/γ-Al_2O_3的吡啶加氢脱氮活性与NiAl_2O_4生成量之间有近似的反比线性关系。  相似文献   

5.
以γ-Al_2O_3为载体,制备了一系列不同NiO负载量的NiMo/γ-Al_2O_3催化剂,利用XRD、~(27)Al-MAS NMR、Py-FTIR和HRTEM等技术对其进行了表征;在高压微反装置对该系列催化剂的加氢脱硫性能进行了评价,研究了助剂Ni与载体γ-Al_2O_3中不饱和铝间的相互作用及其对催化剂活性相结构形貌和催化活性的影响。结果表明,助剂Ni优先作用于γ-Al_2O_3表面的四配位不饱和铝原子位置;随着NiO负载量的增加,硫化态NiMo/γ-Al_2O_3催化剂中MoS_2活性相的长度变短、堆垛层数增加。Ni的引入能明显提高NiMo/γ-Al_2O_3催化剂的加氢脱硫活性,但其加氢选择性则有所降低。  相似文献   

6.
通过浸渍法分别在Al(OH)_3和Al_2O_3中引入SiO_2,经焙烧后制备具有不同表面酸性质的SiO_2-Al_2O_3载体,以上述SiO_2-Al_2O_3及Al_2O_3为载体,采用等体积浸渍法制备Ni负载量为15%的Ni/SiO_2-Al_2O_3催化剂(分别为Ni/SA-1和Ni/SA-2)与Ni/Al_2O_3.采用N2物理吸附、Py-FTIR、NH3-TPD、XRD、H2-TPR和H2-TPD手段对催化剂进行表征,考察了表面酸性质对催化剂催化1,4-丁炔二醇高压加氢性能的影响.结果表明,SiO_2引入方式会影响Ni/Al_2O_3催化剂表面酸性质及活性组分Ni在载体表面的分散行为.在Al(OH)3中引入SiO_2时,Ni/SA-1催化剂不仅活性组分具有高分散度,而且表面具有丰富的L酸位点,L酸位点与Ni活性中心协同作用有效提高了催化剂的高压加氢性能.而在Al_2O_3中直接引入SiO_2时,SiO_2覆盖了Al_2O_3表面的L酸位点,催化剂活性组分分散度较低,表现出低的加氢活性.  相似文献   

7.
以分步浸渍法在固定MoO_3、CoO含量(质量分数)为13.50%、2.11%的条件下,通过改变磷酸浓度,制备了不同P负载量的Co-Mo/γ-Al_2O_3催化剂。考察了不同的P负载量催化剂对内蒙古赤峰中温煤焦油加氢脱硫性能的影响。并以NH3程序升温脱附(NH_3-TPD)、X射线衍射(XRD)、X射线光电子能谱(XPS)等手段对催化剂的结构性质进行了表征。结果表明,适宜的P负载量可减弱活性组分与载体间的相互作用,利于活性组分均匀分散在载体表面,改善了催化剂的还原、硫化性能和酸性分布,从而提高了催化剂的加氢脱硫活性。当磷酸质量分数为4%时,催化剂表现出最佳的加氢脱硫性能,硫脱除率达到96.98%。不同P负载量Co-Mo/γ-Al_2O_3催化剂加氢脱硫活性对应的磷酸浓度顺序为:4%2%6%1%08%。  相似文献   

8.
本文利用一种新的方法-溶剂化金属原子浸渍法制备了Fe/γ-Al_2O_3,Fe/SiO_2,Co/γ-Al_2O_3,Co/SiO_2,Ni/γ-Al_2O_3和Ni/SiO_2六种催化剂。H_2化学吸附,TEM和XRD测定结果表明这些催化剂中Fe,Co,Ni金属颗粒平均直径都小于30A,金属分散度均大于50%。作者研究了Fe/γ-Al_2O_3,Co/γ-Al_2O_3和Ni/γ-Al_2O_3三种催化剂在CO+H_2反应中的催化行为,测定了碳氢产物分布和比催化活性,表明随着H_2/CO比增大和反应温度升高。较高分子量物种产量减少,有利于生成甲烷。催化剂的活性大小次序为Fe>Ni>Co。  相似文献   

9.
本文利用一种新的方法-溶剂化金属原子浸渍法制备了Fe/γ-Al_2O_3, Fe/SiO_2, Co/γ-Al_2O_3,Co/SiO_2, Ni/γ-Al_2O_3和Ni/SiO_2六种催化剂。H_2化学吸附, TEM和XRD测定结果表明这些催化剂中Fe, Co, Ni金属颗粒平均直径都小于3.0 nm, 金属分散度均大于50%。作者研究了Fe/γ-Al_2O_3, Co/γ-Al_2O_3和Ni/γ-Al_2O_3三种催化剂在CO+H_2反应中的催化行为, 测定了碳氢产物分布和比催化活性, 表明随着H_2/CO比增大和反应温度升高。较高分子量物种产量减少, 有利于生成甲烷。催化剂的活性大小次序为Fe>Ni>Co。  相似文献   

10.
采用浸渍法制备Sm改性Ni/Al_2O_3催化剂并将其用于甲醇水蒸气重整制氢,考察了不同负载量Sm对Ni/Al_2O_3催化剂性能的影响。结果表明:Ni/Al_2O_3催化剂中添加Sm有利于NiO的形成,使还原后的催化剂得到更多的活性组分Ni,从而提高H_2的选择性和CH_3OH的转化率,降低CO的选择性。此外, Sm的最佳负载量为10%,此时H_2选择性为95.8%,甲醇转化率为92.6%, CO的选择性降至4.9%。当Sm负载量高于10%时,催化剂中NiO粒径过大,催化剂性能降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号