首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four linear polyesters containing styrylpyridinium units were prepared from 2,6-bis(p-hydroxystyryl)pyridine and terephthalic acid, isophthalic acid, adipic acid, and sebacic acid, respectively. The polyesters are thermally stable in the 365 to 450°C range. The decomposition temperature is higher for aromatic polyesters, lower for their aliphatic analogs. The polyesters are photoreactive and crosslink on irradiation with UV. The crosslinking mechanism is 2 + 2 cycloaddition. The polyesters form protonated complexes with CF3COOH which absorb at longer wavelengths and are also photoreactive. The quantum yield of the photoreaction and the relative photosensitivities of the polyesters and their complexes were determined.  相似文献   

2.
A series of main‐chain, thermotropic, liquid‐crystalline (LC), hydrogen‐bonded polymers or self‐assembled structures based on 4,4′‐bipyridyl as a hydrogen‐bond acceptor and aliphatic dicarboxylic acids, such as adipic and sebacic acids, as hydrogen‐bond donors were prepared by a slow evaporation technique from a pyridine solution and were characterized for their thermotropic, LC properties with a number of experimental techniques. The homopolymer of 4,4′‐bipyridyl with adipic acid exhibited high‐order and low‐order smectic phases, and that with sebacic acid exhibited only a high‐order smectic phase. Like the homopolymer with adipic acid, the two copolymers of 4,4′‐bipyridyl with adipic and sebacic acids (75/25 and 25/75) also exhibited two types of smectic phases. In contrast, the copolymer of 4,4′‐bipyridyl with adipic and sebacic acids (50/50), like the homopolymer with sebacic acid, exhibited only one high‐order smectic phase. Each of them, including the copolymers, had a broad temperature range of LC phases (36–51 °C). The effect of copolymerization for these hydrogen‐bonded polymers on the thermotropic properties was examined. Generally, copolymerization increased the temperature range of LC phases for these polymers, as expected, with a larger decrease in the crystal‐to‐LC transition than in the LC‐to‐isotropic transition. Additionally, it neither suppressed the formation of smectic phases nor promoted the formation of a nematic phase in these hydrogen‐bonded polymers, as usually observed in many thermotropic LC polymers. The thermal transitions for all of them, measured by differential scanning calorimetry, were well below their decomposition temperatures, as measured by thermogravimetric analysis, which were in the temperature range of 193–210 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1282–1295, 2003  相似文献   

3.
Abstract

The aliphatic polyesters are normally synthesized by ester interchange reactions or direct esterification of hydroxyacids or diacid/diol combinations. Biotransformation, utilizing the enzymes as catalysts, was accepted as an alternative route for the synthesis of aliphatic polyesters and offers various advantages compared with the conventional, metal-catalyzed polymerization reactions. Previous studies indicated that lipase-catalyzed polycondensation reactions between diols and diacids occurred preferentially at primary hydroxyl groups of diols, when diols contained both primary and secondary hydroxyl groups. In this work, we investigated lipase-catalyzed polycondensation of diacids and secondary hydroxyl group–containing diols, and successfully synthesized polyesters by polycondensation with secondary hydroxyl groups as well as primary hydroxyl groups. Various diols, glycerol, 1,2-propanediol, 1,3-butanediol, 2,3-butanediol, and 2,4-pentanediol were tested for the polycondensation. The polymerization was achieved by heating a mixture of lipase B, sebacic acid, and the diols in anhydrous toluene at 100 °C for 72 h. The resulting polymers were characterized by 1H and 13C NMR spectroscopy, Fourier transform–infrared spectroscopy, thermogravimetric analysis, and gel permeation chromatography.  相似文献   

4.
Synthesis of unsaturated polyesters using adipic acid, ethylene glycol, and fumaric acid in the absence and presence of a foreign acid (phosphoric acid) as catalyst was carried out by a two-stage method under constant reaction temperatures of 160–180°C and at different ratios of diol to diacid. The experimental data fit the Chen–Wu rate equations for self-catalyzed and acid-catalyzed reactions. The reaction rate constants and activation energies for both systems were calculated. The rate constants of fumaric acid–ethylene glycol systems were found to be nearly constant and had negligible variations with increasing chain length of polymer. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
The studies on the relationship between network structure/thermal properties of styrene copolymers based on adypic/sebacic acid modified unsaturated (epoxy) polyesters cured using different hardeners as well as the course of the cure reaction of polyesters with styrene have been presented. The adypic/sebacic acid modified unsaturated polyesters (UP) prepared from 4-cyclohexene-1,2-dicarboxylic anhydride (THPA), maleic anhydride (MA), adypic acid (AA) or sebacic acid (SA) and ethylene glycol (EG) and their epoxy derivatives: adypic/sebacic acid modified unsaturated epoxy polyesters (UEP) were subjected to the cure process with styrene using diacyl peroxide: benzoyl peroxide (BPO) or the mixture of BPO/suitable acid anhydride: 4-cyclohexene-1,2-dicarboxylic anhydride (THPA) or glutaric anhydride (GA). Thermal properties were evaluated by means of DSC, TG and DMA analyses. It was proved that studied properties were significantly depended on polyester's structure and the type of applied curing system. Generally, higher values of E'20°C, tgδmax, E”, νe, IDT, Tk for styrene copolymers based on UEP were obtained. It was connected with more cross-linked polymer network structure due to the possible copolymerization reaction of carbon-carbon double bonds of polyester with styrene and additional polyaddition of epoxy to anhydride groups or thermal curing of epoxy groups. The additional connections between polyester's chains led to obtain more stiff and thermal stable polymeric materials. Moreover, the increase of saturated aliphatic acid's chain length in polyester backbone caused the decrease of E'20°C, tgδmax, E”, νe, IDT, Tk values of styrene copolymers. It suggested that copolymers based on polyesters prepared from acid containing more methylene groups in their structure were characterized by more flexible polymer network due to the “laxity” effect of aliphatic chains.  相似文献   

6.
Two-component polyurethane flame-retardant coatings were prepared by blending chlorine-containing modified polyesters (DCAOs) and polyisocyanate. DCAOs used were synthesized by polycondensation of dichloroacetic acid, a flame-retardant aliphatic carboxylic acid, with 1,4-butanediol, trimethylolpropane, and adipic acid. The content of dichloroacetic acid was varied in 10, 20, and 30 wt % for the polycondensation reaction. Various physical properties of these new flame-retardant coatings were comparable to nonflame-retardant coatings. They showed desirable properties for flame-retardant coatings such as rapid drying and 8–10 hours of pot-life. Coatings with 30 wt % dichloroacetic acid were not fired by the vertical burning test. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
The polyester of 12-hydroxymethyltetrahydroabietic acid was prepared by the selfcondensation of the hydroxy acid (I) and from its methyl ester (II). The condensation reaction was studied and different catalysts investigated. The inherent viscosity of the polymers were measured and their DTA diagrams taken. A polyurethane as well as different polyesters of the diol (III) with methylene di-p-phenyl diisocyanate, terephthalic, adipic, suberic, and sebacic acids were synthesized. Mixed polyesters and polyamide ester were also prepared. The properties of the above described polymers were investigated and their behavior on DTA reported.  相似文献   

8.
Summary: The reaction of hydrazine with ethyl glycolate results in 1,2‐bisglycoylhydrazine, a monomer that was used for the lipase‐catalyzed synthesis of biodegradable poly(ester hydrazide)s. The polymers derived from the hydrazide‐containing monomer and vinyl‐activated adipic, suberic, and sebacic acid, respectively, showed low melting temperatures of 136 to 141 °C and are thermally stable up to 300 °C. The aliphatic poly(ester hydrazide)s (PEHs) are highly crystalline, as proven by polarization microscopy and atomic force microscopy. Further, the PEHs represent the first described biodegradable poly(hydrazide)s. They degrade in the presence of lipase at 37 °C within a few weeks.

Synthetic route to poly(ester hydrazide)s.  相似文献   


9.
Aliphatic dicarboxylic acid/aliphatic diol‐derived polyesters, poly(butylene succinate) and poly(butylene succinate/adipate), have been hydrolytically degraded in the melt in high‐temperature and high‐pressure water over a wide temperature range of 180–300 °C for periods of up to 30 min. The formation/decomposition of succinic acid (SA), adipic acid (AA), and butane‐1,4‐diol (BD), plus the molecular weight change of PBS and PBSA were then investigated. SA and AA were recovered at maximum yields of 65–80%, whereas BD was recovered at a maximum yield of only 30%, probably because of its decomposition. The obtained results were compared with those reported for aliphatic hydroxycarboxylic acid‐derived polyesters and aromatic dicarboxylic acid/aliphatic diol‐derived polyesters.

  相似文献   


10.
A synthetic route to higher molecular weight processable polyesters with bisphenol A terephthalate/isophthalate moieties and lactide moieties which are of potential interest for tissue engineering is described. The combination of aliphatic and aromatic moieties is a promising concept for processable polyesters with potential sites for physiological degradation and improved mechanical properties. The molecular structure of the copolyesters prepared by melt condensation via an acid chloride route and incorporation of the lactide moieties by transesterification of an oligo dl -lactide was confirmed by infrared, 1H and 13C nuclear magnetic resonance spectroscopy as well as gel permeation chromatography. The thermal and mechanical properties of copolyesters with different amounts of lactide moieties are reported and correlated with their composition. The reaction mechanism by transesterification was proved by a model reaction with a physical blend of the components and the hydrolytical behavior of the copolyesters under physiological conditions has been investigated. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
Journal of Thermal Analysis and Calorimetry - The saturated aliphatic binary carboxylic acid, including succinic acid, adipic acid and sebacic acid, were used to improve the curing process of...  相似文献   

12.
Adipic acid–glutaric acid, glutaric acid–sebacic acid, and adipic acid–sebacic acid binary systems are studied, along with an adipic acid–glutaric acid–sebacic acid ternary system. It is shown all of these systems are eutectic. Phase equilibria for the diagram elements of the binary systems and the ternary system are described. It is concluded that the above low-melting compounds can be recommended for use as working bodies in heat accumulators, and for preparing electrolytes used in the thin-layer anodic oxidation of aluminum alloys.  相似文献   

13.
High molecular weight, film-forming, amorphous polyesters have been prepared from 2,6-dilydroxy-9,10-dihydro-9,10-ethanoanthracene with adipic, sebacic, dodecanoic, isophthalic, 4,4′-oxybibenzoic, 2,6-naphthoic, 4,4′-bibenzoic, and terephthalic acid. Thermal elimination of ethylene from these polymers has yielded the corresponding polyesters from 2,6-dihydroxyanthracene which were of high molecular weight, film forming, and crystalline.  相似文献   

14.
《印度化学会志》2023,100(1):100841
The limited availability of petroleum resources motivates the research towards value-added products production from bio-resources. This study reports the synthesis of glycerol and succinic acid-based polyesters and their detailed characterization. The modification of poly (glycerol succinate) was done by using other diacids like glutaric acid, adipic acid, azelaic acid, sebacic acid, and dodecanedioic acid. The sysnthesized polyesters were characterized using various techniques such as thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The addition of different dicarboxylic acids to poly (glycerol succinate) based co-polyesters increased the thermal stability of poly (Glycerol succinate). Glass transition temperatures were obtained in the range of ?17.2 to ?22.5 °C and it increased with chain length. The progress of reaction was monitored by determining acid number, ester number, and degree of esterification. The hydrolytic degradation of polyesters was carried out in acidic and basic medium. The polyesters was found to degrade under basic conditions whereas no weight loss of poly (glycerol succinate) was found under acidic conditions. Particularly, about 40% of poly (glycerol succinate) was degraded within 24 h under basic conditions (pH = 12). The analysis of morphology of polyesters during degradation showed that the increase in hydrolysis time increased the heterogeneity in polyester matrix.  相似文献   

15.
Numerous polycondensations of isosorbide and suberoyl chloride or other aliphatic dicarboxylic acid dichlorides were performed with pyridine as a catalyst and HCl acceptor. The reaction conditions were varied to optimize both the molecular weight and the fraction of cyclic oligo‐ and polyesters. Furthermore, we attempted to obtain the cyclic monomer by catalyzed back‐biting degradation of the molten cyclic polyesters above 220 °C in vacuo. The polyesters were characterized by viscosity and size exclusion chromatographic measurements as well as matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. In selected cases, mixtures of linear and cyclic polyesters were treated with a hot solution of partially methylated β‐cyclodextrin in methanol. This treatment allowed for a selective extraction of the linear chains up to approximately 5000 Da. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3414–3424, 2003  相似文献   

16.
A series of predominately hydroxyl-ended polyesters were made from tridecanedioic acid derived from crambe oil. Comparison materials with sebacic and adipic acids were also prepared. Suitable polyesters were converted into polyurethane elastomers by chain extension and cross-linking with a diisocyanate and further diol. Polyesters based on ethandiol were unsuitable for the production of flexible urethanes as a slow crystallization occurred on standing; this did not happen when mixed ethane- and propan-diols were employed in polyesterification. Polyurethanes based on diphenylmethane diisocyanate are stronger than those made with the mixed isomers of toluene diisocyanate. Polyurethane networks based on brassylic acid have a lower  相似文献   

17.
This research aims to produce lignin‐based biodegradable polyesters with improved thermal quality. A series of aliphatic polyesters with lignin‐based aromatic side groups were synthesized by conventional melt‐polycondensation. Decent molecular weight (21–64 kg mol?1) was achieved for the polymerizations. The molecular structures and thermal and mechanical properties of the obtained polyesters were characterized. As a result, the obtained polyesters are all amorphous, and their glass‐transition temperature (Tg) depends on the size of the pendant aromatic group (31–51 °C). Furthermore, according to the TGA results, the thermal decomposition temperatures of the polyesters are all above 390 °C, which make them superior compared with commercial biodegradable polyesters like polylactic acid or polyhydroxyalkanoates. Finally, rheological characteristics and enzymatic degradation of the obtained polyesters were also measured. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2314–2323  相似文献   

18.
N,N′-Dipropionylethylenediamine was synthesized by the ring-opening addition reaction of 2-ethyl-2-imidazoline with propionic acid at 220°C. By applying this reaction to polymerization, polyamides were synthesized by the ring-opening polyaddition reaction at 220°C. of 1,4-bis(imidazoline-2-yl)butane with adipic acid, succinic acid, sebacic acid, and terephthalic acid. The reaction product of 1,4-bis(imidazoline-2-yl)butane with adipic acid, which was proposed to be nylon 26, was compared with an authentic sample of nylon 26 and shown to possess a very similar infrared spectrum and melting point.  相似文献   

19.
Mixtures of the dimethyl esters of adipic acid and 2,3:4,5‐di‐O‐methylene‐galactaric acid (Galx) were made to react in the melt with either 1,6‐hexanediol or 1,12‐dodecanediol to produce linear polycyclic copolyesters with aldarate unit contents varying from 10 up to 90 mole %. The copolyesters had weight–average molecular weights in the ~35,000–45,000 g mol?1 range and a random microstructure, and were thermally stable up to nearly 300 °C. They displayed Tg in the ‐50 to ‐7 °C range with values largely increasing with the content in galactarate units. All the copolyesters were semicrystalline with Tm between 20 and 90 °C but only those made from 1,12‐dodecanediol were able to crystallize from the melt at a crystallization rate that decreased as the contents in the two comonomers approached each other. Copolyesters containing minor amounts of galactarate units adopted the crystal structure characteristic of aliphatic polyesters but a new crystal polymorph was formed when the cyclic sugar units became the majority. Stress–strain parameters were sensitively affected by composition of the copolyesters with the mechanical behavior changing from flexible/ductile to stiff/brittle with the replacement of adipate units by the galactarate units. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Polyesterification of adipic acid and maleic anhydride with 1,3-bis(2-hydroxyethoxy)benzene (HER) in the presence of toluene-4-sulphonic acid was carried out using melt condensation technique. The structural characterization of the synthesized polyesters had been carried out using Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopic methods. The thermal properties of the polyesters were studied using differential thermal analysis (DTA) and thermogravimetric analysis (TGA). The activation energies for the thermal degradation of the polyesters were calculated by the method of Dharwadkar and Kharkhanavala and discussed. The char residue value at 600 °C indicated maleic anhydride based polyester is thermally more stable compared to the adipic acid based polyester. The mechanism of degradation of these polyesters is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号