首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
煤灰中矿物质组成对煤灰熔融温度的影响   总被引:6,自引:3,他引:3  
选取九种不同灰熔融温度的煤样,利用X射线衍射分析方法,研究了煤灰的矿物质组成及含量对灰熔融温度的影响,以及弱还原性气氛下不同温度煤灰熔融过程中的矿物演变过程及其对灰熔融温度的影响。结果表明,815℃煤灰的主要晶体矿物质组成为石英、硬石膏、赤铁矿、氢氧钙石和石灰等。一般情况下,煤灰中氢氧钙石含量低,硬石膏和赤铁矿含量高的煤,灰熔融温度较低。在还原性气氛下,随着温度的升高,煤灰中的石英、硬石膏、氢氧钙石等结晶矿物含量逐渐减少,生成新的矿物质。莫来石的生成是导致煤灰熔融温度高的主要原因。低灰熔融温度煤灰在加热过程中,在1 100℃时,钙长石和铁钙辉石的生成起到了降低煤灰熔融温度的作用。  相似文献   

2.
铁基助熔剂对皖北刘桥二矿煤的灰熔融特性影响研究   总被引:3,自引:2,他引:1  
研究了铁基助熔剂对皖北刘桥二矿煤(AQ)灰熔融特征的影响,并对AQ煤灰在添加铁基助熔剂前后不同热处理温度下的矿物组成进行了XRD和红外光谱分析。结果表明,导致AQ煤灰熔点高的主要原因是1000℃以上形成的莫来石引起的;加入铁基助熔剂可以降低AQ煤灰的熔融温度;在高温下铁基助熔剂与煤灰中其他铝硅酸盐矿物发生反应,生成铁橄榄石和铁尖晶石等低温共熔化合物,从而使煤灰熔点明显下降。  相似文献   

3.
反应气氛对不同煤灰烧结温度影响的研究   总被引:2,自引:0,他引:2  
煤灰的烧结温度对流化床燃烧及气化炉的设计和运行有着很重要的作用。利用所建的压差法煤灰烧结温度测量装置,在分析了灰样放置方式对煤灰烧结温度测量影响的基础上,测量了不同反应气氛下不同煤灰的烧结温度,并获得了煤灰成分以及反应气氛对煤灰烧结特性的影响。结果表明,煤灰的酸碱比越大,其烧结温度越高,同时煤灰的含铁量增加将明显降低其烧结温度;还原性气氛下煤灰的烧结温度低于氧化性气氛下煤灰的烧结温度,而在H2气氛下,具有适当的Fe2O3、Na2O、SO3配比的煤灰容易产生低温共熔体Na2S-FeS,使得H2气氛下的烧结温度低于CO气氛下的煤灰烧结温度;典型流化床气化下煤灰的烧结温度介于CO气氛和H2气氛下煤灰烧结温度之间,并且更接近于CO气氛。  相似文献   

4.
以山西阳泉固庄高熔点煤灰为研究对象,通过向煤灰中添加不同量的MgO与Na2CO3,研究了Mg2+与Na+在高温下对煤灰熔融性的影响。研究结果表明,煤灰熔融温度随氧化镁的添加(5%~25%)单调下降;而随氧化钠添加(5%~25%)出现先降后升现象,在氧化钠添加量为15% 时,灰熔点达到最低。XRD分析表明,阳泉固庄煤灰熔融温度高(大于1 750℃)的原因是高温条件下耐熔矿物莫来石、方英石的存在。添加外加剂后,高温时外加剂与硅酸盐矿物反应,生成了更多的低共熔矿物霞石、堇青石等。同时,Mg2+和Na+的加入会使得非桥氧数量增多,高温煤灰低聚物增多,降低了煤灰的熔融温度。通过三元相图以及SEM分析,高温条件下煤灰中部分元素的富集以及团聚现象是导致Mg2+和Na+对煤灰熔融温度影响不同的原因。  相似文献   

5.
利用X射线衍射(XRD)研究了1 100-1 500℃条件下弱还原性气氛下胜利褐煤和高平无烟煤煤灰中矿物质的变化,利用Siroquant定量软件计算了高温灰样中矿物质和无定形相的含量,结合化学成分分析,利用差减法计算了煤灰中无定形相的化学组成。结果表明,利用XRD、Siroquant软件并结合化学成分分析,可以对煤灰中的矿物质及无定形相进行定量分析,并可获得不同温度下无定形相的化学组成变化。不同温度范围内煤灰中无定形相的形态不同,当温度低于1 100℃时,煤灰中无定形相主要是未结晶或结晶度较差的氧化物,而随着温度的升高,矿物质发生熔融并形成了玻璃态物质,此时的无定形相则是以熔融的硅酸盐和硅铝酸盐为主。煤灰的硅铝比越低,高温下越容易生成莫来石。  相似文献   

6.
本文选用了四种不同成分的煤灰,在不同比例的CO 和CO_2混合气及空气下进行了灰的熔聚试验。结果表明,煤灰在低于变形温度前,已形成具有相当强度的熔聚物。用转鼓指数较好地表徵了熔聚物的熔聚程度。在CO:CO_2=60:40气氛下测得的熔聚特徵温度比在空气下的低80—200℃。改变气氛中的CO 与CO_2的比例时,熔聚特徵温度变化不大。本文还对不同温度下形成的熔聚物用X-射线衍射分析,观察其物相变化趋势。  相似文献   

7.
在水蒸气气化气氛(水蒸气-氢气-一氧化碳-二氧化碳混合气氛)下考察了反应压力对负载碳酸钾煤灰烧结温度的影响,建立了包含煤的灰分、煤灰化学组成、催化剂负载量及反应压力因素的煤灰烧结温度预测关系式,预测结果与实测烧结温度的误差在±15℃(2%)范围内。利用X射线衍射仪和Fact Sage热力学计算软件对不同气氛和压力下煤灰中的矿物组成及含量的变化规律进行了分析。结果表明,碳酸钾与煤灰中的硬石膏、方解石反应生成硫酸钾和碳酸钾钙;水蒸气气化气氛下硫酸钾和赤铁矿被还原,碳酸钾钙的分解温度随反应压力的增大而升高;负载催化剂煤灰中氢氧化钾的量随温度和压力的提高而增加,不同压力下煤灰的最低烧结温度与氢氧化钾的含量有关,当氢氧化钾的含量达到一定值时,不同压力下对应的温度与实验测得的煤灰烧结温度接近。  相似文献   

8.
为探究气氛、混合比及残炭含量对生物质与煤混合灰熔融特性的影响,将松木屑灰与乌海烟煤灰按不同质量比混合,采用智能灰熔点仪测定各混合灰样在不同气氛下的灰熔融温度,X射线衍射仪从矿物质演变角度分析混合灰熔融温度变化的原因。结果表明,由于铁尖晶石和铁橄榄石的生成,使混合灰的熔融温度在弱还原性气氛下比氧化性气氛下低,且差值的大小与混合灰中Fe含量有关;随松木屑灰含量的增加,钙铝黄长石、镁黄长石、白榴石等低温共熔物的生成量增加,使混合灰的熔融温度降低;此外,由于Fe-C共熔体(Fe_xC_y)的生成、灰锥局部还原性气氛及残炭的"骨架"作用,使混合灰的熔融温度随煤灰中残炭含量的增加呈现先升高后降低再升高的趋势。  相似文献   

9.
在水蒸气气化气氛(水蒸气-氢气-一氧化碳-二氧化碳混合气氛)下考察了反应压力对负载碳酸钾煤灰烧结温度的影响,建立了包含煤的灰分、煤灰化学组成、催化剂负载量及反应压力因素的煤灰烧结温度预测关系式,预测结果与实测烧结温度的误差在±15℃(2%)范围内。利用X射线衍射仪和FactSage热力学计算软件对不同气氛和压力下煤灰中的矿物组成及含量的变化规律进行了分析。结果表明,碳酸钾与煤灰中的硬石膏、方解石反应生成硫酸钾和碳酸钾钙;水蒸气气化气氛下硫酸钾和赤铁矿被还原,碳酸钾钙的分解温度随反应压力的增大而升高;负载催化剂煤灰中氢氧化钾的量随温度和压力的提高而增加,不同压力下煤灰的最低烧结温度与氢氧化钾的含量有关,当氢氧化钾的含量达到一定值时,不同压力下对应的温度与实验测得的煤灰烧结温度接近。  相似文献   

10.
对蒙煤与平七煤两种单煤及其按照不同比例组成的混煤,分别在O2/CO2和O2/N2气氛下,采用管式炉燃烧制取灰样;对灰样进行灰熔点、XRD及同步热分析(TG/DSC)测试,并进行相关热力学计算,分析了O2/CO2燃烧方式对混煤灰中矿物质间反应的影响。结果表明,常规灰熔点测试方法测得的两种气氛下的混煤灰熔点没有明显差别。O2/CO2气氛促进了煤灰/混煤灰中钙的碳酸化,且明显抑制了高温下CaCO3的分解。气氛的改变影响了含钙矿物的转化,进而影响了混煤中钙与莫来石反应生成低温共熔物;O2/CO2气氛下钙更易于与莫来石发生反应生成低温共熔物,从而会增加结渣倾向。当混煤中蒙煤比例达到或大于75%时,随着蒙煤比例的逐渐增加,莫来石含量减少,O2/CO2气氛对钙与莫来石之间的反应影响减弱,但对含铁矿物的影响更加明显,使其更易于生成含铁玻璃体,从而也会增加结渣倾向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号