首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
The structure of Bi2Sr2O5 at high pressures is investigated by in situ X-ray diffraction (XRD) and Raman scattering methods. Raman results indicate that there are two pressure-induced phase transitions that occurred at ∼1.4 and ∼11 GPa, respectively. XRD measurements reveal only one high-pressure phase, which is indexed with a monoclinic unit cell and the possible space groups are P121(No. 3), P1m1(No. 6) and P12/m1(No. 10). The phase transition above 11 GPa is probably due to the symmetry change without discontinuity of the unit cell. The high-pressure phase is quenchable and it is a new dense form and about 11% denser than the normal orthorhombic Bi2Sr2O5 at room conditions.  相似文献   

2.
The high-pressure phase transition from ambient pressure α-LiBH4 to high-pressure β-LiBH4 was observed by Raman spectroscopy and X-ray diffraction between 0.8 and 1.1 GPa. The phase boundary between these two phases was mapped over a large range of temperatures using thermal conductivity studies and differential thermal analysis. The structure of the high-pressure phase could not be identified due to small number of experimentally observed reflections, but it was shown that it is different from previously reported theoretical predictions.  相似文献   

3.
This work presents a comprehensive study on phase transitions in LiAlO2 system at high pressures and temperatures (0.5-5.0 GPa and 300-1873 K, respectively), as well as the phase stability for polymeric phases of LiAlO2 in the studied P-T space by X-ray diffraction (XRD). Besides the previously described polymorphic hexagonal α-phase, orthorhombic β-phase and tetragonal δ-phase, a possible new phase of LiAlO2 was observed after the tetragonal γ-LiAlO2 sample was treated at 5.0 GPa and 389 K. The stable regimes of these high-pressure phases were defined through the observation of coexistence points of the polymeric phases. Our results revealed that LiAlO2 could experience structural phase transitions from γ-LiAlO2 to its polymorphs at lower pressures and temperatures compared to the reported results. Hexagonal α-LiAlO2 with highly (003) preferential orientation was prepared at 5.0 GPa and 1873 K.  相似文献   

4.
A new modification of KOs2O6, the representative of a new structural type (Pearson symbol aP18, a=5.5668(1) Å, b=6.4519(2) Å, c=7.2356(2) Å, α=65.377(3)°, β=70.572(3)°, γ=75.613(2)° space group P−1, no. 2 was synthesized employing high pressure technique. Its structure was determined by single-crystal X-ray diffraction. The structure can be described as two OsO6 octahedral chains relating to each other through inversion and forming big voids with K atoms inside. Quantum chemical calculations were performed on the novel compound and structurally related cubic compound. High-pressure X-ray study showed that cubic KOs2O6 phase was stable up to 32.5(2) GPa at room temperature.  相似文献   

5.
The effect of pressure on the crystal structure of thallium selenate (Tl2SeO4) (Pmcn, Z=4), containing the Tl+ cations with electron lone pairs, has been studied with single-crystal X-ray diffraction in a diamond anvil cell up to 3.64 GPa at room temperature. No phase transition has been observed. The compressibility data are fitted by a Murnaghan equation of state with the zero-pressure bulk modulus B0=29(1) GPa and the unit-cell volume at ambient pressure V0=529.6(8) Å3 (B′=4.00). Tl2SeO4 is the least compressible in the c direction, while the pressure-induced changes of the a and b lattice parameters are quite similar. These observations can be explained by different pressure effects on the nine- and 11-fold coordination polyhedra around the two non-equivalent Tl atoms. The SeO42− tetrahedra are not rigid units and become more distorted. Their contribution to the compressibility is small. The effect of pressure on the isotypical oxide materials A2TO4 with the β-K2SO4 structure is discussed. It appears that the presence of electron lone pairs on the Tl+ cation does not seem to influence the compressibility of Tl2SeO4.  相似文献   

6.
The perovskite-related layered structure of La2Ti2O7 has been studied at pressures up to 30 GPa using synchrotron radiation powder X-ray diffraction (XRD) and Raman scattering. The XRD results indicate a pronounced anisotropy for the compressibility of the monoclinic unit cell. The ratio of the relative compressibilities along the [100], [010] and [001] directions is ∼1:3:5. The greatest compressibility is along the [001] direction, perpendicular to the interlayer. A pressure-induced phase transition occurs at 16.7 GPa. Both Raman and XRD measurements reveal that the pressure-induced phase transition is reversible. The high-pressure phase has a close structural relation to the low-pressure monoclinic phase and the phase transition may be due to the tilting of TiO6 octahedra at high pressures.  相似文献   

7.
The tetragonal compound Bi2CuO4 was investigated at high pressures by using in situ Raman scattering and X-ray diffraction (XRD) methods. A pressure-induced structural transition started at 20 GPa and completed at ∼37 GPa was found. The high pressure phase is in orthorhombic symmetry. Raman and XRD measurements revealed that the above phase transition is reversible.  相似文献   

8.
High pressure behaviour of disordered pyrochlore CsMgInF6 (Pnma, Z=4) has been studied with powder and single-crystal X-ray diffraction to 8.0 and 6.94 GPa, respectively, in diamond anvil cells at room temperature. The material is structurally stable to at least 8.0 GPa with no ordering of the In3+ and Mg2+ cations. The P-V data are fitted by a Birch-Murnaghan equation of state with the zero-pressure bulk modulus B0=33.4(3) GPa and the unit-cell volume at ambient pressure V0=603.2(4) Å3 for the first pressure derivative of the bulk modulus B′=4.00. The major contribution to the bulk compressibility arises from the changes in the coordination sphere around the Cs atoms. The effect of hydrostatic pressure on the crystal structure of CsMgInF6 is comparable to the effect of chemical pressure induced by the incorporation of ions of different sizes into the A and B sites in defect AB2+B3+F6 pyrochlores.  相似文献   

9.
Lattice parameters of a synthetic powder sample of Ca0.35Sr0.65TiO3 perovskite have been determined by the method of Le Bail refinement, using synchrotron X-ray diffraction patterns collected at pressures up to 15.5 GPa with a membrane-driven diamond anvil cell. At ambient conditions, diffraction data were consistent with the I4/mcm structure reported previously in the literature for the same composition. Diffraction data collected at high pressures were consistent with tetragonal (or, at least, pseudo-tetragonal) lattice geometry, and no evidence was found for the development of any of the orthorhombic structures identified in other studies of (Ca, Sr)TiO3 perovskites. Additional weak reflections, which could not be accounted for by the normal I4/mcm perovskite structure, were detected in diffraction patterns collected at pressures of 0.9-2.5 GPa, and above ∼13.5 GPa, however. Small anomalies in the evolution of unit cell volume and tetragonal strain were observed near 3 GPa, coinciding approximately with breaks in slope with increasing pressure of bulk and shear moduli for a sample with the same composition which had previously been reported. The anomalies could be due either to new tetragonal↔tetragonal/pseudo-tetragonal phase transitions or to subtle changes in compression mechanism of the tetragonal perovskite structure.  相似文献   

10.
Thermal behavior, relative stability, and enthalpy of formation of α (pink phase), β (blue phase), and red NaCoPO4 are studied by differential scanning calorimetry, X-ray diffraction, and high-temperature oxide melt drop solution calorimetry. Red NaCoPO4 with cobalt in trigonal bipyramidal coordination is metastable, irreversibly changing to α NaCoPO4 at 827 K with an enthalpy of phase transition of −17.4±6.9 kJ mol−1. α NaCoPO4 with cobalt in octahedral coordination is the most stable phase at room temperature. It undergoes a reversible phase transition to the β phase (cobalt in tetrahedra) at 1006 K with an enthalpy of phase transition of 17.6±1.3 kJ mol−1. Enthalpy of formation from oxides of α, β, and red NaCoPO4 are −349.7±2.3, −332.1±2.5, and −332.3±7.2 kJ mol−1; standard enthalpy of formation of α, β, and red NaCoPO4 are −1547.5±2.7, −1529.9±2.8, and −1530.0±7.3 kJ mol−1, respectively. The more exothermic enthalpy of formation from oxides of β NaCoPO4 compared to a structurally related aluminosilicate, NaAlSiO4 nepheline, results from the stronger acid-base interaction of oxides in β NaCoPO4 (Na2O, CoO, P2O5) than in NaAlSiO4 nepheline (Na2O, Al2O3, SiO2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号