首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
核壳结构:燃料电池中实现低铂电催化剂的最佳途径   总被引:1,自引:0,他引:1  
电催化剂是决定低温燃料电池性能、寿命和成本的关键材料之一,核壳结构电催化剂由于其在降低铂载量、提高催化剂活性方面表现出的良好性质,已成为燃料电池领域的研究热点.本文综述了低温燃料电池核壳结构电催化剂的最新研究进展.首先,在概述核壳结构电催化剂总体特征的基础上,详细介绍了核壳结构电催化剂的制备方法,主要包括胶体法、热分解...  相似文献   

2.
采用两步化学还原法制备了Co@Pt/C电催化剂, 并在还原气氛下对催化剂进行热处理. 通过高分辨透射电镜(HR-TEM)和X射线光电子能谱(XPS)等技术对催化剂的微观结构和形貌进行表征. 结果表明: 形成的Co@Pt/C催化剂具有核壳结构, 金属纳米颗粒均匀负载于碳上, 其粒径分布范围较窄; 热处理对催化剂的结构和形貌有较大影响. 利用循环伏安(CV)法和线性伏安扫描(LSV)法表征催化剂的电化学活性、氧还原反应(ORR)动力学特性及耐久性. 制备的Co@Pt/C催化剂在电解质溶液中表现出良好的电化学性能, 核壳结构的形成有助于提高Pt 的利用率. 动力学性能测试表明催化剂的ORR反应以四电子路线进行. 相比于合金催化剂,核壳结构催化剂的耐久性和稳定性有很大程度的改善.  相似文献   

3.
以胶体粒子为模板制备核壳纳米复合粒子   总被引:13,自引:0,他引:13  
官建国  邓惠勇  王维  任平 《化学进展》2004,16(3):327-334
核壳纳米复合粒子具有许多不同于单组分胶体粒子的独特的光、电、磁、催化等物理与化学性质,是构筑新型功能复合材料的重要组元,在光子带隙材料、微波吸收材料、电磁流变液、催化剂和生物等领域有重要应用.本文从控制核壳复合粒子的微观结构及壳层均匀性与厚度的角度,详细评述了目前以胶体粒子为模板制备粒径从纳米到微米尺度的核壳复合粒子的方法.指出利用胶体粒子模板表面与壳层物质或其前驱物间的特殊相互作用(包括静电和化学相互作用),是完善现有制备方法和发展新方法来制备具有设定组成、结构和性能的核壳复合粒子的关键,同时也是将来的粒子表面纳米工程和获取有序的、先进纳米复合材料的主要方向。  相似文献   

4.
制备方法对PtMo/C催化剂上CO电催化氧化性能的影响   总被引:3,自引:0,他引:3  
李莉  徐柏庆 《物理化学学报》2005,21(10):1132-1137
用化学还原法、胶体法和Adams法制备了PtMo/C电催化剂, 对其物理化学性质及其在CO电氧化反应中的催化性能进行了对比研究. TEM和XRD测试结果表明, 胶体法制备的催化剂颗粒在载体炭上均匀分布, 颗粒粒径约5 nm;由化学还原法制备的颗粒尺寸较大, 而Adams法制备的颗粒尺寸达数十纳米, 并有严重的团聚现象. CO消除伏安法测试结果表明, 三种制备方法中胶体法制备的PtMo/C催化剂具有最高的电化学表面积和电催化活性. 与常用的Pt/C催化剂相比, PtMo/C催化剂中Pt上弱吸附态CO的电氧化均得到了促进, 而强吸附态CO则不受影响. 这些结果表明PtMo颗粒的尺寸分布和在载体上的分散状况是影响PtMo/C催化剂电催化性能的主要因素. 胶体法制备的PtMo/C与常用的PtRu/C相比, 电化学表面积虽然较低, 但在低电势下CO的起始氧化电势只有0.15 V, 而且在0.15~0.50 V之间发生电氧化的CO达到其总量的1/3.  相似文献   

5.
燃料电池汽车已被确立为我国的战略性新兴产业,目前正处于大规模商业化的前夜,铂基电催化剂作为质子交换膜燃料电池的核心材料之一,其活性、耐久性和成本制约着这一洁净能源技术的进一步发展。高性能低铂核壳电催化剂被广泛认为有望解决这一瓶颈问题,虽然国内外在这一领域的研究取得了诸多重要的进展,但是仍存在着制备过程复杂、非铂贵金属内核尺寸较大及核壳结构宏观表征困难等问题。本文介绍两种相对简单、易放大的制备方法,即一锅法和液相合成结合区域选择原子层气相沉积法,均获得了性能优良的Pd3Au@Pt/C核壳结构电催化剂,Pd3Au内核尺寸控制在约5 nm,并利用循环伏安测试和甲酸氧化反应从宏观角度研究了铂层在内核表面的覆盖情况,探索了含钯核壳结构电催化剂的新型宏观表征方法。  相似文献   

6.
Cu@Pt/MWCNTs-MnO2电催化剂的制备及电催化性能研究   总被引:2,自引:0,他引:2  
于书平  娄群  刘润婷  韩克飞  汪中明  朱红 《化学学报》2012,70(22):2359-2364
通过浸渍还原法,以乙二醇作为还原剂,以H2PtCl6 6H2O作为Pt的前驱体制备了Cu@Pt/MWCNTs核壳型电催化剂;通过水热法,以KMnO4和Mn(NO3)2作为锰源制备了α-MnO2和β-MnO2,并把Cu@Pt/MWCNTs核壳型电催化剂与二氧化锰进行掺杂制得Cu@Pt/MWCNTs-MnO2复合材料.利用XRD,SEM,TEM对复合材料的结构和形貌进行表征,利用循环伏安测试曲线和阴极极化曲线等电化学测试方法对电催化剂的性能进行测试.结果表明,电催化剂中Cu@Pt纳米颗粒为核壳型,粒径为6~8 nm,MnO2的晶型为α-MnO2和β-MnO2;另外,Cu@Pt/MWCNTs-MnO2复合材料具有良好的催化性能,其中Cu@Pt/MWCNTs-β-MnO2电催化剂的电化学性能较好,具有较大的电化学活性面积,为71.1 m2 g-1,同时对MnO2促进氧还原的机理进行了初步探讨.  相似文献   

7.
以NaBH4为还原剂,采用共还原法和分步还原法制备了粒径分布均匀的Pd/C和Pd-Co/C电催化剂.X射线衍射、透射电镜、电化学循环伏安和旋转厕盘电极等表征结果表明,与Pd/C电催化剂相比,两种方法制备的Pd-Co/C电催化剂的晶格常数明显缩小,其中分步还原法制备的电催化剂不仅具有良好的氧还原活性,而且表现了良好的耐甲醇性能.  相似文献   

8.
核壳结构镍的制备及催化性能   总被引:2,自引:0,他引:2  
利用软化学方法制备出了聚苯乙烯(PS)镍/核壳结构和纳米镍催化剂,并利用SEM和XRD对材料的形貌和结构进行了表征.将上述催化剂应用于亚甲基蓝染料加氢反应,一步实现染料褪色和硼氢化钠水解制氢.研究结果表明,核壳结构极大地提高了镍的催化能力.在相同条件下,核壳结构镍的加氢催化效率是纳米镍的1.42倍,产氢效率是纳米镍的4.76倍,这说明核壳结构在催化领域具有一定的优势.  相似文献   

9.
在乙醇体系中和在制备好的Au纳米粒子表面, 用水合肼还原钴盐制备Co壳, 首次通过化学还原法制得核壳结构的Au-Co纳米粒子, 并通过控制钴盐的投料, 得到不同包裹层厚度的AucoreCoshell纳米粒子. 用扫描电子显微镜(SEM)和电化学循环伏安法(CV)等测试方法对其进行表征, 并用吡啶(Py)作为探针分子研究了其SERS效应.  相似文献   

10.
《电化学》2017,(2)
本实验利用铜的欠电位沉积技术,在旋转圆盘电极上以碳负载的钯纳米颗粒为核,制备铂单原子层核壳结构催化剂.电化学测试用于表征不同Nafion含量的添加对于核壳结构催化剂制备的影响.实验证明,Nafion的存在会影响铜的欠电位沉积,铂与铜的置换反应,并决定最终制备的核壳结构催化剂的氧还原催化反应的活性.当催化剂薄层中Nafion的含量低于5%的时候,添加Nafion不但可以帮助催化剂附着在旋转圆盘电极表面,而且可以保证制备的催化剂具有较好的氧还原反应催化活性.在H_2SO_4溶液中,钯纳米颗粒的表面存在特殊的阴离子吸/脱附电化学信号峰,这些信号峰可以用来监测Nafion含量对于铂单原子层核壳结构催化剂制备的影响.  相似文献   

11.
The high cost of platinum in catalyst layers hinders the commercialization of proton exchange membrane fuel cells. This Account reviews recent progress on core-shell nanostructures for oxygen reduction reaction (ORR) in acidic media, which is the cathodic reaction in fuel cells. The synthesis, characterization and evaluation of different types of core-shell electrocatalysts are summarized. Various strategies to improve the performance of core-shell electrocatalysts, including dealloying, morphology control, and surface modification are presented. The issues of mass production and fuel cell performance of core-shell electrocatalysts are also discussed.  相似文献   

12.
Proton exchange membrane fuel cells (PEMFCs) are considered as ideal alternative power devices to traditional internal combustion engines for automobile applications because of their high electric power density, high energy conversion efficiency, and low environmental impact as well as low temperatures for start-up and operation. However, PEMFCs normally require a high loading of the expensive precious metal platinum (Pt) as the electrocatalytic material to maintain desirable energy output. Thus, the development of novel catalysts with lower Pt loading, enhanced activity, and improved durability is vital for the scalable commercialization of PEMFC technology. In this regard, core-shell structure has been demonstrated as an effective strategy to minimize the amount of Pt in PEMFCs because of the following two factors:(1) a core-shell architecture with a Pt-rich shell and M-rich (M represents an earth-abundant element) core can greatly improve the utilization of Pt; (2) the activity and stability of Pt on the surface can be greatly enhanced by strain (geometry) and electronic (alloying) effects caused by the M in the core. First, we briefly discuss the structure-performance relationship of typical core-shell structured electrocatalysts for the oxygen reduction reaction (ORR). Then, we review the development of Pt-based core-shell structured catalysts for the ORR. Finally, a perspective on this research topic is provided.  相似文献   

13.
Among metals, Pt is so far the best material to be used as anode and cathode in low-temperature fuel cells. However, Pt has the drawback of being expensive and easily CO-poisoned. Thus, to produce useful electrocatalysts, significant efforts have been made worldwide on developing Pt-based catalysts with low Pt contents as well as searching for alternative materials with high catalytic activity for anodic and cathodic reactions in low-temperature fuel cells. This article presents the development of highly dispersed and nano-sized Pt-based electrocatalysts synthesized by several new methods based on our experimental results. In the case of anode materials, our proposed new method consists of the synthesis of Pt-based nanoparticles in order to maximize their surface availability, combined with the use of secondary metals that promote the oxidations of methanol and CO. On the other hand, for the cathode materials, the use of the Pt catalysts mixed with metal oxides enhances their oxygen reduction reaction (ORR) activity. We anticipate that the highly dispersed Pt-based nanoparticles introduced in this article will improve the performance of anode and cathode for low-temperature fuel cells.  相似文献   

14.
近年来,致力于Pt基电催化剂在燃料电池中的应用已取得显著成果.但随贵金属(如Pt)成本的增加,提高催化剂的活性以及降低负载量的需求也日益迫切.为此,作者合成并比较了纳米多孔Pt,PtRu及PtRuIr3种电催化剂.以扫描电镜(SEM)、能量色散谱(EDS)、X射线衍射(XRD)和X射线光电子能谱(XPS)表征水热法制得的纳米多孔电极.CO汽提实验和甲醇氧化反应测试上述纳米多孔材料的电催化活性.结果表明,添加Ir极大改善纳米多孔PtRu的活性.采用现场电化学FTIR光谱技术研究纳米多孔Pt,PtRu及PtRuIr电极上的甲醇氧化反应,以进一步揭示这种显著增强效应的成因.  相似文献   

15.
In recent years, various non‐precious metal electrocatalysts for the oxygen reduction reaction (ORR) have been extensively investigated. The development of an efficient and simple method to synthesize non‐precious metal catalysts with ORR activity superior to that of Pt is extremely significant for large‐scale applications of fuel cells. Here, we develop a facile, low‐cost, and large‐scale synthesis method for uniform nitrogen‐doped (N‐doped) bamboo‐like CNTs (NBCNT) with Co nanoparticles encapsulated at the tips by annealing a mixture of cobalt acetate and melamine. The uniform NBCNT shows better ORR catalytic activity and higher stability in alkaline solutions as compared with commercial Pt/C and comparable catalytic activity to Pt/C in acidic media. NBCNTs exhibit outstanding ORR catalytic activity due to high defect density, uniform bamboo‐like structure, and the synergistic effect between the Co nanoparticles and protective graphitic layers. This facile method to synthesize catalysts, which is amenable to the large‐scale commercialization of fuel cells, will open a new avenue for the development of low‐cost and high‐performance ORR catalysts to replace Pt‐based catalysts for applications in energy conversion.  相似文献   

16.
质子交换膜燃料电池的商业化有望在不久的将来实现更清洁的能源社会.然而,氧还原反应缓慢的反应动力学和苛刻的条件对质子交换膜燃料电池的寿命和成本产生了巨大的挑战.之前大多数铂基催化剂的设计都将重点更多地放在提高活性上.随着质子交换膜燃料电池的商业化,寿命问题也受到了更多的关注.对整个生命周期中结构演变进行深入地了解,有助于优化铂基催化剂的活性和寿命.原位电子显微表征以及其他原位技术的发展推动了对演变机理的揭示.本文着重介绍了铂基催化剂在结构演变方面的最新进展,具体包括催化剂合成、后处理以及电催化过程中的结构演变.本文所涉及的结构演变主要包含四组,分别是溶解与浸出、奥斯瓦尔德熟化与合并、偏析以及相变.此外,本文还列出了未来铂基氧还原电催化剂结构演变研究面临的一些挑战.铂溶解是铂基催化剂失效的主要原因之一.甫尔拜图显示了铂热力学稳定相的转化关系,但是实际溶解过程中受到复杂的动力学因素影响.铂溶解机理主要包括铂的直接电溶解和铂氧化物的化学溶解.在电化学老化过程中,铂的溶解往往伴随着晶面的粗化.铂溶解受到很多因素(包括尺寸、晶面以及微量的杂质等)的影响.合金化能够提高铂基催化剂的活性,但同时伴随着合金元素快速浸出的问题,这种现象在三电极体系以及实际燃料电池运行过程中都非常显著.核壳催化剂能够进一步提高铂的活性和利用率,但需要对核进行保护.利用脱合金可以制备具有更大电化学活性面积的催化剂,对燃料电池大功率运行时的性能更加有利.奥斯瓦尔德熟化和合并导致铂基催化剂的长大,在电催化以及热处理过程中导致催化剂性能的损失.燃料电池实际工况中碳腐蚀会加速合并,因此耐腐蚀的载体能够有效提高催化剂的稳定性.富过渡金属元素的低铂催化剂在热处理中更容易发生合并.然而不利的催化剂熟化和合并也提供了无表面活性剂合成高性能铂基催化剂的有效途径.在晶体生长、后处理以及电催化过程中都会发生元素偏析,通过控制热处理的气氛,可以实现元素分布的控制.偏析的晶体脱合金后可以方便地得到纳米框架.从无序合金到金属间化合物的转变能够同时提高催化剂的活性和稳定性,受到了广泛的关注.但是有序化转变需要较高的温度,往往会造成严重的烧结.相比高温直接转变,低温扩散预处理能够降低有序化转变温度,但是会造成催化剂球化.对于未来铂基氧还原电催化剂结构演变的研究,仍存在挑战.首先,更深入地了解结构演化需要具有更高时空分辨率甚至达到原子尺度的先进原位表征技术.其次,液相光电子能谱的开发可能是研究电催化过程中表面羟基/氧化物演化的一种具有前景的方法.此外,还需要努力建立结构演化过程中性能和结构之间的实时对应关系,从而区分出最优的中间结构.随后的挑战是保持催化剂的最佳结构.此外,还需要进一步探索更全面的避免不利演变和促进有利演变的策略.  相似文献   

17.
质子交换膜燃料电池的成本和寿命问题是制约其商业化的主要瓶颈. 开发高效稳定的新型非铂氧还原催化剂是降低电池成本的重要途径. 过渡金属-氮-碳型非贵金属催化剂具有较高催化活性、资源丰富、价格低廉等优点, 被认为是未来最有希望替代铂的氧还原催化剂. 本综述从催化剂的设计构筑、催化层结构优化以及电池测试等方面, 对过渡金属-氮-碳型非贵金属催化剂的国内外最新研究进展进行了重点讨论, 并对未来其发展趋势提出展望.  相似文献   

18.
吴光平  王洪  师锦华  聂瑶 《化学通报》2021,84(7):654-661
氧气还原反应是燃料电池中的重要电极反应,但其动力学过程非常迟缓,需高度依赖资源稀缺、价格高昂的贵金属Pt。加之Pt基催化剂还面临着实际工况下耐久性不足的问题,这些都严重阻碍了燃料电池的产业化进程。对Pt基纳米催化剂进行表面功能化修饰可有效优化和提升其氧还原活性和稳定性。本文综述了最近几年表面修饰型Pt基氧还原催化剂的最新研究,着重探讨了表面修饰物的选择、表面修饰的手段和策略以及表面修饰前后对催化剂氧还原性能的影响,并指出该类型催化剂未来发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号