首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Kong  Qingming  Xu  Diansheng  Wang  Xuejun  Lou  Tao 《Cellulose (London, England)》2022,29(13):7251-7262

Biopolymer hollow spheres have shown great promise for wastewater treatment due to their unique structure and properties. However, challenging issues like low efficiency and poor recyclability still exist for most hollow spheres. In this study, the modification of chitosan/carboxymethyl cellulose (CS/CMC) with Fe3O4 nanoparticles for the formation of bifunctional CS/CMC-Fe3O4 hybrid hollow spheres were prepared using a facile two stage mixing route, which exhibited excellent adsorption and catalytic degradation of dyes. The removal ability of the synthesized hollow spheres towards acid blue-113 (AB) and reactive orange C-3R (RO) using persulfate oxidation system was greatly improved compared with single adsorption or catalysis. The removal ratio of AB and RO could reach up to 96.2 and 97.5%, respectively. The kinetic process conformed to the quasi-second-order kinetics and the adsorption process was the controlling step of dye removal. In addition, the created hollow spheres showed excellent environmental adaptability and regenerative capability. This study provides a convenient and practical method for catalyst loading on biomass hollow spheres, which has perspective applications in wastewater purification.

  相似文献   

2.
《Arabian Journal of Chemistry》2020,13(11):8080-8091
Dye wastewater from industries is posing tremendous health hazards. The lethal dyes can be eliminated using nanomaterials and scientific approach like adsorption which is facile, cheap, safe as well as ecofriendly. Fe3O4-CuO-AC composite was prepared by a hydrothermal method and used for the removal of dyes in wastewater. The composite material was characterized by various techniques such as XRD, SEM, EDS, TEM and FT-IR. The Fe3O4-CuO-AC composite was used to treat five types of dyes in water. Fe3O4-CuO-AC composite showed the highest adsorption capability for bromophenol blue (BPB) dye. The effects of initial concentration, pH, the amount of adsorbent and temperature were also studied. The optimum conditions were found to be 20 ppm dye concentration, pH 9, an adsorbent dose of 0.06 gL─1 at 65 °C. A removal efficiency of 97% was obtained for BPB dye during 120 min of adsorption. Kinetic studies indicated that a pseudo-second order is the most suitable model for the adsorption process. The Fe3O4-CuO-AC composite showed better adsorption capacity as compare to Fe3O4-AC except for the Methyl green dye. The maximum adsorption capacity was found to be 88.60 mg/g for BPB. Additionally, the thermodynamic parameters (Δ, Δ and Δ) showed that the process was spontaneous and exothermic. All the above results revealed that the Fe3O4-CuO-AC compositecan be an effective adsorbent for removing dyes from wastewater.  相似文献   

3.
This research study aims to remove hazardous anionic azo dyes (Congo red (CR)) from aqueous solutions via a simple adsorption method using a poly(3-aminobenzoic acid/graphene oxide/cobalt ferrite) nanocomposite (P3ABA/GO/CoFe2O4) as a novel and low-cost nanoadsorbent, as synthesized by a simple and straightforward polymerization method. Typically, 3-aminobenzoic acid (3ABA), as monomer, was chemically polymerized with graphene oxide (GO) and cobalt ferrite (CoFe2O4) in an aqueous acidic medium containing an ammonium persulfate initiator. The adsorbent P3ABA/GO/CoFe2O4 nanocomposite was characterized using various techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, energy-dispersive analysis by X-ray and Brunauer–Emmett–Teller, vibrating sample magnetometer, and zeta potential techniques. These techniques confirmed the interaction between the poly(3-aminobenzoic acid) with GO and CoFe2O4 due to the presence of π-π interactions, hydrogen bonding, and electrostatic forces. Herein, the removal efficiency of dye from aqueous solution by the adsorbent was studied according to several parameters such as the pH of the solution, dye concentration, dosage of adsorbent, contact time, and temperature. The adsorption of the dye was fitted using a Langmuir model (R2 between 0.9980 and 0.9995) at different temperatures, and a kinetic model that was pseudo-second order (R2 = between 0.9993 and 0.9929) at various initial concentrations of CR dye. In addition, the data revealed that the P3ABA/GO/CoFe2O4 nanocomposite exhibited a high adsorption capacity (153.92 mg/g) and removal for CR dye (98 %) at pH 5. Thermodynamic results showed the adsorption process was an endothermic and spontaneous reaction. It was found that, in terms of reusability, the P3ABA/GO/CoFe2O4 adsorbent can be used for up to six cycles. In this study, P3ABA/GO/CoFe2O4 nanocomposites were found to be low cost, and have an excellent removal capability and fast adsorption rate for CR from wastewater via a simple adsorption method. Moreover, this adsorbent nanocomposite could be simply separated from the resultant solution and recycled.  相似文献   

4.
A composite adsorbent, chitosan//poly (ε-caprolactone)-block poly (ethylene glycol)/SiO2 aerogel@polydopamine (CS/PCL-b-PEG/SA@PDA) membrane was prepared for the adsorption of organic dyes. The matrix polymer materials of this novel adsorbent were eco-friendly. SiO2 aerogel with nanoporous network construction was fixed in the multicomponent polymer fibers through simultaneous electrospinning-electrospray technology followed by modification of polydopamine (PDA). The composite adsorbent had a maximum adsorption capacity of 598.8 mg/g for Congo red (CR) and possessed good reusability performance. This adsorbent showed excellent performance for the selective adsorption of relatively large molecule CR dyes even under high concentration of small molecule methyl orange (MO) dyes or 1 M of salt solution. The adsorption mechanism indicated that the –NH2 and –OH groups in adsorbent could generate the stronger electrostatic attraction with the –SO3- groups in CR. Meanwhile, the sufficient adsorption spaces of the adsorbent were constructed by the porous network structure of SiO2 aerogel, the accumulation of PDA particles and the porous structure of the multicomponent composite membrane. The work provided a proactive study in designing an adsorbent for the selective adsorption of organic dyes.  相似文献   

5.
Herein, for the first time mesostructured 3D self-assembled β-Ni(OH)2 clusters with high surface area, large pore size, and uniform flower-like morphology have been synthesized by implementing a novel microwave heating method, using glycine as the cappant. The β-Ni(OH)2 clusters are subjected to aqueous phase pollutant adsorption for multiple anionic dyes [congo red (CR), acid fuchsin (AF) and acid red 27 (AR-27)], and heavy metal ions [divalent lead ion, Pb(II) and divalent cadmium ion, Cd(II)]. The comprehensive kinetic analyses show that the adsorption of dyes and metal ions on the β-Ni(OH)2 cluster surface occurs by chemisorption (pseudo-second order kinetics) and intraparticle diffusion (film and pore diffusion) processes. Further, the β-Ni(OH)2 clusters show excellent equilibrium adsorption capacity for all the anionic dyes and metal ions. The equilibrium isotherm data show homogenous distribution of CR and AF dyes, and heterogeneous distribution of AR-27 dye on the β-Ni(OH)2 surface. The excellent adsorption efficiency is attributed to the microwave-induced highly hydroxylated rippled 2D surface, open pore architecture, and suitable pore distribution of the β-Ni(OH)2 clusters, which collectively cause strong hydrogen bonding between the cluster surface and anionic dyes as well as metal ions.  相似文献   

6.
Zinc oxide-ternary heterostructure Mn3O4/ZnO/Eu2O3 nanocomposites were successfully prepared via waste curd as fuel by a facile one-pot combustion procedure. The fabricated heterostructures were characterized utilizing XRD, UV–Visible, FT-IR, FE-SEM, HRTEM and EDX analysis. The photocatalytic degradation efficacy of the synthesized ternary nanocomposite was evaluated utilizing model organic pollutants of methylene blue (MB) and methyl orange (MO) in water as examples of cationic dyes and anionic dyes, respectively, under natural solar irradiation. The effect of various experimental factors, viz. the effect of a light source, catalyst dosage, irradiation time, pH of dye solution and dye concentration on the photodegradation activity, was systematically studied. The ternary Mn3O4/ZnO/Eu2O3 photocatalyst exhibited excellent MB and MO degradation activity of 98% and 96%, respectively, at 150 min under natural sunlight irradiation. Experiments further conclude that the fabricated nanocomposite exhibits pH-dependent photocatalytic efficacy, and for best results, concentrations of dye and catalysts have to be maintained in a specific range. The prepared photocatalysts are exemplary and could be employed for wastewater handling and several ecological applications.  相似文献   

7.
These days, an important concern in water contamination is the remaining dyes from various sources (for instance, dye and dye intermediates industries, pulp and paper industries, textile industries, craft bleaching industries, tannery, and pharmaceutical industries, etc.), and a broad range of persistent organic contamination has been entered to the wastewater treatment systems or natural water supplies. Indeed, it is extremely hazardous and toxic to the living organism. Therefore, it is necessary to remove these organic pollutants before releasing them into the environment. Photocatalysis is a quickly growing technology for sewage procedures. For this purpose, Cu2HgI4 nanostructures were prepared via facile, and cost-effective sonochemical method. The effect of varied circumstances, such as various surfactants, sonication power, and sonication time was considered on the crystallinity, structure, shape, and particle size of products. Cu2HgI4 possesses a suitable bandgap (2.2 eV) in the visible area. The photocatalytic performance of the Cu2HgI4 was surveyed for the elimination of various organic dyes under visible radiation and exposed that this compound could degrade and remove methyl orange about 94.2% in an acidic medium after 160 min under visible light. Besides, the result showed that various parameters, including, pH, dye concentration, types of dyes, catalyst dosages, and time of irradiation affected the photocatalytic efficiency.  相似文献   

8.
Wastewater treatment is of great significance to environmental remediation. The exploration of efficient and stable methods for wastewater treatment is still a challenging issue. Herein, a heterojunction material with photocatalysis and adsorption properties has been designed to remove the complex pollutants from wastewater. The heterojunction material (ZnO/TiO2−PW12, PW12=[PW12O40]3−) was synthesized by calcining the ZnTi−layered double hydroxide (ZnTi-LDH) intercalated with the Keggin-type polyoxometalate H3PW12O40. In the construction of ZnO/TiO2−PW12 it was found that the polyanionic PW12 remained unchanged in the process of forming the proposed heterojunction. The photochemical properties verify that heterojunction synergistic with PW12 facilitated the separation of photoproduced electron-hole pairs and thus suppressed the recombination. Therefore, ZnO/TiO2−PW12 exhibits excellent photocatalytic property, and the efficiency of Cr(VI) photoreduction reached more than 90 % in the first 3 min. Furthermore, the electrostatic force between the PW12 and cationic dyes makes ZnO/TiO2−PW12 having an outstanding adsorption performance for cationic dyes, such as rhodamine B, crystal violet and methyl blue. Such heterojunction material combined with polyoxometalate puts forward new insights for the design of functional materials for water treatment with low cost and high efficiency.  相似文献   

9.

Mesoporous magnesium oxide–graphene oxide composite (MGC) has been synthesized using a facile post-immobilization method by mixing pre-synthesized magnesium oxide (MgO) with graphene oxide (GO). MgO used for fabrication of the composite has been synthesized using an environment-friendly method involving gelatin as a template. XRD, Raman and EDX analyses have confirmed the presence of MgO and GO in the composite. FTIR and SEM analyses of synthesized MGC have further elucidated the surface functionalities and morphology, respectively. Using N2 adsorption–desorption isotherm, BET surface area of MGC has been calculated to be 55.9 m2 g?1 and BJH analysis confirmed the mesoporous nature of MGC. The application of synthesized MGC as a selective adsorbent for various toxic anionic dyes has been explored. Batch adsorption studies have been carried out to investigate the influence of different adsorption parameters on the adsorption of two anionic dyes: indigo carmine (IC) and orange G (OG). The maximum adsorption capacities exhibited by MGC for IC and OG are 252.4 and 24.5 mg g?1, respectively. Plausible mechanism of dye adsorption has been explained in detail using FTIR analysis. In a mixture of cationic and anionic dyes, MGC selectively adsorbs anionic dyes with high separation factors, while in binary mixtures of anionic dyes, both dyes are adsorbed efficiently. Thus, MGC has been shown to be a potential adsorbent for the selective removal of anionic dyes from wastewater.

  相似文献   

10.
The efficient treatment of wastewater containing organic dyes generated in diverse industrial processes has become more crucial owing to increasing environmental concerns. In this paper, we incorporated the aminated functional NH2-MIL-101(Cr) into the porous polyvinylidene fluoride (PVDF) to fabricate the MOFs/polymer hybrid membranes, which combined the surface activity of MOFs and the membrane's filtration plus the adsorption process, and can be used in the high-efficient removal of congo red (CR) from aqueous solution. Two synthesis strategies were employed, and both of which are useful in fabricating the NH2-MIL-101(Cr)@PVDF hybrid membranes. The NH2-MIL-101(Cr) particles are mainly incorporated into the pores of PVDF, and thus enhance the hydrophilicity, water flux as well as porosity of the hybrid membranes. In the adsorption experiments, the influences of various conditions including the solution pH, adsorption time, adsorption isotherms, reusability, and the filtration performances were investigated systematically, and all the hybrid membranes show evidently improved adsorption performances compared to original PVDF films. The adsorption thermal and dynamics analyses indicate that the adsorption process is mainly featured in Langmuir monolayer adsorption and chemical adsorption. The hydrogen bonding at the interface of CR/NH2-MIL-101(Cr) is responsible for the selective adsorption of CR. The excellent reusability and the dynamic adsorption performances determine the potential applications of MOF-based hybrid membranes in the membrane separation of CR from practical waste water.  相似文献   

11.
Ultrathin CeO2 nanowires with a diameter of 5 nm and an aspect ratio of more than 100 can be prepared by a one-step refluxing approach in a mixed solvent composed of water and ethanol without using any templates or surfactants. The formation mechanism of the as-synthesized ultrathin nanowires has been investigated. The as-synthesized CeO2 nanowires with a high surface area of 125.31 m2 g–1 exhibited excellent wastewater treatment performance with high removal capacities towards organic dyes and heavy metal ions. In addition, the as-synthesized CeO2 nanowires can adsorb Congo red selectively from a mixed solution composed of several dyes. Successful access to high quality ultrathin nanowires will make it possible for their potential application in catalysis and other fields.  相似文献   

12.
It is important to develop a catalyst that has high catalytic activity and can improve the degradation efficiency of refractory organic pollutants in the catalytic ozonation process. In this study, Fe-Mn-Cu-Ce/Al2O3 was synthesised via impregnation calcination for catalytic ozonation of bio-treated coking wastewater. The physical and chemical characteristics of the catalysts were analysed using X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller nitrogen adsorption–desorption methods. The effects of catalyst dosage, pH, and reflux ratio on the degradation efficiency of wastewater were examined in laboratory-scale experiments. The chemical oxygen demand (COD) removal rate of bio-treated coking wastewater was estimated to be 52.76 % under optimal conditions. The experiments on the catalytic mechanism demonstrated that the surface hydroxyl formed by the Lewis acid sites on the surface of the catalyst can react with ozone as the active site forming the active oxygen (·OH, ·O2, and 1O2), thereby efficiently degrading the organic pollutants in coking wastewater. Furthermore, a pilot-scale experiment on the catalytic ozonation of bio-treated coking wastewater was carried out using an Fe-Mn-Cu-Ce/Al2O3 catalyst, while the effects of the initial pollutant concentration, ozone concentration, and gas flow on the COD removal rate were studied on a pilot scale. It was found that the COD removal rate of the wastewater was ~ 60 % under optimal parameters. After the treatment, the wastewater steadily reached the coking wastewater discharge standard (COD < 80 mg/L), while the operating cost of catalytic ozonation reached ~ 0.032$/m3, thereby paving the way toward economic engineering applications. The COD degradation kinetics in the bio-treated coking wastewater followed pseudo-second-order kinetics. Three-dimensional fluorescence and gas chromatography–mass spectrometry revealed that macromolecular organic pollutants in the bio-treated coking wastewater were greatly degraded. In summary, Fe-Mn-Cu-Ce/Al2O3 exhibited good reusability, high catalytic activity, and low cost and has a wide application prospect in the treatment of coking wastewater.  相似文献   

13.
The utilization of modified magnetite nanoparticles (Fe3O4 NPs) with a cationic surfactant (cetyltrimethylammonium bromide (CTAB)) as an efficient adsorbent was successfully carried out to remove reactive black 5 (RBBA), reactive red 198 (RRR) and reactive blue 21 (RTB) dyes from aqueous solutions. First, a reactor was designed to be simple, repeatable and efficient in its synthesis of Fe3O4 NPs via co-precipitation method. Then, an orthogonal array design (OAD), four factor-four level (44) matrix was applied to assign affecting factors on removing of the dyes from aqueous solutions. The obtained results from ANOVA showed that the amount of CTAB and NaCl% significantly affect the adsorption of RBBA, RRR and RTB dyes. The sorption kinetics of the dyes were best described by a second-order kinetic model, suggesting chemisorptions mechanism. Also, dye adsorption equilibrium state data were fitted well to the Langmuir isotherm rather than Freundlich isotherm. Also, the maximum monolayer capacity, qmax, obtained from the Langmuir was 312.5, 163.9 and 556.2 mg g-1 for RBBA, RRR and RTB, respectively. The obtained results in the present study indicated that the CTAB-coated Fe3O4 NPs can be an efficient adsorbent material for removal of reactive dyes form aqueous solutions.  相似文献   

14.
Novel shellfish waste-derived chitosan (CS) has been developed to adsorb As(V) from simulated wastewater under evaluating adsorption process parameters. The coexistence of some competing ions, like SiO32-, Cl-, NO3 and PO43- as well as the regeneration capacity of the spent adsorbent, was explored. The experimental data were modeled using several kinetics and isotherm models to understand the mechanism related to the uptake process. As(V) uptake was relatively rapid and highly dependent on pH. The Avrami-fractional-order expression supported data best, while the Liu equation described well isotherm data at pH 5.0. The maximum uptake capability (Liu) was 12.32 mg/g, and the highest removal performance (99 %) was obtained at optimum pH 5.0. Molecular dynamics simulations were performed to more clearly illuminate the atomic-level interactions between arsenic species and CS surface in both acidic and basic mediums. After four adsorption–desorption cycles, CS exhibited more than 90 % As(V) removal efficiency. The results of this study indicates that low cost shellfish derived chitosan is promising for efficient removal of As(V) from water body and can be used to remove other pollutants from watewater.  相似文献   

15.
《中国化学快报》2020,31(10):2789-2794
In order to efficiently remove tetracycline in wastewater through the synergistic effect of adsorption and photocatalytic degradation, a series of novel composite materials (Cu doped g-C3N4) were synthesized by two-pot hydrothermal method. It was found that the composite materials with optimized ratio (Cu/CN-1) displayed outstanding adsorption and photocatalytic performance as compared with pure g-C3N4 photocatalyst. The removal efficiency of tetracycline (TC, 50 mg/L) reached almost 99% within 30 min by Cu/CN-1 through the synergy of adsorption and photocatalysis under visible-light irradiation, which was the highest removal efficiency ever reported. The adsorption kinetics and isotherms of TC on the Cu/CN-1 were well fitted with the pseudo-second-order kinetic model and Langmuir model, respectively. Moreover, it was confirmed that the main effective reactive groups were O2 and h+ in photocatalytic process. The Cu/CN-1 exhibited high stability and excellent reusability after five cycle experiments. Finally, the mechanism of synergy between Cu and g-C3N4 was proposed: on the one hand, the decoration of Cu particles significantly increased the adsorption sites of Cu/CN-1 to tetracycline, on the other hand, the modification of Cu particles effectively inhibits charge recombination and broadens the visible light absorption range of the photocatalyst.This study provided a promising photocatalyst to be used for TC removal in the actual wastewater.  相似文献   

16.
A new photocatalyst, nanoporous anatase TiO2 crystalline particles coupled by Na5PV2Mo10O40 Keggin units, TiO2-PVMo, was prepared by combination of the methods of sol-gel and hydrothermal treatment. The catalyst was characterized by X-ray diffraction (XRD), UV diffuse reflectance spectroscopy (UV-DRS), FT-IR spectroscopy, Scanning Electron Microscopy (SEM) and cyclovoltametery (CV). This photocatalyst exhibited a good photocatalytic (UV region) and sonocatalytic activity in the decomposition of different dyes in aqueous systems. The TiO2-PVMo composite showed higher photocatalytic and sonocatalytic activity than pure polyoxometalate or pure TiO2.  相似文献   

17.
Removal of amitrole from water was studied by adsorption on an activated carbon cloth and by oxidation with hydrogen peroxide using the same activated carbon cloth as catalyst. Study variables included the solution pH, ionic strength, and temperature in the adsorption process and the solution pH and the surface chemistry of the activated carbon cloth in the oxidation process. Results showed that amitrole adsorption on activated carbon cloth was not adequate to remove amitrole from water due to the high solubility and low aromaticity of the herbicide, which reduced its adsorption on the carbon. A higher amitrole removal rate was obtained with the activated carbon/H2O2 system. The best results were obtained on basic activated carbon surfaces at pH 7–10, when hydroxyl radical formation is favored, achieving the removal of 35–45% of the AMT, compared with 20–25% under the best adsorption conditions. Importantly, oxygen fixed on the carbon surface during AMT oxidation must be removed by heat treatment in order to regenerate the surface basicity of the carbon before its reutilization in another oxidation cycle.  相似文献   

18.
The adsorption of colored compounds from the textile dyeing effluents of Bangladesh on granulated activated carbons produced from indigenous vegetable sources by chemical activation with zinc chloride was studied. The most important parameters in chemical activation were found be the chemical ratio of ZnCl2 to feed (3:1), carbonization temperature (450-465 °C) and activation time (80 min). The adsorbances at 511 nm (red effluent) and 615 nm (blue effluent) were used for color estimation. It is established that at optimum temperature (50 °C), time of contact (30-40 min) and adsorbent loading (2 g l−1), activated carbons developed from Segun saw-dust and water hyacinth showed substantial capability to remove coloring materials from the effluents. It is observed that adsorption of reactive dyes by all sorts of activated carbons is higher than disperse dyes. It is explained that activated carbon, because of its acidic nature, can better adsorb reactive dye particles containing large number of nitrogen sites and -SO3Na group in their structure. The use of carbons would be economical, as saw-dust and water hyacinth are waste products and abundant in Bangladesh.  相似文献   

19.
Photodecomposition of NO on the well-dispersed Pt/TiO2 catalyst under UV irradiation was studied by in situ DRIFT (Diffuse-Reflectance Infrared Fourier-Transform) spectroscopy. 2 wt% Pt/TiO2 catalyst was prepared by photochemical deposition method. The photocatalytic activity of Pt/TiO2 is highly dependent on its pretreatment. Although the catalyst exhibited a highly adsorption capability to NO after hydrogen reduction or thermal evacuation at 500°C, no evidence upon NO decomposition was observed under UV irradiation. While reducing the catalyst at 300°C in the hydrogen flow, it not only exhibited an intense NO adsorption but also conducted a direct decomposition of NO to N2 and O2 under UV irradiation. The hydrogen reduction at 200°C led to a weaker NO adsorption. During UV irradiation, the IR peaks of NO fully disappeared and N2O was formed. It is concluded that the photochemical prepared Pt/TiO2 catalyst after activating at mild reduction conditions is highly active for NO photodecomposition. The effective oxidation states of the active components, the surface structure and the reaction mechanisms will be discussed.  相似文献   

20.
In the present study, novel hydroxyethyl cellulose/silica/graphitic carbon nitride (HEC/SiO2/C3N4) solid foams with hierarchical porous structure have been successfully fabricated with gas bubbles template combination with freeze-drying method. Compared with HEC/SiO2/C3N4-50 without gas foaming, the HEC/SiO2/C3N4-80 with air bubbles template had larger pore volume and higher porosity and specific surface area, which not only exhibited faster adsorption rate, but also presented higher saturated adsorption capacity towards methylene blue (MB) and methyl violet (MV). From the experimental results, it was found that HEC/SiO2/C3N4-80 had high adsorption capacities of 132.45 mg/g and 206.62 mg/g for MB and MV, respectively, and the adsorption process fitted the Langmuir adsorption isotherm and pseudo-second-order rate equation. Additionally, benefiting from its higher adsorption capacity and light-harvesting capability, HEC/SiO2/C3N4-80 exhibited relatively higher photocatalytic degradation efficiencies against MB and MV under visible light irradiation than HEC/SiO2/C3N4-50. More importantly, compared with the bare g-C3N4 powder, the HEC/SiO2/C3N4 solid foams could be more easily separated from the treated water, which facilitated their recycle and reuse. Therefore, the good adsorption capacity, high photocatalytic degradation activity and recyclability of the HEC/SiO2/C3N4 solid foam made it a promising candidate for the removal of organic dyes from wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号