首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
研究了微波辅助条件下液化剂、催化剂、反应温度和反应时间对麦草碱木质素进行液化降解制备生物油收率的影响,并利用红外光谱(FT-IR)、气相色谱质谱联用仪(GC-MS)和核磁共振氢谱(1H-NMR)对产物进行表征。结果表明,微波辅助下以甲醇为液化剂,硫酸铁为催化剂液化降解碱木质素可以显著缩短液化反应时间,在160℃相对较低液化温度下反应5 min,生物油的收率达到55.22%。液化降解后的木质素残渣结构变化少,表明木质素降解产物的重新聚合的几率低,碱木质素反应原料可以回收再利用以提高原料利用率。生物油主要为单酚类物质,其中,S型、G型和H型单体的含量分别为57.72%、25.28%和8.98%。核磁共振氢谱中β-O-4键和C-C键质子峰的存在说明生物油中含有部分的二聚体和低聚体酚类化合物。  相似文献   

2.
该文以温和酸催化条件下的木质素磺酸盐解聚产物为研究对象,建立系统分离和分析测试木质素磺酸盐解聚后获得的低分子酚类产物的方法。选用4根油溶性的ACQUITY APC XT小孔径刚性填料色谱柱串联,在高分辨紫外检测器条件下,采用超高效凝胶渗透色谱(APC)对解聚产物实现了高效分离,获得了高灵敏度的木质素基酚类产物的相对分子质量及其分布色谱信息。探讨了反应温度、时间和催化剂浓度等对酸催化木质素磺酸盐解聚行为的影响,结果表明,对于木酚比(木质素:苯酚)为25%(质量分数)的木质素磺酸盐解聚体系,在催化剂和木质素物质的量比为2.334、130℃酸催化反应60 min时,获得了解聚效率高达80%以上的木质素基酚类产物,解聚获得的产物相对峰高分子质量(Mp)组成均分布在720、490和260 Da 3个低聚物区间,均具有很窄的分子质量分布指数(接近1)。由此可以初步推断,木质素磺酸盐在该研究采用的温和酸催化条件下,催化反应机理不受反应时间、温度以及催化剂浓度的影响,具有特定的解聚途径。  相似文献   

3.
甘油、丙二醇和乙二醇是非常重要的化工原料和合成聚酯类、聚醚类树脂的单体,也可作为功能化合物直接应用于化妆品、食品及制冷等领域.随着生物炼制行业的发展,其作为生物基平台化合物在未来可以获得更为广泛的应用.从富含氧原子的纤维素出发制备甘油和二元醇,符合绿色化学化工的原子经济性、工艺经济性和生产过程清洁等原则,也是生物质资源化利用的重要途径.因此,近年来以纤维素及其衍生物糖和糖醇为原料,通过氢解反应制备甘油和二元醇的研究在国外已广泛开展.在目前已报道的氢解糖和糖醇研究中,几乎均采用包含金属催化剂和液体碱助剂的耦合催化体系,所用液体碱为NaO H,KOH和Ca(OH)2等,使用量很大.这些碱性助剂可以提高金属催化剂对糖醇加氢和氢解反应的催化活性,促进底物转化,但同时也不可避免地加剧了二醇产物进一步氢解和自身缩合反应,使产物选择性降低.在产物分离和提纯过程中,过高的碱浓度也会诱导甘油和二醇产品自身缩合,使分离困难,提高了分离成本.反应液的强碱性还增加了生产过程的设备成本.本文以固体碱MgO为载体,分别负载Ni,Co和Cu等金属制备出Ni-MgO,Co-MgO和Cu-MgO等双功能催化剂,应用于糖醇氢解反应,从而减少或避免使用液体碱添加剂.木质纤维素降解得到的单糖中含量最大的是六碳糖,本文以六碳糖加氢衍生物山梨醇为模型底物,考察了所制MgO负载金属双功能催化剂催化糖醇氢解制甘油和二元醇的活性和选择性,研究了反应条件对山梨醇氢解生成二醇和甘油的影响.山梨醇氢解反应在不锈钢反应釜中进行.采用气相色谱-质谱联用对氢解产物进行定性分析,采用气相色谱和离子色谱分别对反应中低沸点和高沸点产物进行定量分析.结果表明,在Ni-MgO,Co-MgO和Cu-MgO(其中活性金属和载体MgO的比例为1:3)三种催化剂上山梨醇均能高效转化为乙二醇、1,2-丙二醇和甘油;无论是否添加Ca(OH)2,山梨醇氢解活性顺序均为Ni-MgOCo-MgOCu-MgO.三种催化剂上产物选择性有较大差异,Ni-MgO和Co-MgO对乙二醇和1,2-丙二醇具有较好的选择性,其中1,2-丙二醇与乙二醇比例约为2,而Cu-MgO催化剂对1,2-丙二醇选择性较高,1,2-丙二醇与乙二醇比例约为7.同时,考察了反应温度、压力和反应时间对三种催化剂上山梨醇转化活性和产物选择性的影响.随着温度升高,所有催化剂活性均显著增加,其中Ni-MgO和Cu-MgO催化山梨醇氢解对反应条件较为敏感,而Cu-MgO催化剂对反应条件不敏感.在Ni-MgO催化剂上,可以在较低的反应温度下获得较高的产物选择性.  相似文献   

4.
甘油、丙二醇和乙二醇是非常重要的化工原料和合成聚酯类、聚醚类树脂的单体,也可作为功能化合物直接应用于化妆品、食品及制冷等领域.随着生物炼制行业的发展,其作为生物基平台化合物在未来可以获得更为广泛的应用.从富含氧原子的纤维素出发制备甘油和二元醇,符合绿色化学化工的原子经济性、工艺经济性和生产过程清洁等原则,也是生物质资源化利用的重要途径.因此,近年来以纤维素及其衍生物糖和糖醇为原料,通过氢解反应制备甘油和二元醇的研究在国外已广泛开展.在目前已报道的氢解糖和糖醇研究中,几乎均采用包含金属催化剂和液体碱助剂的耦合催化体系,所用液体碱为NaOH, KOH和Ca(OH)2等,使用量很大.这些碱性助剂可以提高金属催化剂对糖醇加氢和氢解反应的催化活性,促进底物转化,但同时也不可避免地加剧了二醇产物进一步氢解和自身缩合反应,使产物选择性降低.在产物分离和提纯过程中,过高的碱浓度也会诱导甘油和二醇产品自身缩合,使分离困难,提高了分离成本.反应液的强碱性还增加了生产过程的设备成本.本文以固体碱MgO为载体,分别负载Ni, Co和Cu等金属制备出Ni-MgO, Co-MgO和Cu-MgO等双功能催化剂,应用于糖醇氢解反应,从而减少或避免使用液体碱添加剂.木质纤维素降解得到的单糖中含量最大的是六碳糖,本文以六碳糖加氢衍生物山梨醇为模型底物,考察了所制MgO负载金属双功能催化剂催化糖醇氢解制甘油和二元醇的活性和选择性,研究了反应条件对山梨醇氢解生成二醇和甘油的影响. 山梨醇氢解反应在不锈钢反应釜中进行.采用气相色谱-质谱联用对氢解产物进行定性分析,采用气相色谱和离子色谱分别对反应中低沸点和高沸点产物进行定量分析.结果表明,在Ni-MgO, Co-MgO和Cu-MgO (其中活性金属和载体MgO的比例为1:3)三种催化剂上山梨醇均能高效转化为乙二醇、1,2-丙二醇和甘油;无论是否添加Ca(OH)2,山梨醇氢解活性顺序均为Ni-MgO>Co-MgO>Cu-MgO.三种催化剂上产物选择性有较大差异, Ni-MgO和Co-MgO对乙二醇和1,2-丙二醇具有较好的选择性,其中1,2-丙二醇与乙二醇比例约为2,而Cu-MgO催化剂对1,2-丙二醇选择性较高,1,2-丙二醇与乙二醇比例约为7.同时,考察了反应温度、压力和反应时间对三种催化剂上山梨醇转化活性和产物选择性的影响.随着温度升高,所有催化剂活性均显著增加,其中Ni-MgO和Cu-MgO催化山梨醇氢解对反应条件较为敏感,而Cu-MgO催化剂对反应条件不敏感.在Ni-MgO催化剂上,可以在较低的反应温度下获得较高的产物选择性.  相似文献   

5.
木质素是自然界中含量最丰富的芳香族可再生碳资源,具有极高的利用价值。针对当前木质素解聚技术存在反应条件苛刻、产物选择性低等难题,构建了一种廉价的金属氧化物催化剂体系,研究了草本木质素选择性解聚制备对香豆酸甲酯的性能。考察了不同金属氧化物、反应温度、反应时间以及溶剂等因素对于对香豆酸酯收率和选择性的影响。研究结果表明,金属氧化物ZnO对于草本木质素选择性解聚制备对香豆酸甲酯的过程具有最佳的催化活性。在优化的反应条件下,可获得9.8%的对香豆酸甲酯收率和61.6%的选择性;通过对木质素解聚产物的分析并结合反应前后木质素的傅里叶红外光谱(FT-IR)和二维核磁(2D HSQC NMR)表征结果发现,木质素分子中H结构单元的选择性断裂是其催化解聚过程中对香豆酸甲酯收率和选择性高的主要原因。  相似文献   

6.
三甲基芳烷类化合物在染料、生物、医药领域具有的重要应用价值。本文研究了2,4,6-三甲基苯甲醛和N,N-二甲基间溴苯胺通过缩合反应制备三芳基甲烷化合物,考察了催化剂种类、反应溶剂、反应温度和反应时间对产物收率的影响。确定合成条件为以无水Fe Cl3作为催化剂、对二甲苯为溶剂、反应温度为128℃,反应时间为32h,目标产物收率达到80%左右,产物结构经质谱和氢核磁共振谱表征确认。  相似文献   

7.
以Raney Ni为催化剂,研究了甲醇水相重整制氢与木质素降解模型化合物愈创木酚/苯酚加氢的耦合反应.考察了反应前冷压、反应温度、反应时间、物料配比等条件对木质素降解模型化合物原位加氢反应性能的影响,并对影响机制进行了讨论.结果表明,在反应温度为220 ℃、反应前冷压0 MPa(表压)、物料比水/甲醇/模型化合物为20∶5∶0.8的条件下,反应7 h后愈创木酚转化率与环己醇选择性分别达99.00%和93.74%,反应12 h后苯酚的转化率与环己醇选择性分别达90.50%和99.29%.采用原位加氢反应,木质素降解的酚类模型化合物转化率和选择性明显优于外部供氢反应的转化率和选择性,同时,避免了外部供氢反应存在的氢气制备、储存、传输及加氢条件苛刻等问题,为木质素解聚产物制备化工品提供了新思路与实验基础.  相似文献   

8.
用浸渍法制备了具有高活性的非贵金属催化剂Ni/AC,采用X射线粉末衍射(XRD)、高分辨扫描透射电镜(STEM)对催化剂进行了表征,并研究了催化剂、温度、时间、氢气压力等因素对苯基苯醚选择性裂解C-O键的影响。结果表明Ni/AC在木质素α-O-4模型化合物的氢解反应中表现出较高的活性和选择性,获得了较高收率的甲苯和苯酚(>65.5%)。除此之外该催化剂在真实木质素的氢解反应中也展示出较好的活性。  相似文献   

9.
采用浸渍法及程序升温还原法制备了Ni2P/SiO2和Ni/SiO2催化剂,利用N2吸附-脱附、X射线衍射、X射线荧光、CO化学吸附、氢气程序升温脱附及氨气程序升温脱附等手段对催化剂进行了表征并用于甘油氢解反应.结果表明,Ni2P/SiO2和Ni/SiO2具有相近的表面Ni密度,但前者表面酸中心和表面氢物种(包括吸附氢和溢流氢)密度明显更高,且在甘油氢解反应中的活性也更高,这与其酸性中心与金属中心之间的协同作用有关.Ni2P/SiO2催化剂上主要产物为1,2-丙二醇及1-丙醇,而Ni/SiO2催化剂上主要产物为1,2-丙二醇、乙二醇和乙醇.提高反应温度和H2压力不能促进Ni2P/SiO2上乙醇和乙二醇的生成,但促进了1,2-丙二醇进一步氢解转化为1-丙醇.由此可见,Ni2P/SiO2具有较强的C-O键断裂活性及较弱的C-C键断裂活性,这可能分别与其较多酸性中心和电子及几何结构性质密切相关.  相似文献   

10.
黄金花  陈吉祥 《催化学报》2012,33(5):790-796
采用浸渍法及程序升温还原法制备了Ni2P/SiO2和Ni/SiO2催化剂,利用N2吸附-脱附、X射线衍射、X射线荧光、CO化学吸附、氢气程序升温脱附及氨气程序升温脱附等手段对催化剂进行了表征并用于甘油氢解反应.结果表明,Ni2P/SiO2和Ni/SiO2具有相近的表面Ni密度,但前者表面酸中心和表面氢物种(包括吸附氢和溢流氢)密度明显更高,且在甘油氢解反应中的活性也更高,这与其酸性中心与金属中心之间的协同作用有关.Ni2P/SiO2催化剂上主要产物为1,2-丙二醇及1-丙醇,而Ni/SiO2催化剂上主要产物为1,2-丙二醇、乙二醇和乙醇.提高反应温度和H2压力不能促进Ni2P/SiO2上乙醇和乙二醇的生成,但促进了1,2-丙二醇进一步氢解转化为1-丙醇.由此可见,Ni2P/SiO2具有较强的C-O键断裂活性及较弱的C-C键断裂活性,这可能分别与其较多酸性中心和电子及几何结构性质密切相关.  相似文献   

11.
采用共沉淀法制备了不同Ni/Cu比的NiCu/MgO双金属催化剂,并通过N_2物理吸附、X射线衍射(XRD)、X射线光电子能谱(XPS)和程序升温还原等方法对NiCu/MgO催化剂结构进行表征.表征结果表明,Cu和Ni之间存在协同相互作用,NiMgO_2的存在抑制了镍物种的还原和Cu-Ni合金的形成,催化剂的Ni/Cu比和焙烧温度对其表面金属组成有非常重要的影响.以葡萄糖氢解反应为探针反应,考察了Ni/Cu比、焙烧温度、H_2压力、反应温度、反应时间等因素对NiCu/MgO催化性能的影响.研究表明相对于单金属催化剂,双金属催化剂对葡萄糖氢解生成C2-C4和1,2-PD具有较高的催化活性,这与铜镍之间的协同作用有关.  相似文献   

12.
刘凌涛  张斌  李晶  马丁  寇元* 《物理化学学报》2012,28(10):2343-2348
使用担载型贵金属催化剂和磷酸在不同温度下通过两步法加氢降解二氧六环木质素. 第一步反应使用Rh/C和浓度为1% (w)的磷酸为催化剂, 在270 ℃和4 MPa氢气气氛下反应后通过气相色谱(GC)和气相色谱-质谱(GC-MS)分析木质素单体和二聚体, 总收率最高可达16.9%. 通过傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、元素分析(EA)和凝胶渗透色谱(GPC)等方法研究第一步反应产物的变化. 结果发现, 二氧六环木质素中的C-O-C键被打断, 木质素分子量降低, 部分羰基和羧基被脱除. 随着反应温度的上升, 产物的含氧量不断下降, 在270 ℃反应10 h 后氧含量从35% (w)降低至21% (w). 结合不同的表征方法, 提出二氧六环木质素的第一步反应路径. 第二步反应中使用Pd/C和磷酸为催化剂在250 ℃可以将木质素单体、二聚体高选择性地加氢脱氧转化为对应的烃类产物.  相似文献   

13.
催化热解废轮胎对于资源利用及环境保护具有重要意义,近年来引起人们关注.在废轮胎胶粉热解反应中加入催化剂,不仅会加速胶粉裂解速率,缩短反应时间,而且可以通过催化剂择形催化改变产物分布,从而提高目的产物衍生油的收率和性能.国内外对废轮胎催化热解已做了大量研究,以期提高衍生油中高附加值单环芳烃的含量,同时降低S, N和Cl含量,虽然已取得较大进展,但衍生油收率较低,大大降低了该技术的可行性.
  本文采用带搅拌器的1000 mL不锈钢反应器,在常压条件下研究了反应温度和催化剂类型对废轮胎胶粉热解反应及产物衍生油性能的影响,通过元素分析、馏程模拟和色谱-质谱等表征手段检测了衍生油的理化性能.结果表明,在废轮胎胶粉热解反应过程中,随反应温度上升,出油速率先增加后降低.至500 oC时,热解衍生油收率最高达55.65 wt%,所得衍生油呈黑棕色,具有轻质油含量低、S和N含量高、粘度低和流动性好的特点,其轻质芳烃含量低,却含有大量可以转变为芳烃的脂肪烃类.因此,为了提高衍生油中轻质油和轻质芳烃收率,降低S和N含量,尽量维持较高的衍生油收率,在热解反应过程中引入少量ZSM-5, USY,β, SAPO-11和ZSM-22等常见催化剂,利用催化剂独特的孔道结构和酸分布,达到定向催化和转化的目的,提高轻质芳烃含量.同时,为了克服催化剂与胶粉难以接触进行反应的问题,在反应温度升至200 oC时,维持一定时间保证胶粉发生溶胀和液化反应形成液体烃类,使得催化剂不仅能够均匀分散于液体烃中与其接触进行反应,而且有效提高了反应物料与催化剂之间传质传热效率,使得裂解反应在均相中进行,降低因传热不均匀而造成的结焦和过度裂化反应.在催化热解过程中,1.0 wt%催化剂的加入可明显缩短反应时间,在保证衍生油收率基本不变的情况下,获得的衍生油呈黄棕色,轻质油收率较高为70–75 wt%, S和N含量分别降至0.3–0.58wt%和0.78–1.0 wt%.以具有较高酸性和孔径分布的ZSM-5, USY,β和SAPO-11为催化剂时,衍生油中总芳烃含量可达到50 wt%,其中单环芳烃含量高达45 wt%.  相似文献   

14.
催化热解废轮胎对于资源利用及环境保护具有重要意义,近年来引起人们关注.在废轮胎胶粉热解反应中加入催化剂,不仅会加速胶粉裂解速率,缩短反应时间,而且可以通过催化剂择形催化改变产物分布,从而提高目的产物衍生油的收率和性能.国内外对废轮胎催化热解已做了大量研究,以期提高衍生油中高附加值单环芳烃的含量,同时降低S,N和Cl含量,虽然已取得较大进展,但衍生油收率较低,大大降低了该技术的可行性.本文采用带搅拌器的1000 mL不锈钢反应器,在常压条件下研究了反应温度和催化剂类型对废轮胎胶粉热解反应及产物衍生油性能的影响,通过元素分析、馏程模拟和色谱-质谱等表征手段检测了衍生油的理化性能.结果表明,在废轮胎胶粉热解反应过程中,随反应温度上升,出油速率先增加后降低.至500℃时,热解衍生油收率最高达55.65 wt%,所得衍生油呈黑棕色,具有轻质油含量低、S和N含量高、粘度低和流动性好的特点,其轻质芳烃含量低,却含有大量可以转变为芳烃的脂肪烃类.因此,为了提高衍生油中轻质油和轻质芳烃收率,降低S和N含量,尽量维持较高的衍生油收率,在热解反应过程中引入少量ZSM-5,USY,β,SAPO-11和ZSM-22等常见催化剂,利用催化剂独特的孔道结构和酸分布,达到定向催化和转化的目的,提高轻质芳烃含量.同时,为了克服催化剂与胶粉难以接触进行反应的问题,在反应温度升至200℃时,维持一定时间保证胶粉发生溶胀和液化反应形成液体烃类,使得催化剂不仅能够均匀分散于液体烃中与其接触进行反应,而且有效提高了反应物料与催化剂之间传质传热效率,使得裂解反应在均相中进行,降低因传热不均匀而造成的结焦和过度裂化反应.在催化热解过程中,1.0 wt%催化剂的加入可明显缩短反应时间,在保证衍生油收率基本不变的情况下,获得的衍生油呈黄棕色,轻质油收率较高为70–75 wt%,S和N含量分别降至0.3–0.58wt%和0.78–1.0 wt%.以具有较高酸性和孔径分布的ZSM-5,USY,β和SAPO-11为催化剂时,衍生油中总芳烃含量可达到50 wt%,其中单环芳烃含量高达45 wt%.  相似文献   

15.
为了提高木质素催化热解所得芳烃的产率,本研究以碱木质素为原料,在碱木质素炭和ZSM-5的二元催化体系下进行快速热解实验,选取催化剂比例、热解温度、热解时间等为实验变量,探究碱木质素热解产物中芳烃的变化规律以及碱木质素炭和ZSM-5协同催化作用机理。结果表明,碱木质素催化热解所得芳烃的产量从17 mg/g(未加炭)提高到33 mg/g(炭添加量为1 g),产率增加了近一倍。通过不同工况研究发现,碱木质素快速热解制备芳烃的最佳条件是:碱木质素∶碱木质素炭∶ZSM-5=1∶1∶1,热解温度为500℃,热解时间为10 min。机理分析表明,热解过程中碱木质素炭主要起断键作用,而ZSM-5起择形芳构化作用,两者协同作用得到更高的芳烃产率。  相似文献   

16.
选用脱碱木质素作为原料,以热裂解气质联用技术(Py-GC/MS)研究木质素在350~600℃下热解产物成分和含量,并利用Joback法、 Lijie法和Tahami法3种基团贡献法计算了生物油各组成成分的临界参数和动力学直径,对木质素热解油产物的分子动力学直径分布特性进行计算.结果显示,愈创木基结构、紫丁香基结构、苯酚类、邻苯二酚类和芳烃类等5种芳香族化合物是350~600℃下木质素热解生物油的主要组成成分,其中愈创木基结构化合物的平均峰面积百分比达到70.7%.随着反应温度从350提高到600℃,分子动力学直径在0.560~0.610 nm区间内的木质素热解油组分含量从14.6%增加至31.3%.木质素热解生物油主要产物的动力学直径在0.560~0.710nm,表明一些孔径尺寸在此范围内的分子筛如SSZ-20、 ZSM-5和Beta可作为木质素裂解制备高品质芳烃燃料的催化剂.  相似文献   

17.
木质素是地球上产量最大的芳香类有机高分子,其有效转化利用在近年来备受关注.催化降解木质素制备酚类单体在过去十年取得了长足进步,目前已开发出氢解、水解、热解、氧化、光解等一系列方法.通过加氢脱氧法可以将木质素的降解产物转化为烃类燃料,但该过程耗氢量大,并且芳香环在加氢气氛下被破坏.另一个可能的应用是将木质素衍生物进一步转化为高附加值的芳香族化合物,但解聚产物成分复杂,成为木质素高效转化为单一高附加值化学品的瓶颈.在加氢条件下,木质素解聚产物主要为酚类混合物,多在羟基临位带有一至两个甲氧基,并在对位带有C2或C3的取代基(多为烷基).针对这一结构特点,我们设计了新反应路径,通过分别去除甲氧基和烷基得到苯酚.该过程保留了苯酚的基本结构而将其他取代基去除,原理上可以有效的将木质素降解的混合物转化为单一产物苯酚.通过催化剂的筛选和优化,Pt/C催化剂对脱甲氧基显示出最好的活性和选择性,在400°C,常压下脱除效率80%.在流动气氛下连续工作4 h,Pt/C催化剂无失活迹象.H-ZSM-5为最有效的脱烷基催化剂,最优效率83%左右.H-ZSM-5在反应过程中逐渐失活.通过热重差热及红外光谱分析,失活主要原因为积碳.在400°C空气中煅烧后,催化剂可以再生.通过简单的物理混合,Pt/C和H-ZSM-5一步将木质素单体转化为60%的苯酚,显示了该方法直接转化木质素到高附加值苯酚的巨大潜力.这是同时将木质素中甲氧基、烷基选择性脱除的首例报道.经过估算,从原生木质素出发,通过加氢解聚,耦合本文开发的一步脱甲氧基、烷基路径,可将木质素转化为约25%的苯酚.木质素中的甲氧基、烷基将分别转化为甲醇和烯烃,提高了木质素碳资源的利用效率.  相似文献   

18.
由可再生木质素基生物质油加氢脱氧制三苯(苯、甲苯及二甲苯)及燃油可减少对化石能源依赖、缓解环境问题,加氢脱氧催化剂的研究开发为众多学者密切关注.我们以低成本金属Ni为加氢脱氧活性组分,采用金属In对金属Ni催化剂进行改性,旨在增加以苯甲醚为模型反应物加氢脱氧中的三苯收率、降低金属Ni的C-C键氢解及甲烷化活性,提高反应过程中碳收率、降低耗氢量.采用等体积浸渍-程序升温还原法制备了Ni/SiO2及Ni-In/SiO2催化剂,研究了Ni/In比及Ni含量对In改性Ni/SiO2催化剂结构和苯甲醚加氢脱氧性能的影响,利用H2-TPR,H2化学吸附,XRD,NH3-TPD,XPS,TEM及N2物理吸附-脱附等手段对催化剂及其前驱体进行了表征,采用石英管固定床反应器在300°C、常压、H2/苯甲醚摩尔比25及苯甲醚重时空速0.4 h-1的反应条件下考察了催化剂苯甲醚加氢脱氧性能,分析了催化剂结构与性能之间的关系.H2-TPR结果显示,金属In的加入抑制了催化剂前驱体中Ni物种的还原.XRD,H2化学吸附,HAADF-STEM-EDS及XPS等结果表明,经450°C还原制备的Ni-In/SiO2双金属催化剂中Ni和In接触紧密.In的加入明显降低了催化剂表面金属Ni的活性位数量;并且,Ni/In比越低Ni-In/SiO2催化剂H2化学吸附量越小.XPS结果还显示,Ni-In/SiO2催化剂中存在金属In向Ni转移电子.上述结果说明,在Ni-In/SiO2催化剂中金属Ni与In存在较强的相互作用.在苯甲醚加氢脱氧反应中,与Ni/SiO2催化剂相比,Ni-In/SiO2催化剂虽因表面Ni密度较低而具有较低苯甲醚转化率,但其苯环加氢、C-C键氢解及CO甲烷化活性较低,因而具有较高的三苯及环己烷选择性;并且,随Ni/In比的降低(即In含量的增加),Ni-In/SiO2催化剂的加氢、氢解及甲烷化能力呈减弱趋势.随Ni质量含量提高,Ni-In/SiO2双金属催化剂上苯甲醚转化率提高,但对三苯选择性及C-C键氢解能力影响不明显.经分析认为,与Ni/SiO2相比,Ni-In/SiO2催化剂较低的苯加氢及C-C键氢解活性与In对表面连续Ni位隔离作用及金属镍位电子云密度提高有关.在优化的反应条件下,Ni质量含量为40%、Ni/In比为40的Ni-In/SiO2催化剂上三苯收率为60.4%,高于相同Ni质量含量Ni/SiO2催化剂上三苯收率(51.6%).  相似文献   

19.
木质素是自然界中唯一大规模可再生的含芳环聚合物.通过催化氧化的方法,定向解聚木质素得到芳香类化合物,具有非常重要的价值.近年来,氧化铈作为载体在木质素的多相催化氧化反应中表现较好性能.然而,对于氧化铈直接作为催化剂,并探讨其纳米结构与性能之间的研究未见报道.研究结果表明:纳米氧化铈直接作为催化剂时,对于木质素的催化氧化反应具有较好的性能,顺序为氧化铈纳米八面体纳米四方体纳米球纳米棒.纳米八面体表现出最优的催化性能,以其作为催化剂,对乙醇木质素进行催化氧化,得到了大量芳香酸及其酯类化合物.  相似文献   

20.
高效转化来源丰富且可再生的木质纤维素制备化学品和燃料对建立可持续发展社会具有重要意义.木质纤维素利用的一条理想途径是将其主要成分纤维素、半纤维素和木质素在温和条件下高选择性地催化转化为关键平台化学品.本文综述了近年报道的有关纤维素、半纤维素和木质素或其模型分子中C–O键选择性活化生成葡萄糖、葡萄糖衍生物(包括葡萄糖苷、六元醇和葡萄糖酸)、木糖、阿拉伯糖和芳香化合物的新催化剂和新策略,阐述了决定催化性能的关键因素.本文还讨论了相关反应机理以深入理解C–O键选择性活化.纤维素由葡萄糖单元通过β-1,4-糖苷键连接而成,通过水解反应,选择性切断这些糖苷键可以获得葡萄糖或其低聚物.鉴于葡萄糖在水热条件下不稳定,发展纤维素温和条件下水解的酸催化剂至关重要.众多研究表明,均相酸催化剂(如无机酸,杂多酸等)具有强Br?nsted酸,在该水解反应中显示高的催化活性.另一方面,拥有强酸性基团-SO3H的固体酸也表现出优异的水解糖苷键性能,但是-SO3H官能团易于流失,限制了这类固体酸催化剂的循环使用.最近研究显示,一些催化剂尤其是碳材料上引入能够与纤维素形成氢键的官能团时,其催化纤维素水解性能显著增强.设计合成这类具备酸性位和氢键位协同效应的稳定固体酸催化剂是纤维素水解转化的一个颇具前景的研究方向.以醇替代水为溶剂实施纤维素醇解制葡萄糖苷是高效活化糖苷键的有效策略.杂多酸被证实为该醇解反应的高性能催化剂.在相同反应条件下,醇解产物葡萄糖苷较水解产物葡萄糖更为稳定,因此可以获得高的葡萄糖苷收率.开发稳定可重复利用的固体酸催化剂是纤维素醇解的关键.耦合水解与加氢或氧化反应可以直接将纤维素转化为相对稳定且具有广泛用途的多元醇或有机酸.目前已有一系列双功能催化剂被报道,这些催化剂通常组合了具备水解功能的液体酸或固体酸和具备加氢或氧化功能的贵金属或过渡金属(譬如Ru,Pt,Ni和Au).其中杂多酸盐或含有磺酸官能团的固体酸负载Ru或Au双功能催化剂显示出优异的生成六元醇或葡萄糖酸的催化性能.半纤维素由葡萄糖、甘露糖、木糖、阿拉伯糖、半乳糖等单糖单元通过糖苷键连接而成,糖苷键选择性活化可生成各种单糖混合物.硫酸可以有效水解半纤维素,但是同时也易于催化所生成的单糖深度转化为呋喃及其衍生物.较之硫酸,酸性较弱的有机酸特别是二元羧酸(例如马来酸、草酸等)具有较高的单糖选择性.固体酸如酸性树脂,分子筛等亦可催化半纤维素水解反应,但树脂类催化剂中官能团的流失问题有待解决.木质素是由含甲氧基等取代基的苯丙烷单元通过一系列化学键连接而成的复杂大分子,其芳香单元间包括β-O-4,α-O-4和4-O-5等三种主要连接方式,选择性切断这些C–O键可获得高附加值的芳香化合物.水解和氢解是两类普遍用以活化木质素及其模型化合物C–O键的反应.酸和碱均可催化木质素及其模型化合物水解,但是通常需要苛刻条件获取高转化率.近期研究显示,通过对木质素Cα-OH预氧化,再以HCOOH/HCOONa实施水解反应,可以成功实现温和条件下有机溶剂提取木质素及其模型化合物的高效转化.另一方面,均相金属络合物(如Ni,Fe和Ru)或多相负载型金属催化剂(如Ni,Cu,Mo,Pt,Ru,Pd或Ru等)均可有效催化木质素及其模型化合物中C–O键氢解,获得芳烃化合物.在部分多相催化剂体系中,除C–O键活化断裂外,还伴随芳环深度加氢反应,产生较多环己烷衍生物.因此,设计合成具备氢解功能同时抑制过度加氢功能的催化剂是获得芳烃化合物的关键.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号